Precise predictions for Higgs physics at the LHC

Fabrizio Caola, CERN

LAL, Orsay, May 27th 2016

Outline

- Introduction
 - Why precision
 - Precision goals and how to achieve them
- A first example: H+J @ NNLO
 - Integrating out the top
 - NNLO computations: anatomy
 - LHC phenomenology: fiducial results, jet veto, Higgs pt
- A second example: the off-shell Higgs and gg→VV
 - The off-shell region and the Higgs width/couplings
 - NLO predictions for gg→VV and `amplitude' progress
 - LHC phenomenology: signal, background and interference *K*-factors
- Conclusions

Particle physics circa 2016

Higgs boson discovery: one of the most important experimental results of the last 20 years

An apparent contradiction:

- The SM seems to describe all collider measurements to arbitrary precision
- `Complete theory' up to any scale to be probed in the foreseeable future
- Still, STRONG INDICATIONS that the SM is not the end of the story (dark matter, dark energy, baryogenesis...)

Moving forward: the need for precision

- •Strong cosmological indications for physics beyond the SM
- •Before the LHC, some expectation of new physics beyond the corner (naturalness, fine tuning, WIMP miracle...): SUSY, extra dimensions... So far, this has not happened
- Already now, the LHC points toward a SM-like Higgs sector (~no matter what would happen at 750 GeV)
- Discovering new physics turned out to be more challenging. No spectacular new signatures ⇒ new physics can be hiding in small deviations from SM behavior, or in unusual places. Very good control on SM predictions is required to single them out

PRECISION IS NOW A PRIVILEGED TOOL FOR DISCOVERY AT THE LHC

Hunting down small deviations: the Higgs sector

To pursue our quest for new physics at the LHC, we can envision at least two strategies

- •Pushing collider phenomenology to the boundary: N³LO predictions for the total cross-section, fully differential NNLO predictions for H+jet/Higgs p_T spectrum and precise predictions in the experimental fiducial region...
- •Looking closer at small effects: Higgs interferometry, *the off-shell Higgs and the Higgs width/ couplings*, boosted Higgs and the ggH coupling...

In the following, I will give two examples to illustrate both of these venues

Precise predictions: requirements

THE GOAL:

precise modeling of the actual experimental setup

The hard scattering cross-section $d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{part}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{QCD}/Q))$ /Require precise input parameters

HIGH-Q² PHYSICS \rightarrow PART WE HAVE MOST CONTROL ON, AND SENSITIVE TO SHORT DISTANCE PHYSICS (BSM) Must describe realistic conditions (fiducial cuts, arbitrary differential observables...) \rightarrow fully differential

 $(\alpha_{\rm s}, \rm PDFs...)$

Ultimate limitation: non-perturbative corrections For typical electro-weak scale: ~ percent

Precision goals: the Higgs sector LHC Run I

Run II and HL

Percent-level accuracy achievable experimentally → OUR TARGET

The path towards precision $d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{part}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{QCD}/Q))$ *Input parameters: ~few percent. In principle improvable*

HARD SCATTERING MATRIX ELEMENT

- • $\alpha_{s} \sim 0.1 \rightarrow$ percent-level accuracy requires second order (NNLO) computations
- •For Higgs production: large gluon charges, $C_A \alpha_s \sim 0.3 \rightarrow$ third order (N³LO) is desirable

NP effects: ~ few percent No good control/understanding of them at this level The hard matrix element $d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{\text{part}}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{\text{QCD}}/Q))$

Many different way to obtain more or less accurate estimations of the partonic cross section (soft/collinear approximations and resummation, PS merging...)

- If HIGH PRECISION is sought however, PERTURBATIVE (FIXED ORDER) COMPUTATIONS are a very important instrument
- controlled environment
- at the LHC, logs are often (≠ always) not so large → captured by fixed (high enough) order computations
- at high enough order, reasonable control on rates, shapes and uncertainties
- fiducial cuts, reliable modeling of experimental setup
- input for resummation

Pushing collider phenomenology to the boundary: Higgs plus jet at NNLO in gluon fusion

Why Higgs plus Jet in gluon fusion

- •Gluon fusion: bulk of the cross-section → precision
- •Gluon have large color charges \rightarrow easy to radiate extra jet. H+J: ~ 35% of $\sigma_{\rm H}$

