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Introduction to CPSIntroduction to CPS
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CPS: Development motivationCPS: Development motivation

CPS triggered by the need of very granular and 
low material budget sensors

CPS applications exhibit milder running 
conditions than at pp/LHC

● Relaxed readout (r.o.) speed & rad. tolerance

Quadrature of the 
Vertex Detector 

Application domain widens continuously (existing/foreseen/potential)
● Heavy-ion collisions

➢ STAR-PXL, ALICE-ITS, CBM-MVD, NA61…
● ee collisions

➢ BES-III, ILC, Belle II (BEAST II)
● Non-collider experiments

➢ FIRST, NA63, Mu2e, PANDA, …
● High-precision beam-telescopes (adapted to medium/low energy e beams)

➢ Few m resolution @ DUT achievable with EUDET-BT (DESY), BTF-BT (Frascati)

44
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CPS: Main featuresCPS: Main features

The basic working principle
● Secondary charges generated in epi-layer by ionization

➢ Signal proportional to epi-thickness
● Charges transport driven by 3 potentials

➢ P-well/coll. node/P++ (usually GND/few volts/GND)

● Epi-layer not fully depleted: d
dep 

~ 0.3 
sub

U
bias

 transport is mix of thermal diffusion & drift

Prominent features
● Signal processing integrated on sensor substrate downstream electronics & syst. integration

● High granularity  excellent spatial resolution (O(m))
● Signal generated in thin (10-40m) epi-layer  usual thinning up to 50 m total thickness
● Standard fabrication process low cost & easy prototyping, many vendors, …

CPS technology potential
● Mainly driven by commercial applications  Not fully optimized for particle detection
● R&D largely consists in exploiting as much as possible the potential of the accessible 

industrial processes

55
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CPS @ PICSEL - IPHC: A long term R&DCPS @ PICSEL - IPHC: A long term R&D
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CPS State-of-the-Art in operation: STAR-PXL sensorCPS State-of-the-Art in operation: STAR-PXL sensor

ULTIMATE main characteristics
● CMOS sensor (0.35 m AMS twin-well) high- epi-layer 15m

● Sensor thinned to 50 m (total thickness  0.05% X
0
)

● || column (rolling shutter) r.o. with in-pixel CDS & amplification
● End-of-column discriminator (1-bit) followed by -suppression
● 960 x 928 (columns x rows) pixels of 20.7 m pitch                         

 19.9 x 19.2 mm2 sensitive area

● t
r.o.

 < 200 s (~5x103 frames/s)  suited for > 106 part./cm2/s

● 2 outputs @ 160 MHz
● Operation @ T ~30 oC & W < 150 mW/cm2

~

~

ULTIMATE Performances
● Noise < 15 e ENC @ 30-35 oC

● 
det

 > 99.9%, 
sp

 > 3.5m, Fake rate < 10-5

● Rad. hardness validated @ 30 oC          
(150 kRad  31012 n

eq
/cm2)

~ ~ ~
~

ULTIMATEULTIMATE

(MIMOSA-28)(MIMOSA-28)

77
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CPS State-of-the-Art in operation: STAR-PXL detectorCPS State-of-the-Art in operation: STAR-PXL detector

STAR-PXL HALF-BARREL
● 2 layers @ r = 2.8,8 cm
● 20 ladders (10 sensors) (0.37% X

0
)

 180M pixels
● Air flow cooling: T < 35oC

STAR-PXL @ RHIC: 1STAR-PXL @ RHIC: 1stst CPS @ a collider experiment ! CPS @ a collider experiment !
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CPS State-of-the-Art in operation: STAR-PXL detectorCPS State-of-the-Art in operation: STAR-PXL detector

STAR-PXL HALF-BARREL
● 2 layers @ r = 2.8,8 cm
● 20 ladders (10 sensors) (0.37% X

0
)

 180M pixels
● Air flow cooling: T < 35oC

STAR-PXL @ RHIC: 1STAR-PXL @ RHIC: 1stst CPS @ a collider experiment ! CPS @ a collider experiment !

Observation of D0 production
● STAR:  peak significance = 18
● ALICE: peak significance =  5

Courtesy of the 
STAR collaboration

Several Physics-runs
● 1st /2nd run in 2014 & 2015
● Preparation for 3rd run (Jan. 2016)

● 
ip
(p

T
) matching requirements

~40 m @ 600 MeV/c for /K
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CPS performances: Spatial Resolution (CPS performances: Spatial Resolution (
spsp

))

Several parameters govern 
sp

Pixel-pitch impact (analogue output)
● Pitch = 10 (40) m  

sp
 ~ 1 m (< 3 m)

● Nearly linear improvement in Nearly linear improvement in 
spsp

 vs pixel pitch vs pixel pitch

Signal-encoding impact (digital output)
● digi

sp
 = pitch/12)1/2

 e.g. digi

sp 
~ 5.7 m for 20 m pitch

● Significant improvement in Significant improvement in 
spsp

 by  increasing signal encoding resolution by  increasing signal encoding resolution

~

● Pixel pitch
● Epi-layer: thickness & 
● Sensing node: geometry & electrical properties
● Signal-encoding resolution: Nb of bits

● 
sp

 function of:

pitch  SNR  charge-sharing  ADCu 

99


digi

sp

digi
sp
 (1-bit)

digi
sp

 (analog)



Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015 11

CPS performances: r.o. speed & rad. hardnessCPS performances: r.o. speed & rad. hardness

15 years of experience of PICSEL 
group in developing CPS
Strong collaboration with ADMOS 
 group at Frankfurt

r.o. speed evolution
● Two orders of magnitude 

improvement in 15 years of research

Radiation tolerance
● Significant improvement with time
● Sensor validation up to 10 MRad  

