



# LHCb Combination of the CKM angle $\gamma$

Matthew Kenzie CERN

LAL Seminar

May 3, 2016

#### OP violation and the CKM matrix

#### 2 The LHCb Experiment

3 CKM angle  $\gamma$ 

4 LHCb Combination

#### 5 Conclusion and Prospects



# CP violation



- We live in a matter (and photon) dominated universe
- How does baryogenesis lead to a matter / antimatter asymmetry?
- CP violation is a crucial ingredient to this problem (Sacharov)
- CKM matrix is the one place in the SM with CP violation
- $\blacktriangleright$  CPV in the SM  $(\sim 10^{-20})$  does not nearly account for the observed baryon-photon ratio( $\sim 10^{-10})$
- ▶ New sources of CP violation would be a clear indiction of New Physics (NP)



# CKM matrix



 $\blacktriangleright$  Quark mixing in the SM is described by the 3  $\times$  3 unitary CKM matrix



The matrix elements determine the transition probability



• Parameterised by three mixing angles ( $\theta_{12}$ ,  $\theta_{13}$ ,  $\theta_{23}$ ) and a CP violating phase ( $\delta$ )



### CKM matrix

Matthew Kenzie (CERN)

The CKM matrix exhibits a clear hierachy, sin(θ<sub>13</sub>) << sin(θ<sub>23</sub>) << sin(θ<sub>12</sub>) << 1, so often expressed in Wolfenstein parameterisation (A, λ, ρ, η)</p>

#### Wolfenstein parametrisation

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- Hierachy gives very distinctive behaviour to the flavour sector of the SM which gives strong constraints on NP
- CKM matrix gives the only source of CP violation in the SM ( $m_{\nu} = \theta_{QCD} = 0$ )







### CKM picture is now well verified

- Any discrepancies would be of great importance
- CKM angle  $\gamma$  is the *least well known* constraint





### CKM picture is now well verified

- Any discrepancies would be of great importance
- CKM angle  $\gamma$  is the *least well known* constraint



### CKM picture is now well verified

- Any discrepancies would be of great importance
- CKM angle  $\gamma$  is the *least well known* constraint



Matthew Kenzie (CERN)

### The Ultimate Test



 $\blacktriangleright$  Not just via direct / indirect disagreement but many constraints from new physics in neutral mixing require input of  $\gamma$ 



### The Ultimate Test



- $\blacktriangleright$  LHCb expected precision in 2029  $\sim\pm1^\circ$
- $\blacktriangleright$  Belle II expected precision in 2023  $\sim\pm2^\circ$



# 2. The LHCb Experiment



1 CP violation and the CKM matrix

### 2 The LHCb Experiment

3 CKM angle  $\gamma$ 

4 LHCb Combination

#### 5 Conclusion and Prospects

# LHC, CERN, Geneva





### LHCb Detector



A single arm forward spectrometer



#### 2. The LHCb Experiment

#### LHCb Detector

- A single arm forward spectrometer
- A factory for beauty and charm decays
- Acceptance range  $2 < \eta < 5$
- ► 100K  $b\overline{b}$  pairs produced per second ( $10^4 \times B$  factories)
- $\sigma(b\overline{b}) = 284 \pm 54 \mu b$
- $\sigma(c\overline{c}) \approx 20 \times \sigma(b\overline{b})$

#### LHCb performance paper - [arXiv:1412.6352]

- IP resolution  $\approx 20 \mu \mathrm{m}$
- *p* resolution  $\approx 0.5\%$
- au resolution pprox 45 fs
- Calorimeter ID for  $\gamma$ , e,  $\pi^0$
- Particle ID  $\epsilon(K) \sim 95\%$  with 5%  $\pi \to K$  mis-id
- Muons  $\epsilon(\mu)\sim$  97% with  $(1-3)\%\pi
  ightarrow\mu$  mis-id





#### 2. The LHCb Experiment

# LHCb Trigger





- Allow detector alignment and calibration in real time!
- In turn means online and offline reconstruction are identical
- Allows performing of many analyses online
- Allows high readout rate
- High efficiency for a broad range of topics





