From Vertex Detectors to Inner Trackers with CMOS Pixel Sensors

Alejandro Pérez Pérez IPHC – CNRS Strasbourg

WISCS WITH INTEGRATED CMOS SENSORS AND ELECTRON MACHINES

Outline

- Introduction to CMOS Pixel Sensors (CPS)
- CPS adapted to an inner tracker: ALICE-ITS Upgrade
- Next R&D challenges
- Summary

Introduction to CPS

CPS: Development motivation

- CPS triggered by the need of very granular and low material budget sensors
- CPS applications exhibit milder running conditions than at pp/LHC
 - Relaxed readout (r.o.) speed & rad. tolerance

- Application domain widens continuously (existing/foreseen/potential)
 - Heavy-ion collisions
 - STAR-PXL, ALICE-ITS, CBM-MVD, NA61...
 - e⁺e⁻ collisions
 - > BES-III, ILC, Belle II (BEAST II)
 - Non-collider experiments
 - FIRST, NA63, Mu2e, PANDA, ...
 - High-precision beam-telescopes (adapted to medium/low energy e⁺ beams)
 - Few μm resolution @ DUT achievable with EUDET-BT (DESY), BTF-BT (Frascati)

CPS: Main features

The basic working principle

- Secondary charges generated in epi-layer by ionization
 - Signal proportional to epi-thickness
- Charges transport driven by 3 potentials
 - P-well/coll. node/P++ (usually GND/few volts/GND)
- Epi-layer not fully depleted: $d_{dep} \sim 0.3 \sqrt{\rho_{sub} \times U_{bias}}$

 \Rightarrow transport is mix of thermal diffusion & drift

Prominent features

- Signal processing integrated on sensor substrate \Rightarrow downstream electronics & syst. integration
- High granularity \Rightarrow excellent spatial resolution (O(μ m))
- Signal generated in thin (10-40 μ m) epi-layer \Rightarrow usual thinning up to 50 μ m total thickness
- Standard fabrication process ⇒ low cost & easy prototyping, many vendors, …

CPS technology potential

- Mainly driven by commercial applications ⇒ Not fully optimized for particle detection
- R&D largely consists in exploiting as much as possible the potential of the accessible industrial processes

CPS @ PICSEL - IPHC: A long term R&D

Ultimate objective: ILC, with staged performances

...

On-going R&D

HR-CMOS for X-rays (2018)

ILC >2020 International Linear Collider

EUDET (R&D for ILC, EU project) STAR (Heavy Ion physics) CBM (Heavy Ion physics) ILC (Particle physics) HadronPhysics2 (generic R&D, EU project) AIDA (generic R&D, EU project) FIRST (Hadron therapy) ALICE/LHC (Heavy Ion physics) EIC (Hadron physics) CLIC (Particle physics) BESIII (Particle physics)

<u>CBM >2018</u>

Compressed Baryonic Matter

RICH mirror

RICH rediat

Dipole magne

Silicon tracker

Alejandro Pérez Pérez, LAL Seminar, 22 Janur

STAR 201

Solenoidal Tracker at RH

ALICE 2018

A Larae Ion Collider Experime

CPS State-of-the-Art in operation: STAR-PXL sensor

ULTIMATE main characteristics

- CMOS sensor (0.35 μ m AMS twin-well) high- ρ epi-layer 15 μ m
- Sensor thinned to 50 μ m (total thickness \Rightarrow 0.05% X₀)
- || column (rolling shutter) r.o. with in-pixel CDS & amplification
- End-of-column discriminator (1-bit) followed by Ø-suppression
- 960 x 928 (columns x rows) pixels of 20.7 μm pitch ⇒ 19.9 x 19.2 mm² sensitive area
- $t_{r_0} \leq 200 \ \mu s \ (\sim 5 \times 10^3 \ frames/s) \Rightarrow$ suited for > 10⁶ part./cm²/s
- 2 outputs @ 160 MHz
- Operation @ T ~30 °C & W \leq 150 mW/cm²

ULTIMATE Performances

- Noise ≤ 15 e⁻ ENC @ 30-35 °C
- $\varepsilon_{det} \gtrsim 99.9\%$, $\sigma_{sp} \gtrsim 3.5 \mu m$, Fake rate $\leq 10^{-5}$
- Rad. hardness validated @ 30 °C (150 kRad ⊕ 3×10¹² n_{eq}/cm²)

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

MIMOSA 28 - epi 15 um

CPS State-of-the-Art in operation: STAR-PXL detector

STAR-PXL @ RHIC: 1st CPS @ a collider experiment !