1014n
eq

/cm2

● Adequacy to ALICE-ITS and CBM 
applications

1010
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Development of CPS adapted Development of CPS adapted 
to Vertex & Tracker detectorto Vertex & Tracker detector

1111
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Next challenge: ALICE-ITS upgradeNext challenge: ALICE-ITS upgrade

ALICE goals
● Study quark gluon plasma in heavy-ion collisions
● High precision measurements @ low-p

T

   0.35 0.35 m CMOS process (STAR-PXL) marginally suited to this r.o. speed & rad. hardness m CMOS process (STAR-PXL) marginally suited to this r.o. speed & rad. hardness 

1212

Upgraded ITS entirely based on CPS 
● Present detector: 2xHPD/2xDrift-Si/2xSi-strips
● Future detector:   7-layers with CPS (25-30k chips)

 1 1stst large tracker (~ 10 m large tracker (~ 10 m22) using CPS) using CPS
● ITS-TDR approved on March 2014 (Pub. In J.Phys. G41 (2014) 087002)

New ALICE-ITS requirements

● Different requirements on inner & outer layers calls for 
different chips designs!
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CMOS Process Transition: STAR-PXL CMOS Process Transition: STAR-PXL   ALICE-ITS ALICE-ITS

● Use of PMOS in pixel array not allowed               
 parasitic q-collection of additional N-well

● Limits choice of readout architecture strategy
● Already demonstrated excellent performances

➢ STAR-PXL: Mi-28 (AMS 0.35 m process)  
 

det
 > 99.5%, 

sp
 < 4m

➢ 11stst CPS detector @ collider experiment CPS detector @ collider experiment

● N-well of PMOS transistors shielded by deep P-well     
 both types of transistors can be used

● Widens choice of readout architecture strategies
➢ New ALICE-ITS: 2 sensors R&D in || using 

TowerJazz CIS 0.18 um process (quadru. well)
➔ Synchronous Readout R&D:

proven architecture  safety
➔ Asynchronous Readout R&D: challenging

Twin well process: 0.6-0.35 um Quadrupole well process (deep P-well): 0.18 um

ULTIMATEULTIMATE

(MIMOSA-28)(MIMOSA-28)
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ALICE-ITS: Boundaries of the CPS DevelopmentALICE-ITS: Boundaries of the CPS Development

New fabrication process (TowerJazz CIS 0.18 m)
● Expected to be ration tolerant enough
● Expected to allow for fast enough readout
● Larger reticule: ~ 25 x 32 mm2

1414

Drawback of smaller feature size
● 1.8 V operative voltage (instead of 3.3 V)

 reduced dynamics in signal processing circuit and    
epi-layer depletion voltage 

● Increase risk of Random Telegraph Signal (RTS) noise

Requirements of the larger surface to cover
● Good fabrication yield  sensor design robustness
● Mitigate noisy pixels
● Sensor operation stable along 1.5 m ladder (voltage drop)
● Material budget

➢ Minimize power consumption
➢ Minimal connexions to the outside  sensor periphery (slow-control, steering, ...)
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ALICE-ITS: Readout chain componentsALICE-ITS: Readout chain components

Typical readout components
● AMP: in-pixel low noise pre-amplifier
● Filter: in-pixel filter
● ADC (1-bit  discriminator): may be implemented at end-of-column or pixel level
● Zero suppression (SUZE): only hit pixel info is retained and transferred

➢ Implemented at sensor periphery (usual) or inside pixel array
● Data transmission: O(Gbps) link implemented at sensor periphery

r.o. alternatives
● Rolling shutter (synchronous): || column r.o. reading N-lines at the time (usually N = 1-2)
● data-driven (asynchronous):    only hit pixels are output upon request (priority encoding)

Rolling shutter: best approach for twin-well process 
● Trade-off between performance, design complexity, pixel dimensions, power, …

e.g.: Mimosa-26 (EUDET-BT), Mimosa-28 (STAR-PXL)

1515
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ALICE-ITS: Two Architectures for the pixel chipALICE-ITS: Two Architectures for the pixel chip

MISTRAL-O

ALPIDE
Goal: early available and reliable solution
● Conservative design based on STAR-PXL
● Big pixel  low power & high speed

● Moderate rad. hardness & 
sp

 ~10 s  OK

Pixel pitch: 36x64 m2

Time resolution: ~ 20 s

W: 80 mW/cm2

Max hit rate: ~0.8 MHz/cm2 

Dimension: 15 x30 mm2

Dead area: 1.5x30 mm2

Pixel pitch: 28x28 m2

Time resolution: < 5 s

W: 39 mW/cm2

Max hit rate: ~ 3MHz/cm2 

Dimension: 15 x30 mm2

Dead area: 1.1x30 mm2

Goal: high performance, accept risks
● Aggressive design
● In-pixel discrimination
● Data-driven r.o. (priority encoder)

● Both chips have same physical & electrical interfacesBoth chips have same physical & electrical interfaces
● Base-line solution: ALPIDE for all ITS layersBase-line solution: ALPIDE for all ITS layers

~
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Exploring the new Exploring the new 
technologytechnology

1717
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Technology Exploration & Sensor PerformancesTechnology Exploration & Sensor Performances

1818

External parameters
● Diode and spacing (footprint) size/geometry
● Pixel size/geometry: square vs elongated

➢ Elongated pixels in row direction (less rows)

 Lower t
r.o. 

of rolling shutter

● Diode layout of elongated pixels
➢ Staggering  lower diode inter-distance

● Epi-layer: thickness and resistivity (profile)

Performances in terms of
● Noise
● CCE, SNR @ seed pixel
● Hit pixel multiplicity  data transmission