OP violation and the CKM matrix

#### 2 The LHCb Experiment

3 CKM angle  $\gamma$ 

4 LHCb Combination

#### 5 Conclusion and Prospects





$$\gamma = \arg \left( - \frac{\textit{V}_{ud} \textit{V}_{ub}^*}{\textit{V}_{cd} \textit{V}_{cb}^*} \right)$$

- $\blacktriangleright \gamma$  is known very well
- Can be determined entirely from tree decays
  - Unique property among all CP violation parameters
  - Hadronic parameters can be determined from data
- Neglible theoretical uncertainty (Zupan and Brod 2013)

Theory uncertainty on  $\gamma$ 

 $\delta\gamma/\gamma pprox \mathcal{O}(10^{-7})$  - [arXiv:1308.5663]

- $\gamma$  can probe for new physics at extrememly high energy scales (Zupan)
  - (N)MFV new physics scenarios:  $\sim \mathcal{O}(10^2) \,\, {
    m TeV}$
  - gen. FV new physics scenarios:  $\sim O(10^3)$  TeV

### $\gamma$ from experiment

- $\gamma$  is NOT known very well
- It is quite challenging to measure
- The decay rates are small

Branching ratio for suppressed  $\gamma$  mode BR(B<sup>-</sup>  $\rightarrow$  DK<sup>-</sup>, D  $\rightarrow$   $\pi$ K)  $\approx$  2  $\times$  10<sup>-7</sup>

- $\blacktriangleright$  Small interference effect typically  $\sim 10\%$
- Fully hadronic decays hard to trigger on
- Many channels have a  $K_{\rm S}^0$  in the final state low efficiency
- Many channels have a  $\pi^0$  in the final state very hard at LHCb
- Many different decay channels, many observables and many hadronic unknowns make it statistically challenging



#### Methods to measure $\gamma$

Reconstruct the  $D^0/\overline{D}^0$  in a final state accesible to both to acheieve interference



#### GLW method

- CP eigenstates e.g.  $D \rightarrow KK$
- Gronau, London, Wyler (1991)
- ADS method
  - CF or DCS decays e.g.  $D \rightarrow K\pi$
  - Atwood, Dunietz, Soni (1997,2001)
- GGSZ method
  - 3-body final states e.g.  $D \to K^0_{
    m S} \pi \pi$
  - Giri, Grossman, Soffer, Zupan (2003)

- [Phys. Lett. B253 (1991) 483]
- [Phys. Lett. B265 (1991) 172]
- [Phys. Rev. D63 (2001) 036005]
- [Phys. Rev. Lett. 78 (1997) 3257]
  - [Phys. Rev. D68 (2003) 054018]

#### Methods to measure $\gamma$

Reconstruct the  $D^0/\overline{D}^0$  in a final state accesible to both to acheieve interference



- GLW method
  - CP eigenstates e.g.  $D \rightarrow KK$
  - Gronau, London, Wyler (1991)
- ADS method
  - CF or DCS decays e.g.  $D \to K\pi$
  - Atwood, Dunietz, Soni (1997,2001)
- GGSZ method
  - 3-body final states e.g.  $D \to K^0_{\rm S} \pi \pi$
  - Giri, Grossman, Soffer, Zupan (2003)

- [Phys. Lett. B253 (1991) 483]
- [Phys. Lett. B265 (1991) 172]
- [Phys. Rev. D63 (2001) 036005]
- [Phys. Rev. Lett. 78 (1997) 3257]
- [Phys. Rev. D68 (2003) 054018]

#### The cartesian coordinates



An example GLW analysis -  $B^{\pm} \rightarrow D^0 \ K^{\pm}$ ,  $D^0 \rightarrow K^+ \ K^-$ 



$$A_{h}^{f} = \frac{\Gamma(B^{-} \to [f]_{D}h^{-}) - \Gamma(B^{+} \to [f]_{D}h^{+})}{\Gamma(B^{-} \to [f]_{D}h^{-}) + \Gamma(B^{+} \to [f]_{D}h^{+})}$$

$$R^f_{K/\pi} = rac{\Gamma(B^\pm o [f]_D K^\pm)}{\Gamma(B^\pm o [f]_D \pi^\pm)}$$