•Can give important information about Higgs properties (proxy for p_{t,H}, probe of the ggH coupling)

In important channels

 (H→WW,H→ττ) jet veto to
 suppress background

NLO: ~100% corrections, clearly unsatisfactory result

Integrating out the top

As long as the typical scale of the process is $Q \leq m_t$: short distance (i.e. top mass) physics is not resolved \rightarrow effective point-like interaction

- This observation significantly simplifies computations (no internal structure). All advanced computations so far make use of this simplification
- •In most cases, the typical scale of Higgs physics is Q~m_H < m_t, so this effective approximation is justified
- Nevertheless, mass effects at the percent-level to be expected \rightarrow we will have to improve on current technology to cope with them

Integrating out the top

If the Higgs is produced in association with extra jet, the situation is potentially more dangerous: high-pt jets can resolve the top loop

• Nevertheless, $d\sigma/dp_t^2 \sim 1/p_t^2$ so most of the events are in a region where the effective theory is reliable

 \bullet Only small fraction of events in the extreme high p_t region

Anatomy of a NNLO computation

All required amplitudes known since long time

TWO-LOOP AMPLITUDES FOR H+J Computed in 2011 [Gehrmann et al.]

00000

ONE-LOOP AMPLITUDES FOR H+JJ Compact analytical expressions known and implemented in MC programs [MCFM]

TREE-LEVEL AMPLITUDES FOR H+JJJ

What prevented from doing the computation for so long?

Anatomy of a NNLO computation

The actual bottleneck for the computation was not the availability of two-loop amplitudes but how to consistently handle IR singularities

RV

RR

VV

000000000 000000 $\int \left[\frac{\mathrm{vv}_4}{\epsilon^4} + \frac{\mathrm{vv}_3}{\epsilon^3} + \frac{\mathrm{vv}_2}{\epsilon^2} + \frac{\mathrm{vv}_1}{\epsilon} + \mathrm{vv}_0\right] d\phi_2$ $\int \left[\frac{\mathrm{rv}_2}{\epsilon^2} + \frac{\mathrm{rv}_1}{\epsilon} + \mathrm{rv}_0\right] d\phi_3$

COMPLICATED IR STRUCTURE HIDDEN IN THE PHASE SPACE INTEGRATION

Anatomy of a NNLO computation

The actual bottleneck for the computation was not the availability of two-loop amplitudes but how to consistently handle IR singularities

• IR singularities (long-distance physics) hidden in PS integration

- After integration, all singularities are manifest and cancel (KLN)
- •We are interested in FULLY DIFFERENTIAL results (arbitrary cuts, arbitrary observables) → we are not allowed to integrate over the PS
- The challenge: extract PS-integration singularities without actually performing any integration. Highly non trivial

The problem with fully exclusive NNLO

The GOAL: we are looking for precise predictions → as close as possible to experimental reality (fully differential, fiducial region)

- •Especially for processes with non trivial color flow, these computations pose significant conceptual challenges (consistent treatment of IR singularities)
- •Thanks to a big effort in the community, we now see first glimpses towards solutions: antenna, sector decomposition +FKS/STRIPPER, colorful NNLO, N-jettines/q_T slicing...
- •NNLO predictions for colorful $2\rightarrow 2$ processes are a reality

Higgs plus Jet@NNLO: results [Boughezal, FC, Melnikov, Petriello, Schulze, PRL (2015)]

THE SETUP: LHC8, anti- $k_t R=0.5$, $p_{t,jet} > 30$ GeV, $\mu=m_{H.}$ Only approximation: EFT ($m_t \rightarrow \infty$)

- Significantly improved scale uncertainty (makes discussion of dynamical scale largely irrelevant)
- Still sizable correction for $\mu = m_{H_{e}}$ smaller for $\mu = m_{H}/2 [K_{NNLO} = 4\%]$. First sign of perturbative convergence

Differential distributions

[Boughezal, FC, Melnikov, Petriello, Schulze, PRL (2015)]

A step closer to reality: fiducial analysis

- If very high precision is sought, it becomes important to reduce to a minimum unnecessary extrapolations from uncontrolled sources (e.g. PS acceptance corrections)
- Fully exclusive computations are able to deal with arbitrary cuts on final state partons
- For Higgs plus jet: can exactly reproduce experimental analysis in terms of cuts on photons (H→γγ)/leptons (H→WW/ZZ) and jets
- Allow for an unbiased data / theory comparison
- `Nice' experimental cuts: no need for extrapolations after this → insensitive to soft physics (*interesting topic for precision frontier, e.g. symmetric cuts...*)