● 
det

, 
sp 

& Fake-rate

● Rad. Tolerance

Goal: understand the detection performances in terms of external parameters

             Optimization for ALICE-ITS (and evaluate adequacy for other applications)
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Exploratory chips: MIMOSA-32ter & MIMOSA-34Exploratory chips: MIMOSA-32ter & MIMOSA-34

TowerJazz 0.18um technology validation & performances optimization

MIMOSA-32ter
● Analog-output: source follower or feedback-loop (t

int
~34 or 12 s)

● Sub-matrices of 16x64 pixels with different sizes (20x20,33,40,80 m2), 
diodes geometries (octagonal vs square) and some with deep P-well

● Epi-layer: 18 m HR (= 1 kcm)

MIMOSA-34
● Analog-output: source follower (t

int
 ~ 32s)

● 30 sub-matrices with 16x64 staggered pixels
➢ Dimensions:       22 or 33 x(27, 30, 33, 44, 66) m2

➢ Diode/footprint: 1+1, 2, 5, 5+5, 8, 11, 15 m2 / 11,15 m2

● Epi-layer: 18, 20, 30 m HR (= 1 – 6 kcm)

source follower

Diode & pre-ampli

Feedback loop with diode

1919

Test purposes
● Validate new technology: epi-layer characteristics, deep P-well and Rad. tolerance
● Study: sensing node charge collection, elongated pixels performances
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MIMOSA-32ter: performancesMIMOSA-32ter: performances

CERN-SPS BT Set-up
● Beam: 60-120 GeV/c +

● T
cooling

 = 15, 20 & 30oC
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Technology validation
● HR epi-layer
● deep P-well (no parasitic charge coll.)
● Radiation tolerance


det

 & 
sp

 vs threshold

Seed pixel charge distribution

Noise distribution

15oC, No rad.

30oC, No rad.

20oC, 1MRad1012

neq
/cm2

30oC, 1MRad1013

neq
/cm2

2040 m2 

200 m2 

MIMOSA-28

Main results
● 20x20 m2 pixel (performances vs rad. dose @ 30oC)

➢ Small noise increase: 21 26 e- ENC

➢ SNR
seed

 reduction: 26-28  19 (30%)

➢ 
det

 > 99% for 1MRad  1013n
eq

/cm2

➢ 
sp

 ~ 3.2 m

● 20x40 m2 pixel (@ 20oC)
➢ 

det
 > 99% for 1MRad  1013n

eq
/cm2

➢ 
sp

 ~ 5.0 m
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MIMOSA-34: performances vs diode & pixels sizesMIMOSA-34: performances vs diode & pixels sizes

DESY BT Set-up (August 2013):
● 2BT: 8xSi-strips & 6xMIMOSA-26 (120 m thick)
● ~4.4 GeV/c e beam

MIMOSA-34: Various pixels & diode dimensions
● Pixel (22x27,30,33,44,66) & diode (8,11,15) sizes (m2)

● Excellent SNR
seed

 for various considered pixels

 e.g. MPV > 40 for 22x66 m2 pixel 
det

 ~100%

● 33x66 m2 pixel: Not tested in BT but with -source
➢ Excellent MPV (> 50) expects 

det
 ~100% & 

sp
 ~ 10m

➢ Pixel size adapted for ALICE-ITS outer layers (MISTRAL-O)

2121

Variations showed acceptable degradation of 
performances for nominal TID + NIEL @ ALICE-ITS

Next-step: optimization with pre-ampli schemeNext-step: optimization with pre-ampli scheme

Seed pixel SNR vs pixel variations

Seed pixel SNR vs pixel size
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Going MISTRAL-OGoing MISTRAL-O

2222
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Main features of the Sensors Studied on BeamMain features of the Sensors Studied on Beam

Full Scale Building Block (FSBB) sensor
● Complete (fast) chain of double-row r.o. and 2D 

sparcification (SUZE): t
r.o.

 = 40 s

● Sensitive area (~1 cm2)  area of final building bock
● Similar Nb of pixels (~170k) than complete final chip (160k)
● Fabricated with 18 m thick high- epi-layer
● BUT: pixels are small (22x32.5 m2 staggered layout) & 

sparsification circuitry is oversized (power!)
● Tested @ DESY (~4 GeV/c e) in Jun. 2015, and CERN-SPS 

(~ 120 GeV/c ) in Oct. 2015

FSBB-M0bis

4
1

6
 r

o
w

s

416 columns

Diode/Footprint: 8/16m2

Diode/Footprint: 9/13.3m2

Large-pixel prototype (MIMOSA-22THRb)
● Two slightly different large pixels

➢ 36x62.5 m2 and 39x50.8 m2 (staggered layout)

● Pads over pixel array (3ML used for in-pixel circuitry)

● Double-row r.o. with no-sparsification (t
r.o.

 ~ 5 s)

● Fabricated with 18 m thick high- epi-layer
● BUT: only < 10 mm2, 4k pixels & no sparsification
● Tested in Frascati (450 MeV/c e) in Mar. & May 2015

~

Mi22-THRB6: 3662.5m2
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Main goals of MIMOSA-22THRb & FSBB-M0 PrototypingMain goals of MIMOSA-22THRb & FSBB-M0 Prototyping

2424
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FSBB BT @ CERN-SPS in Oct. 2015 FSBB BT @ CERN-SPS in Oct. 2015 

Experimental set-up
● 3 pairs of FSBB planes on T4/H6 (120 GeV/c )
● Particle flux: trigger rate ~4, 25 & 100 kHz/cm2

● All measurements performed at T
coolant

 = 30 oC

120 GeV/c 
120 GeV/c  

TriggerTrigger

(1x1cm(1x1cm22 scintillator) scintillator)

Measurements as a function of discriminator threshold
● Detection efficiency vs fake rate (noisy pixel)
● Spatial resolution associated with binary encoding of 22x32.5 m2 pixels

● Radiation tolerance @ T
coolant

 = 30 oC: up to 1.6 MRad  1.01013 n
eq

/cm2

● Studies of the impact of operation parameters on sensor performances
➢ e.g. input voltage (VDD), pixel current, ...