Matthew Kenzie (CERN)

An example ADS analysis -  $B^{\pm} \rightarrow D^0 \ K^{\pm}$ ,  $D^0 \rightarrow K^{\pm} \ \pi^{\pm}$ 

Favoured mode



[arXiv:1603.08993]

23/38 LHCb THCp

An example ADS analysis -  $B^{\pm} \rightarrow D^0 \ K^{\pm}$ ,  $D^0 \rightarrow K^{\pm} \ \pi^{\pm}$ 

Suppressed mode



LHCb CER

HC-D



# An example ADS analysis - $B^\pm o D^0$ $K^\pm$ , $D^0 o K^\pm$ $\pi^\pm$

- Define observables as yield ratios (many systematics cancel)
- Along with the GLW observables build a system of equations to overconstrain the parameters

ADS ratios of favoured to suppressed  

$$R_{ADS}^{\bar{f}} = \frac{\Gamma(B^- \to [\bar{f}]_D h^-) + \Gamma(B^+ \to [f]_D h^+)}{\Gamma(B^- \to [f]_D h^-) + \Gamma(B^+ \to [\bar{f}]_D h^+)}$$

Corresponding charge asymmetries

$$A_{\rm ADS}^{\bar{f}} = \frac{\Gamma(B^- \to [\bar{f}]_D h^-) - \Gamma(B^+ \to [f]_D h^+)}{\Gamma(B^- \to [\bar{f}]_D h^-) + \Gamma(B^+ \to [f]_D h^+)}$$

▶ Relatively trivial extension to multibody *D* decays  $(D \rightarrow 4\pi, D \rightarrow K3\pi, D \rightarrow KK\pi^0, D \rightarrow \pi\pi\pi^0, D \rightarrow K\pi\pi^0)$ , multibody *B* decays  $(B^{\pm} \rightarrow DK^{\pm}\pi^{+}\pi^{-})$  and other initial *B* states  $(B^0 \rightarrow DK^{*0})$ 

### An example GGSZ analysis

- ▶ Requires a self-conjugate 3-body final state  $(D^0 \rightarrow K^0_S \pi^- \pi^+, D^0 \rightarrow K^0_S K^- K^+)$
- The basic idea is to perform a GLW/ADS type analysis in each bin of the D decay phase space
- Compare Dalitz distribution for B<sup>+</sup> and B<sup>-</sup>
  - $\blacktriangleright$  Model dependent: use a Dalitz model describing all the intermediate resonances and fit for  $x_{\pm}, \, y_{\pm}$
  - Model independent: define bins which maximise sensitivity to  $x_{\pm}$ ,  $y_{\pm}$



26/38

LHCh

### An example GGSZ analysis



### An example GGSZ analysis

- GGSZ analyses have excellent standalone sensitivity with a single solution
- $\blacktriangleright$  Can trivially extend the methodology for neutral  $B^0 
  ightarrow D^0 K^{*0}$  decays

![](_page_27_Figure_4.jpeg)

![](_page_27_Picture_5.jpeg)

#### There are also other methods

- $\blacktriangleright$  Time-dependent method using  $B^0_s \to D^-_s K^+$ 
  - Large interference occurs via  $B_s^0$  mixing (requires knowledge of  $2\beta_s$ )
  - Time dependent, flavour tagged analysis unique to LHCb [arXiv:1407.6127]

![](_page_28_Figure_5.jpeg)

- GLS method
  - Grossman, Ligeti, Soffer (2003) [Phys. Rev. D67 (2003) 071301]
  - Uses ADS-like method with singly Cabibbo suppressed D decays (e.g.  $D^0 o K^0_S K \pi$ )
  - Poor sensitivity with current statistics

![](_page_28_Picture_13.jpeg)

# 4. LHCb Combination

![](_page_29_Picture_2.jpeg)