Fiducial analysis: $H \rightarrow \gamma \gamma$

[FC, Melnikov, Schulze (2015)]

 $\begin{array}{l} \textbf{SETUP: ATLAS 8 TeV ANALYSIS} \\ \textbf{Anti-k}_t \ with \ R=0.4, \ p_{t,j} > 30 \ GeV, \ |\ y_j | < 4.4, \ p_{t,\gamma} > max \ (25 \ GeV, 0.35 / 0.25 \ m_{\gamma\gamma}), \\ |\ y_{\gamma} | < 2.37, \ no \ photons \ with \ 1.37 < |\ y_{\gamma} | < 1.56, \ \Delta R_{\gamma j} > 0.4 \end{array}$

- Reduced uncertainties
- Stable shapes
- Virtually no shape correction for $cos(\theta^*) \rightarrow$ Higgs characterization

Fiducial analysis: $H \rightarrow \gamma \gamma$

[FC, Melnikov, Schulze (2015)]

0.01

60

90

 $p_{\perp,j_1} \; [\text{GeV}]$

120

systematic error

Fiducial analysis: H→2l2v [FC, Melnikov, Schulze (2015)]

 $\begin{array}{l} & \mbox{SETUP: CMS-LIKE ANALYSIS, 13 TeV} \\ \mbox{Anti-k}_t \mbox{ with } R=0.4, \ p_{t,j} > 30 \ GeV, \ |\ y_j | < \!\!4.7, \ p_{t,l} > 20 / 10 \ GeV, \ E_{t,miss} > 20 \ GeV, \\ \ m_{ll} > 12 \ GeV, \ p_{t,ll} > 30 \ GeV, \ m_{t,WW} > 30 \ GeV \end{array}$

NNLO able to cope with complicated final states (up to 7 particles)

The problem of jet binning: veto log

In general, putting sharp constraints on the phase space (e.g. veto emission) leads to logarithmically enhanced contributions

- •For p_{t,veto} = 30 GeV: ~40% effect, on top of already large perturbative corrections
- •Can spoil perturbative convergence, and give rise to spurious cancellations (-> accidentally small scale variation uncertainties)

Resummation at NNLO+NNLL Resummation program in good shape [Banfi et al, Stewart, Tackmann et al (2013); Liu, Petriello (2013); Boughezal et al (2014); Becher et al (2014)]

Jet veto: N³LO+NNLL

[Banfi, FC, Dreyer, Monni, Salam, Zanderighi and Dulat (2015)]

 $\sigma_{\rm inc} = \sigma_0 + \sigma_1 + \dots$

Fully differential NNLO H+J

- •Combining inclusive N³LO results for the total cross section and the NNLO H+J computation described above allows to compute σ_0 at O(α_s^5), i.e. N³LO
- •Can be matched to resummation to study jet veto physics to a new level of accuracy
- •Allow for reliable error estimates for vetoed crosssections and efficiencies ($\epsilon = \sigma_0 / \sigma_{inc}$)

- goigngingofrohtnulleto No3NOLO

- Corrections moderate (previous uncertainty estimates overconservative)
- No breakdown of perturbation theory for $p_t > 20 \text{ GeV}$
- Fixed (high) order properly captures the logs at the 1-2% level

Jet veto: detailed analysis

[Banfi, FC, Dreyer, Monni, Salam, Zanderighi and Dulat (2015)]

At the percent-level, one can imagine several contributions becoming relevant:

- Finite top/bottom mass effects → consider different prescriptions for their all-order behavior and compare
- Parton recombination and clustering: logR-enhanced terms appear → resum them [Dasgupta, Dreyer, Salam, Soyez (2014)]

[Tackmann, Walsh, Zuberi 1206.4312]

Jet vet Notester and reasons the logic prossose cheorie 2% 2%) tw. NNLOH WHALL X signification and we doot information the one on containtainty [Banfi, FC, Dreyer, Monni, Salam, Zanderighi and Dulat (2015)]

- Very small corrections, (conservative) uncertainty at the 4% level
- All logs effects properly described by fixed order, small impact of resummation, no breakdown of perturbation theory
- FIXED ORDER RELIABLE \rightarrow FIDUCIAL REGION