● Study of the impact of noisy pixel masking on efficiency and spatial resolution

2525
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All the 6 sensor performances on the same plot

Excellent and uniform performances among sensors (thr < 10xNoise)
● detection efficiency: > 99%
● spatial resolution:    < 5m
● Fake rate: < 10-6 with moderate (10-3) hot pixels masking

Efficiency

U residue

V residue

Fake rate @ 10-3 masking

Main FSBB-M0 detection performances (1/3)Main FSBB-M0 detection performances (1/3)

Detection performances stability
● Same results obtained @ DESY (4.5 GeV/c e) and CERN-SPS (120 GeV/c )
● Same results for different particles rates: 1 – 25 hits/frame
● Robust performances in terms of operation parameters

Diode/Footprint: 8/16 m2 Diode/Footprint: 9/13.3 m2

2626
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Main FSBB-M0 detection performances (2/3)Main FSBB-M0 detection performances (2/3)

Spatial resolution vs cluster pixel size

Diode/Footprint: 8/16 m2

Threshold = 9xNoise

Track position @ DUT w.r.t closest set of collection 
diodes as a function of cluster pixel multiplicity

Telescope pointing resolution ~2 m

Charge sharing depends on track 
impinging position w.r.t coll. diode

Collection diode

2727
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Main FSBB-M0 detection performances (2/3)Main FSBB-M0 detection performances (2/3)

Spatial resolution vs cluster pixel size

Diode/Footprint: 8/16 m2

Threshold = 9xNoise

Residue distribution in the raw parallel direction 
as a function of cluster pixel multiplicity

Telescope pointing resolution ~2 m

Charge sharing depends on track 
impinging position w.r.t coll. diode

Spatial resolution is mostly Spatial resolution is mostly 
dependent on # pixels/clusterdependent on # pixels/cluster


spsp

(Mult=1) ~ 4.2 (Mult=1) ~ 4.2 m m   digidigi

spsp
 ~ 7.8  ~ 7.8 mm


res

 = 4.6 m 
res

 = 5.3 m


res

 = 4.7 m 
res

 = 4.5 m


sp

 = 4.2 m 
sp

 = 4.9 m


sp

 = 4.3 m 
sp

 = 4.0 m
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No mask

5x10-3

1x10-2

Diode/Footprint: 9/13.3 m2

Main FSBB-M0 detection performances (3/3)Main FSBB-M0 detection performances (3/3)

Study of rad. tolerance @ T > 30 oC: loads relevant to ALICE-ITS inner layers
● Load: 1.6 MRad  1013n

eq
/cm2

~


det

, 
sp 

& fake-rate vs Discr. Threshold 
det 

vs Discr. Threshold vs pixel masking

2828

Efficiency

U residue

V residue

Fake rate
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No mask

5x10-3

1x10-2

Diode/Footprint: 9/13.3 m2

Main FSBB-M0 detection performances (3/3)Main FSBB-M0 detection performances (3/3)

Study of rad. tolerance @ T > 30 oC: loads relevant to ALICE-ITS inner layers
● Load: 1.6 MRad  1013n

eq
/cm2

~


det

, 
sp 

& fake-rate vs Discr. Threshold 
det 

vs Discr. Threshold vs pixel masking


det

 ~99.0% & <Fake> ~7x10-8 (1.0% masking) @ Thr = 7.9x
TN

2828

Efficiency

U residue

V residue

Fake rate
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No mask

5x10-3

1x10-2

Diode/Footprint: 9/13.3 m2


det

 ~99.0% & <Fake> ~7x10-8 (1.0% masking) @ Thr = 7.9x
TN


det

 ~99.4% & <Fake> ~1x10-5 (0.5% masking) @ Thr = 7.4x
TN

Main FSBB-M0 detection performances (3/3)Main FSBB-M0 detection performances (3/3)

Study of rad. tolerance @ T > 30 oC: loads relevant to ALICE-ITS inner layers
● Load: 1.6 MRad  1013n

eq
/cm2

~


det

, 
sp 

& fake-rate vs Discr. Threshold 
det 

vs Discr. Threshold vs pixel masking

2828

Efficiency

U residue

V residue

Fake rate
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MIMOSA-22THRb BT @ Frascati in May 2015MIMOSA-22THRb BT @ Frascati in May 2015

Experimental set-up
● Beam: 450 MeV/c e

● Telescope: 2xMi28 (digital output) and 4xMi18 (analog-output) sensors thinned to 50 m
● Trigger: beam injection signal  synchronisation due to small spill length (few ns)

Measurements as a function of discriminator threshold
● Detection efficiency vs fake rate (noisy pixel)
● Spatial resolution associated with binary encoding of 36x65.2 m2 & 39x50.8 m2 pixels

● Radiation tolerance @ T
coolant

 = 30 oC: up to 150 kRad  1.51012 n
eq

/cm2

2929

Mi18: 
sp

 = 1-2 m

Mi28: 
sp

 ~ 3.5 m
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Main MIMOSA-22THRb detection performances (1/2)Main MIMOSA-22THRb detection performances (1/2)

3030

Excellent detection performances
● 

det
 > 99% & 

sp
 ~ 10 m (as expected)

● Good performances for radiation load relevant for outer ALICE-ITS

Validation of large pixel design for the outer layers of the ALICE-ITS!Validation of large pixel design for the outer layers of the ALICE-ITS!