- OP violation and the CKM matrix
- 2 The LHCb Experiment
- 3 CKM angle  $\gamma$
- 4 LHCb Combination
- 5 Conclusion and Prospects

# LHCb $\gamma$ combination inputs

![](_page_30_Picture_2.jpeg)

| B decay D d       |                                       | D decay                                 | Туре       | $\int \mathcal{L}$    | Ref.               |
|-------------------|---------------------------------------|-----------------------------------------|------------|-----------------------|--------------------|
| LHCb Inputs       | $B^+ \rightarrow DK^+$                | $D \rightarrow hh$                      | GLW/ADS    | $3{\rm fb}^{-1}$      | [arXiv:1603.08993] |
|                   | $B^+  ightarrow DK^+$                 | $D  ightarrow h\pi\pi\pi$               | GLW/ADS    | $3{\rm fb}^{-1}$      | [arXiv:1603.08993] |
|                   | $B^+ \rightarrow DK^+$                | $D  ightarrow hh\pi^0$                  | GLW/ADS    | $3  \mathrm{fb}^{-1}$ | [arXiv:1504.05442] |
|                   | $B^+ \rightarrow DK^+$                | $D  ightarrow K^0_{ m S} hh$            | GGSZ       | $3  {\rm fb}^{-1}$    | [arXiv:1405.2797]  |
|                   | $B^+ \rightarrow DK^+$                | $D  ightarrow K_{ m S}^0 K \pi$         | GLS        | $3  {\rm fb}^{-1}$    | [arXiv:1402.2982]  |
|                   | $B^0 \rightarrow D^0 K^{*0}$          | $D \to K \pi$                           | ADS        | $3  {\rm fb}^{-1}$    | [arXiv:1407.3186]  |
|                   | $B^+ \rightarrow DK^+\pi\pi$          | $D \rightarrow hh$                      | GLW/ADS    | $3  {\rm fb}^{-1}$    | [arXiv:1505.07044] |
|                   | $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ | $D_s^+  ightarrow hhh$                  | TD         | $1{\rm fb}^{-1}$      | [arXiv:1407.6127]  |
|                   | $B^0  ightarrow D^0 K^+ \pi^-$        | D  ightarrow hh                         | GLW-Dalitz | $3  \mathrm{fb}^{-1}$ | [arXiv:1602.03455] |
|                   | $B^0  ightarrow D^0 K^{*0}$           | $D  ightarrow K^0_{ m S} \pi \pi$       | GGSZ       | $3  \mathrm{fb}^{-1}$ | [arXiv:1604.01525] |
| Decay Parameters  |                                       | Source                                  |            | Ref.                  |                    |
| Auxilliary Inputs | $D^0 - \overline{D}^0$ mixing         |                                         | HFAG       | -                     | [arXiv:1412.7515]  |
|                   | $D \to K \pi \pi \pi$                 | $(\delta_D, \kappa_D, r_D)$             | CLEO+LHCb  | -                     | [arXiv:1602.07430] |
|                   | $D \rightarrow \pi \pi \pi \pi$       | $(F^+)$                                 | CLEO       | -                     | [arXiv:1504.05878] |
|                   | $D \rightarrow K \pi \pi^0$           | $(\delta_D, \kappa_D, r_D)$             | CLEO+LHCb  | -                     | [arXiv:1602.07430] |
|                   | $D \rightarrow hh\pi^0$               | $(F^+)$                                 | CLEO       | -                     | [arXiv:1504.05878] |
|                   | $D \rightarrow K^0_S K \pi$           | $(\delta_D, \kappa_D)$                  | CLEO       | -                     | [arXiv:1203.3804]  |
|                   | $D \rightarrow K_{S}^{0}K\pi$         | ( <i>r</i> <sub>D</sub> )               | CLEO       | -                     | [arXiv:1203.3804]  |
|                   | $D \rightarrow K^0_S K \pi$           | ( <i>r</i> <sub>D</sub> )               | LHCb       | -                     | [arXiv:1509.06628] |
|                   | $B^0_{\circ} \rightarrow D^0 K^{*0}$  | $(\kappa_B, \bar{R}_B, \bar{\Delta}_B)$ | LHCb       | -                     | [arXiv:1602.03455] |
|                   | $  B_s^0 \to D_s^+ K^-$               | $(\phi_s)$                              | LHCb       | -                     | [arXiv:1411.3104]  |
| Com               | bination:                             |                                         |            | [LHCb-CONF-2016-001]  |                    |