One last application of H+J: Higgs pt spectrum at NNLO (for real)+NNLL

[Monni, Re, Torrielli (2016). In `usual' name coding: N³LO+NNLL]

- Significant reduction of uncertainties
- No clear breakdown of p.t. to very low pt
- EFFECT OF NNLL at $P_T = 15$ GeV: 25%. No effects for $P_T > 40$ GeV

Looking closer at small effects: Higgs in the off-shell region and gg→VV

The off-shell Higgs

Despite being a narrow resonance, in the H→VV channels the SM Higgs develops a sizable high-invariant mass tail (enhanced decay to real longitudinal W/Z)

The off-shell Higgs

Contrary to the peak region, in the off-shell tail the (SM) crosssection only depends on the couplings, and not on the width

When combined with standard measurements, off-shell region helps in decorrelating couplings/width, thus giving additional information on them [FC, Melnikov (2013)]

Example: constraints on the Higgs width

$\Gamma_{\rm H}^{\rm CMS} \le 22 \ {\rm MeV}$

 $\Gamma_{H}{}^{ATLAS} \le 20\text{-}32~MeV$

To be compared with the ultimate LHC reach for the direct measurement $\Gamma_{H}^{direct} \sim 1 \text{ GeV}$ (although indirect constraints \rightarrow some model dependence)

4l production at the LHC

To fully profit from off-shell measurements: GOOD CONTROL ON PP \rightarrow 4L

gg->4l background and interference at NLO

- Loop induced → NLO involves complicated two-loop amplitudes
- Light quark contribution → cannot integrate them out
- At high invariant mass → top effects non negligible
- In general, expect significant top effects for the interference also at small invariant mass (Higgs select transverse polarizations which strongly couple to the top)

The problem of (two) loop amplitudes

- As a rule of thumb, complexity of multi-loop amplitudes grows very rapidly
 - as we move away from the massless limit
 - as we increase the number of scales of the process
- Here: 4 scales (s,t,m_{ee},m_{µµ}) → several orders of magnitude more complicated than di-jet, H+j,...
- With internal top masses: prohibitively complicated

The problem of (two) loop amplitudes

- Combining traditional techniques with new ideas inspired by more formal $\mathcal{N} = 4$ SYM studies, powerful new methods
 - allowed to obtain amplitudes for massless quarks [FC, Henn, Melnikov, Smirnov, Smirnov (2015); Tancredi, v. Manteuffel, Gehrmann (2015); Tancredi, v. Manteuffel (2015); FC, Melnikov, Röntsch, Tancredi (2015)]
- For massive quarks: expand in the top mass below threshold (~ higher dim operators) [FC, Dowling, Melnikov, Röntsch, Tancredi (2016)]
- Results above top threshold still missing (although some approximations available [Campbell, Ellis, Czakon, Kirchner (2016)])
- Full result could be obtained via brute force numerical methods?

gg→4l: NLO results

[FC, Dowling, Melnikov, Röntsch, Tancredi (May 2016)]

- **RESULT VALIDATES** *K*_{sig} ~ *K*_{bck} ~ *K*_{int} [Bonvini, FC, Forte, Melnikov, Ridolfi (2013)]
- *K*_{int} ~ *K*_{sig} seem to persist also at high m₄₁ ([Campbell et al] approximation)
- •Interestingly, non trivial *K*_{int} the Z threshold. Negligible overall effect

One step closer to reality: PS matching

[Alioli, FC, Luisoni, Röntsch et al, work in progress]

Conclusions

- •No obvious new physics at the LHC and SM-like EWSB sector calls for precise scrutiny of SM predictions, hoping to spot deviations pointing to new physics
- •New level of accuracy is needed. Sophisticated predictions, which required very interesting conceptual advancement in QCD (soft/collinear singularities and fully exclusive NNLO, new ideas for multi-loop amplitudes)
- The processes I discussed today are only examples. Many precise predictions became available (top, V+J, VV, ~di-jet...)
- Despite lot of progress, still a lot is missing. IDEALLY: precision for a large class of processes / observables. This way: cross-correlate → find (and interpret) tensions
- The remarkable success of the experimental program at the LHC keeps providing exciting motivation for pursue these investigations. WE LOOK FORWARD FOR RUN II

Thank you for

your attention!