Efficiency

U residue

V residue

Fake rate

<# Suze Windows>

150 kRad  1.51012 n
eq

/cm2

No Irradiation
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Final Sensor: MISTRAL-OFinal Sensor: MISTRAL-O

3131

Combination of 4 FSBB-M0 with MIMOSA-22THRb7 pixels

Main characteristics
● Chip dimensions: 15 x 30 mm2

● Sensitive area: 13.5 x 29.95 mm2

➢ 1.5 mm wide side band (insensitive)    
(evolving towards 1 mm)

● 832 columns of 208 (160k) pixels
● Pixel dimensions: 36 x 65 m2

● In-pixel Pre-Amp & clamping (fringe capa)
● End-of-column signal discriminator
● Discriminator's output 2D sparsification (SUZE)
● Fully programmable control circuitry
● Pads over pixel array

Typical performances (based on FSBB-M0 & MIMOSA-22THRb tests)
● t

r.o.
 ~ 20 s; 

sp
 ~ 10 m; Power consumption < 80 mW/cm2

● Rad. Hardness > 150 kRad  1.5x1012 n
eq

/cm2 @ T > 30 oC
~

~
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Forthcoming ChallengesForthcoming Challenges

3232
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Forthcoming Challenges: R&D @ IPHCForthcoming Challenges: R&D @ IPHC

3333

How to improve speed and rad. tolerance while preserving 


sp
 (3-5 m) and material budget (< 0.1% X

0
)?
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Micro Vertex Detector (MDV) of CBM @ SIS100Micro Vertex Detector (MDV) of CBM @ SIS100

3434

Goals
● Study of super-dense nuclear matter with relativistic ion-collisions
● Study open charm from 30 GeV p-Au (10 MHz)
● Low-momentum tracker for 1-12 GeV Au-Au (30-100 kHz)

Beam on target > 2021 
MVD sensor requirements

~

In reach with lightly modified APIDE (FSBB?)
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Towards ILC vertex detectorTowards ILC vertex detector

3535

ILC collision scheme

R&D ideas (So far a concept, design being started)
● Innermost layer: two digital output sensors with 

time
 ~ 1 s (~2 bunches pile-up) in one 

side and 
sp

 < 3 m on the other  Combine asynchr. (
time

) and synchr. (
sp

) readouts

● Outer layers: larger pixels with higher signal-charge-encoding resolution (3-4 bits)
~

x1312

Vertex detector (VXD) layout: 3 layers of double-sided CPS
● Mini-vectors: associate hits in double-sided layers (track seeding in VXD)
● Different optimization approaches for the different layers

➢ Innermost layers: low surface & larger occupancy

➔ Workout 
time 

(reduce pile-up) & 
sp

 (impact parameter)

➢ Outer layers: larger surface & lower occupancy

➔ Can deal with degraded 
time 

& 
sp

➔ Minimize power consumption  material budget

554 ns
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Technology Perspectives for Performance ImprovementsTechnology Perspectives for Performance Improvements

3636

HV/HR-CMOS sensors: d
dep 

~ 0.3 
sub

U
bias

● Extend sensitive volume & improved q-collection

 Faster signal & stronger rad. tolerance
● Not bound to CMOS processes using epi-layers

➢ Easier access to VDSM (< 100 nm) process
➢ Higher in-pixel -circuitry density

● Unanswered questions

➢ Minimal pixel dimensions (
sp

) ?

➢ Uniformity over large sensitive area & production yield?

P. Rymaszewski et al, 
arXiv:1601.00459

2-tiers chips
● Signal sensing (front-end) & processing (r.o.) parts 

distributed over two interconnected tiers (AC coupling)
● Smart sensor  1 r.o. pixel addressing N pixel-front-ends

Reduce density of interconnections
● Can combine 2 diff. CMOS processes: front-end/r.o.
● Benefits: small pixels  resolution, speed, data-

compression and robustness
● Challenges: interconnection technology (reliability & cost)
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SummarySummary

3737
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SummarySummary

3838

Substantial experience has been collected with running STAR-PXL proving 
added value of CPS to physics

●  Demonstrated that CPS can provide spatial resolution and material budget required for 
numerous applications

CPS are suited for vertex detectors (<< 1 m2) and have attractive features for 
tracking devices (>> 1 m2)

Forthcoming Challenges
● CPS for inner trackers: ALICE-ITS  large area (10 m2) to cover with 20-30k sensors

● Improve rad. tolerance: CBM experiment @ FAIR/GSI  > 10MRad  > 1014 n
eq

/cm2

● Improve readout speed: ILC vertex detector  < 1 s

Perspectives for technological advances
● HV/HR-CMOS sensors: improvement on charge collection

 faster signal and stronger rad. tolerance
● 2-tier sensors: combine of 2 CMOS processes for sensing & r.o. parts

 more in-pixel intelligence

~ ~

~
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ALPIDE (ALice PIxel DEtector): readout architectureALPIDE (ALice PIxel DEtector): readout architecture

Concept similar to hybrid pixel readout architecture
● TowerJazz CIS quadrupole well process: both N & P MOS can be used

Continuously power active in each pixel
● Low power consumption analogue front-end (< 50nW/pixel) based on single stage 

amplifier with shaping
➢ High gain ~100
➢ Shaping time few s

● In-pixel discriminator
● Binary output stored into multi-event buffer awaiting for external readout

Only zero-suppressed data transferred to periphery  priority encoder readout



Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015 45

ALPIDE: performances assessmentALPIDE: performances assessment

APIDE-1 beam test @ DESY (5-7 pions)
● Final sensor dimensions: 15x30 mm2

● ~0.5M pixels of 28x28 m2

● 4 different sensing node geometries
● Possibility of reverse biasing the substrate

 default is -3 V (better epi-layer depletion)
● Possibility to mask pixels (fake-rate mitigation)

 default is O(10-3) pixels

Performances

● 
det

 > 99%, 
sp

 < 5m, fake-rate < 10-5

● Slight deterioration after irradiation
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Exploring full sensor chain: Prototypes fabricatedExploring full sensor chain: Prototypes fabricated
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The Testing ProbesThe Testing Probes