New or updated since last combination

#### 4. LHCb Combination

# LHCb $\gamma$ Combination

![](_page_31_Picture_2.jpeg)

- Combination of all  $B \rightarrow DK$ -like modes
  - [LHCb-CONF-2016-001]
- Paper to follow soon with information on  $B o D\pi$  modes also
- Nominal results with a frequentist Feldman-Cousins "plugin" procedure
- 71 observables and 32 free parameters
  - $p(\chi^2, N_{\rm dof}) = 87.6\%$
  - $p(toys) = (87.0 \pm 0.2)\%$

#### LHCb $\gamma$ Combination

- Nominal result:  $\gamma = (70.9^{+7.1}_{-8.5})^{\circ}$
- Uncertainty < 10° is better than combined *B* factories
- ► The most precise single experiment measurement of *γ*
- LHCb combination paper expected later this year

![](_page_31_Figure_15.jpeg)

# LHCb $\gamma$ Combination

33/38 LHCb THCp

# <u>Naive statistical treatement</u> (profile likelihood method) - plots for demonstrative purposes only

![](_page_32_Figure_4.jpeg)

#### 4. LHCb Combination

### LHCb $\gamma$ Combination

<u>Naive statistical treatement</u> (profile likelihood method) - plots for demonstrative purposes only

![](_page_33_Figure_3.jpeg)

Matthew Kenzie (CERN)

LAL

34/38

LHCh

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)

2 The LHCb Experiment

3 CKM angle  $\gamma$ 

4 LHCb Combination

#### 5 Conclusion and Prospects

#### Prospects

- ▶ With Run II of the LHC underway and Belle II starting soon the prospects look good
- We can reasonably expect to half the experimental uncertainty on \(\gamma\) in the next 3 years
- $\blacktriangleright$  We can reasonably expect to have  $\sim 1^\circ$  precision in the next 5-7 years
- Current systematic effects are relatively small
  - GLW/ADS
    - instrumental charge asymmetries
    - PID calibration
  - GGSZ
    - efficiency correction over the Dalitz plane
  - Time-dependent
    - Decay time resolution
    - Decay time acceptance
    - Knowledge of  $\Delta m_s$ ,  $\Delta \Gamma_s$ ,  $\Gamma_s$
- Tree measurements of γ will not be systematically limited for a long time (not at 100 times the current dataset)

#### This does not include smart new ideas which people often have

36/38

LHCh

#### Prospects

- ▶ We are approaching the first tree-level precision measurement of the CKM triangle
- Direct measurements of  $|V_{ub}|$  play a crucial role in this as well

![](_page_36_Figure_4.jpeg)

#### [arXiv:1309.2293]

![](_page_36_Picture_9.jpeg)

#### 5. Conclusion and Prospects

#### Conclusions

![](_page_37_Picture_2.jpeg)

- CKM matrix is incredibly successful description of the quark sector in the SM
- Measurements of CKM elements are becoming increasingly precise
- ▶ Finding new sources of CP violation can lead us to New Physics
- $\blacktriangleright$  CKM angle  $\gamma$  is one of the only CP measurements accesible with tree-level decays
  - Theoretically very clean
  - Experimentally challenging
- LHCb has the worlds most precise single experiment measurement and dominates the world average
  - $\gamma = (70.9^{+7.1}_{-8.5})^{\circ}$
- ▶ The future looks incredibly bright with the prospect of reducing the direct measurement uncertainty by a factor of 10
  - This will compete with the indirect precision (which assumes the SM)

![](_page_37_Picture_13.jpeg)