Laboratory tests
● Noise characterization and fake rate

● 55Fe X-ray source
➢ ~6keV line
➢ Gain, CCE and CNR

● 90Sr  source (Q = 2.28 MeV)

➢ SNR, 
det 

and cluster multiplicity

Test-beam (TB) facilities
● SPS: ~100 GeV/c 

● DESY: ~5 GeV/c e

● Frascati: ~500 MeV/c  e

● SNR, 
det

, cluster multiplicity and 
sp

DUT

Q
6keV

CCE = Q
MPV

/Q
6keV

CNR = Q
MPV

/<N>

Seed pixel charge

Q
MPV

SNR
MPV
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MISTRAL-O: Synchronous readoutMISTRAL-O: Synchronous readout

Design addresses 3 issues
● Increasing S/N at pixel-level

➢ Sensing node optimization
● ADC @

➢ end-of-column  MISTRAL
➢ pixel                  ASTRAL

● SUZE at chip periphery
➢ 2D sparsification algorithm with 4x5 pixels 

window (evolution from 1D sparsification 
on ULTIMATE chip)

Power vs Speed
● Power: only the selected rows (N=1,2,3 …) to be readout 
● Speed: N rows of pixels are readout in ||

➢ Integration-time (t
int

) = frame readout time  
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R&D of CMOS pixel sensorsR&D of CMOS pixel sensors

AIDA Telescope
● Big surface and thin reference planes with 

high spatial resolution
● Sensing area = 4x3.8cm2
● Additional plane with

high temporal

resolution

 time stamping
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Next Forthcoming device: CBM Micro-Vertex Detector (MVD)Next Forthcoming device: CBM Micro-Vertex Detector (MVD)

● 
sp

 < 5 m

● ~ 0.5 % X
0
 / station

● Radiation load: > 1014 n
eq

/cm2

CBM-MVD at FAIR/GSICBM-MVD at FAIR/GSI
3 double-sided stations in vacuum at T < 0oC

~

~
ALICE-ITS 2018/19
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Device under Study: ILC Vertex DetectorDevice under Study: ILC Vertex Detector

● 
sp

 < 3 m

● ~ 0.3 % X
0
 / layer

● Radiation load: O(100) kRad + 

O(1011) n
eq

/cm2 (1yr)

~

ALICE-ITS 2018/19 CBM-MVD > 2020

ILD-VXD at ILCILD-VXD at ILC
3 double-sided layers

ILDILD

ILD-VXDILD-VXD
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          Data

          MC

BTF Telescope Simulation: Performances (I)BTF Telescope Simulation: Performances (I)
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          Data

          MC

BTF Telescope Simulation: Performances (II)BTF Telescope Simulation: Performances (II)

Non-Gaussian 
tail of MS

1st Mi18 2nd Mi18

3rd Mi18 4th Mi18
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Analysis strategy
● Reconstruct tracks and extrapolate @ DUT
● Associate DUT hits to track within track-hit distance cut

● Evaluate DUT 
det

 and 
sp

Efficiency Correction: 
det

corr = (
det

raw - p)/(1 - p) 

● Due to MS non-Gaussian tails some track-hit distance seems quite large (few 100m)
➢ Enlarging the track-hit distance has 2 consequences on non-efficient events

➔ Increases probability to get a fake hit in this area
➔ Increases probability to associate a real hit from other track

● Method
➢ Use efficient events to get the distribution of the 2nd closest hit to the track
➢ Use normalized cumulated distribution to estimate p

BTF Analysis strategy & Efficiency correctionBTF Analysis strategy & Efficiency correction

Norm. cumulated distribution

Doesn't saturate to 1 
because some events 

have only one hit
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BTF Telescope Simulation: BTF Telescope Simulation: 
TelTel

 @ 1 @ 1stst DUT position DUT position


Tel

 = (5.77  0.01
stat

  0.20
syst

) m

Telescope resolution confirmed Telescope resolution confirmed 
with Geant3 based simulationwith Geant3 based simulation

M
i1

8

M
i1

8

M
i2

8

1st
 M

i2
2

2n
d
 M

i2
2

450MeV/c e

Telescope resolution @ 1st DUT position

(both DUTs supposed thinned to 50m)



Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015 57



Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015 58

5555Fe source: CCE/Noise/CNR vs diode for large pixelsFe source: CCE/Noise/CNR vs diode for large pixels

CCE, TN and CNR vs sensing node for large pixels with HR18 epi-layer

Good to excellent CCE, even for small sensing diodes or for 33x66 m2 pixels

TN ~ 17/11 e ENC for single 10.9/8 m2 sensing diodes

TN ~ 17/15 e ENC for pairs of 5/2 m2 sensing diodes

High CNR: up to ~60 for 8 m2 sensing diodes

Pixel detection performances fully satisfactory  confirmation from beam test (see next slide)
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5555Fe source: CCE & Noise vs diode for small pixelsFe source: CCE & Noise vs diode for small pixels

CCE and TN for 22x33 m2 pixels for different diode dimensions (footprint 10.9 m2)

CCE is highest for HR18 epi-layer

Weak dependence of CCE with diode dimensions  around 30% for 2m2

Nearly linear variation of TN with diode dimensions

 8 16 e­ ENC for diode 2 10.9 m2

Small sending diode with > 10 m2 footprint attractive in terms of CCE
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5555Fe source: radiation tolerance for 22x33 Fe source: radiation tolerance for 22x33 mm22 pixels pixels

MIMOSA-34: 
● 22x33 m2 pixels with diode of 8 and 10.9 m2: TN and CCE/CNR @ T = 30o C from 55Fe 

source for different irradiations
● Comparison when possible of CNR and SNR from 4.4 GeV e TB (DESY)
● Comments:

● Small diode more sensitive to TID
● TID impacts both CCE and TN

● CNR of 10.9 m2 diode pixel exceeds 20 (MPV) after 250 kRad + 2.5x1012n
eq

/cm2

           22x33 m2, 11 m2 diode

           22x33 m2,  8 m2 diode

No rad.

250 kRad

2.5 10 12

250kRad+2.5 10 12

1 MRad

No rad.

250 kRad
2.5 10 12

250kRad+2.5 10 12

1 MRad

No rad.

250 kRad

2.5 10 12

250kRad+2.5 10 12

1 MRad



Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015 61

MIMOSA-34: 22x33 m2 pixels @ T = 30oC
● Sensing node impact (HR18) 
● Sub-arrays: P-29 10.9/10.9 m2 diode/footprint

                    P-20   8.0/10.9 m2 diode/footprint

● 8m2 diode features ~20% higher SNR (MPV)

 slightly higher 
det

 (both > 99%)

● Q
clus

 ~ 1350/1500 e for 8/10.9m2 diode 

 marginal charge loss

● Binary residue: 5-5.5 m  
sp

 < 5 m

MIMOSA-34: sensing node impact for small pixelsMIMOSA-34: sensing node impact for small pixels

Seed pixel SNR distribution

Horizontal direction residue

residue (m)

DESY BT Set-up (August 2013):
● 2BT: 8xSi-strips & 6xMIMOSA-26 (120 m thick)
● ~4.4 GeV/c e beam
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 ( (9090Sr) source vs 4.4 GeV eSr) source vs 4.4 GeV e (DESY) (DESY)

MIMOSA-34: 
●  (90Sr) vs 4.4 GeV efor 22x66 m2 pixels: SNR & 

det 
for HR18/HR30

● Conclusion: lab test with  (90Sr) source allow estimating 
det

HR18 HR18 HR18

HR30HR30HR30
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From 22x66 to 33x66 From 22x66 to 33x66 mm22 pixels pixels

MIMOSA-34: 
●  22x66 vs 33x66 m2 pixels: SNR & 

det 
with  (90Sr) for HR18/HR30

● Comment: 33x66 m2 (8/15 m2 diode/footprint) pixels exhibit high SNR  high 
det

HR18 HR18 HR18

HR30HR30HR30
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33x66 33x66 mm22 pixels vs epitaxial-layer pixels vs epitaxial-layer

MIMOSA-34: 
● 33x66 m2 pixels (8/15 m2 diode/footprint): SNR & 

det 
with  (90Sr) for HR 18,20,30

● Comments:
● Single 8/15 m2 diode/footprint provides high SNR despite large pixel

(low sensing node density)
● HR30 epi-layers gives high SNR (MPV ~ 70) from  (90Sr)

 pretty high 
det

 for high SNR cut (e.g. 10)

● Expected spatial resolution for 33x66 m2 pixels: 
sp

 10m

HR18

HR20

HR30
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FSBB-M0bis main features FSBB-M0bis main features 

● TJsc-0.18 CIS process, HR (~1–2kcm) 18/25/30m epitaxy, thinned to 50m

● Staggered pixel: 22x32.5 m2 including pre-amplification and clamping with 6 metal layers (ML)
● 416x416 = 173k of col. x row of pixels ended by discriminator (8-cols with analogue output)
● Double-row readout at 160MHz clock frequency  40s integration time
● On-chip 3-stage sparsification: SUZE-02 (different from MISTRAL-0, SUZE-03)
● 4 Memories of 512x32 bits
● 2 output nodes at 320Mbits/s (used only one for TB)
● Integrated JTAG and regulators
● Sensitive area is 13.7 x 9.0 mm ~ 1.2cm2

● Improvements w.r.t FSBB-M0  shortcomings solved
➢ Mitigation of cross coupling effects

 now capable of operating full matrix
➢ Bit transmission: bit inversion at discriminator output

● Two sensing node variations in same chip

➢ (NMOS T
input 

Pre-Amp W/L = 1.5/0.28m)

➢ Diode/Footprint: 8/16    m2

➢ Diode/Footprint: 9/13.3 m2

FSBB-M0bis

41
6

 r
o

w
s

416 columns

Diode/Footprint: 8/16m2

Diode/Footprint: 9/13.3m2
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MIMOSA-22THRb6/7: characteristicsMIMOSA-22THRb6/7: characteristics

Purpose of the chip
● Validate pads over pixels
● Validate in-pixel circuitry concentrated on  3ML  modified clamping capacitor
● Validate large pixel performances w.r.t. TDR requirements on layers 3 – 6

 MISTRAL-O

Mi22-THRB6: 3662.5m2 Mi22-THRB7: 3950.8m2

Design features
● 64x64 pixel array (staggered): 56 columns ended with discri. and 8 with analog output
● Readout  5s (100MHz clock)
● Epitaxial layer: HR18

Reference
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Reminder of lab results: Individual pixel response to Reminder of lab results: Individual pixel response to 5555Fe X-rays Fe X-rays 

Mi22THRb7 has a gain quite uniform

Mi22THRb6 shows gain dispersion among pixels  were not sure about the effect on 
det

PMOS T
input

 

Pre-imp

PMOS T
input

 

Pre-imp

NMOS T
input

 

Pre-imp

NMOS T
input

 

Pre-imp
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Reminder of lab results: Temp. dependence of pixels to Reminder of lab results: Temp. dependence of pixels to 5555Fe X-rays Fe X-rays 

Mi22THRb7 has quite stable response vs T

Mi22THRb6 shows a significant dependence with T:        T        gain

PMOS T
input

 

Pre-imp

PMOS T
input

 

Pre-imp

NMOS T
input

 

Pre-imp

NMOS T
input

 

Pre-imp
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FSBB-M0bis-FSBB-M0bis-HR18: Robustness w.r.t VDD/VDAHR18: Robustness w.r.t VDD/VDA

Resolution is 
actually Residue

Resolution is 
actually Residue

8/16m2 diode/footprint 8/16m2 diode/footprint 8/16m2 diode/footprint

9/13.3m2 diode/footprint 9/13.3m2 diode/footprint 9/13.3m2 diode/footprint
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Reducing I
pix

● Increases 
det

             dramatical effect for highly irradiated sensors

● Increases fake rate   factor of 10 increase for highly irradiated sensors
● Masking procedure can be a good strategy for highly irradiated sensors

 can reduce fake rate by ~1 – 2 orders of magnitude depending masking fraction

It is then important to study the effect of masking on 
det

 & 
sp

● Masking will cut away some single pixel clusters

● 
det 

relative reduction should be prop. to (masking fraction) x (fraction mult. = 1 clusters)

➢ Should be a marginal effect due to sizeable pixel cluster multiplicity of FSBB

➢ 
det 

vs (fraction mult. = 1 clusters) should be linearly related

● 
sp 

should get marginally degraded due to loss of hit position information of masked pixels

Tested the above hypothesis on different sensors and varied configurations
● Non-irradiated sensors @ nominal configuration

● Highly irradiated sensor (1.6MRad + 1013n
eq

(MeV)/cm2) for I
pix

 = 30 & 50 (nominal) A

Hot pixel masking effect on Hot pixel masking effect on 
detdet

 &  & 
spsp

: Motivation: Motivation

☺
☹
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Hot pixel masking effect on Hot pixel masking effect on 
detdet

 &  & 
spsp

: Results (I): Results (I)

Example:

Irradiated sensor 1.6MRad + 1013n
eq

/cm2

Diode/Footprint: 8/16m2

● Marginal increase of 
sp

● Small reduction of 
det

 

 quite smaller than masking fraction


sp

 vs threshold


det

 vs threshold


det

 (w.r.t 0% masking) vs threshold
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Hot pixel masking effect on Hot pixel masking effect on 
detdet

 &  & 
spsp

: Results (II): Results (II)

-
det

 vs fraction mult = 1 clusters (Frac(Mult = 1))

● Different markers in a plot correspond to the different 
sensors and configurations studied

● 
det 

values quite smaller than masking fraction in full 

Frac(Mult=1) (threshold)

● Nearly linear correlation between 
det

 &  Frac(Mult=1)

 Useful to predict efficiency reduction for a given 
masking fraction and threshold

Masking 0.2% Masking 0.5% Masking 1.0%

Masking 2.0%
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PXL in STAR Inner Detector UpgradesPXL in STAR Inner Detector Upgrades
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CPS State-of-the-Art in operation: STAR-PXL detectorCPS State-of-the-Art in operation: STAR-PXL detector

STAR-PXL HALF-BARREL
● 2 layers @ r = 2.8,8 cm
● 20 ladders (10 sensors) (0.37% X

0
)

➢ 200 sensors  180x106 pixels
● Air flow cooling: T < 35oC

STAR-PXL @ RHIC: 1STAR-PXL @ RHIC: 1stst CPS @ collider experiment ! CPS @ collider experiment !

STAR-PXL (R) STAR-PXL (Z)
Several Physics-runs

● 1st run Mar-Jun 2014
● 2nd run Jan-Jun 2015

● Measured 
ip
(p

T
) matching 

requirements (~40 m @ 
600 MeV/c for /K)

● Getting prepared for 3rd 
run (Jan. 2016)
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Main FSBB-M0 detection performances (2/3)Main FSBB-M0 detection performances (2/3)

Spatial resolution vs cluster pixel size

Diode/Footprint: 8/16 m2

Threshold = 9xNoise

Residue RMS in the raw/column parallel direction 
as a function of cluster pixel multiplicity

Telescope pointing resolution ~2 m

Charge sharing depends on track 
impinging position w.r.t coll. diode

Spatial resolution is mostly 
dependent on # pixels/cluster


sp

(Mult=1) ~ 4.2 m  digi

sp
 ~ 7.8 m
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Main MIMOSA-22THRb detection performances (1/2)Main MIMOSA-22THRb detection performances (1/2)

Excellent detection performances for both chip variations
● 

det
 > 99% & 

sp
 ~ 10 m (as expected)

P-MOS vs N-MOS Pre-Amply input transistor
● P-MOS: less RTS noise, higher gain and sensing node voltage
● N-MOS: better pixel response uniformity, less T-dependency and maturity (STAR-PXL)

Efficiency

U residue

V residue

Fake rate

<# Suze Windows>
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Main MIMOSA-22THRb detection performances (2/2)Main MIMOSA-22THRb detection performances (2/2)

Study of rad. tolerance @ T > 30 oC: loads relevant to ALICE-ITS outer layers
● Load: up to 150 kRad  1.51012n

eq
/cm2

~
Efficiency

Fake rate

<# Suze Windows>

MIMOSA-22THRb7 (N-MOS Pre-Amp input transistor)

Good detection performances after irradiation

Validation of large pixel design for the outer layers of the ALICE-ITS!Validation of large pixel design for the outer layers of the ALICE-ITS!

50 kRad  51011 n
eq

/cm2 150 kRad  1.51012 n
eq

/cm2
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Forthcoming ChallengesForthcoming Challenges

How to reach the right bottom corner of the “Quadrature”?

Improve speed and rad. tolerance while preserving


sp

 (3-5 m) and material budget (< 0.1% X
0
)
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