STAR-PXL HALF-BARREL

- 2 layers @ r = 2.8,8 cm
- 20 ladders (10 sensors) (0.37% X₀)

 \Rightarrow 180M pixels

• Air flow cooling: T < 35°C

CPS State-of-the-Art in operation: STAR-PXL detector

STAR-PXL @ RHIC: 1st CPS @ a collider experiment !

CPS performances: Spatial Resolution (σ_{sn})

- Several parameters govern σ_{sp}
 - Pixel pitch
 - Epi-layer: thickness & ρ
 - Sensing node: geometry & electrical properties
 - Signal-encoding resolution: Nb of bits
 - σ_{sp} function of:
 pitch ⊕ SNR ⊕ charge-sharing ⊕ ADCu ⊕ ...
- Pixel-pitch impact (analogue output)
 - Pitch = 10 (40) μ m $\Rightarrow \sigma_{so} \sim 1 \mu$ m ($\leq 3 \mu$ m)
 - Nearly linear improvement in σ_{sp} vs pixel pitch
- Signal-encoding impact (digital output)
 - $\sigma_{sp}^{digi} = pitch/(12)^{1/2}$
 - \Rightarrow e.g. $\sigma^{\text{digi}}_{\text{sp}}$ ~ 5.7 μm for 20 μm pitch
 - Significant improvement in σ_{sp} by increasing signal encoding resolution

pitch (microns)

Nb of bits123-41Datameasuredreprocessedmeasured σ_{sp} $\lesssim 1.5 \mu m$ $\lesssim 2 \mu m$ $\lesssim 3.5 \mu m$

CPS performances: r.o. speed & rad. hardness

- 15 years of experience of PICSEL group in developing CPS
- Strong collaboration with ADMOS group at Frankfurt

r.o. speed evolution

Two orders of magnitude
 improvement in 15 years of research

Radiation tolerance

- Significant improvement with time
- Sensor validation up to 10 MRad \otimes $10^{14}n_{eq}/cm^{2}$
- Adequacy to ALICE-ITS and CBM applications

Development of CPS adapted to Vertex & Tracker detector

Next challenge: ALICE-ITS upgrade

ALICE goals

- Study quark gluon plasma in heavy-ion collisions
- High precision measurements @ low-p_T

Upgraded ITS entirely based on CPS

- **Present detector:** 2xHPD/2xDrift-Si/2xSi-strips
- Future detector: 7-layers with CPS (25-30k chips)
 - \Rightarrow 1st large tracker (~ 10 m²) using CPS
- ITS-TDR approved on March 2014 (Pub. In J.Phys. G41 (2014) 087002)

New ALICE-ITS requirements

	σ_{sp}	$t_{r.o.}$	Dose	Fluency	T_{op}	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3{\cdot}10^{12}~{ m n}_{eq}/{ m cm}^2$	30-35°C	160 mW/cm 2	0.15 m ²
ITS-in	\lesssim 5 μm	\lesssim 30 μs	2.7 MRad	1.7 \cdot 10 ¹³ n _{eq} /cm ²	30°C	$<$ 300 mW/cm 2	0.17 m^2
ITS-out	\lesssim 10 μm	\lesssim 30 μs	100 kRad	$1{\cdot}10^{12}~\mathrm{n}_{eq}/\mathrm{cm}^2$	30°C	$<$ 100 mW/cm 2	\sim 10 m 2

 Different requirements on inner & outer layers calls for different chips designs!

\Rightarrow 0.35 μm CMOS process (STAR-PXL) marginally suited to this r.o. speed & rad. hardness

CMOS Process Transition: STAR-PXL \rightarrow ALICE-ITS

- Use of PMOS in pixel array not allowed
 ⇒ parasitic q-collection of additional N-well
- Limits choice of readout architecture strategy
- Already demonstrated excellent performances
 - **STAR-PXL:** Mi-28 (AMS 0.35 μ m process) $\Rightarrow \varepsilon_{det} > 99.5\%, \sigma_{sp} < 4\mu m$
 - ² 1st CPS detector @ collider experiment

- N-well of PMOS transistors shielded by deep P-well \Rightarrow both types of transistors can be used
- Widens choice of readout architecture strategies
 - New ALICE-ITS: 2 sensors R&D in || using TowerJazz CIS 0.18 um process (quadru. well)
 - → Synchronous Readout R&D: proven architecture ⇒ safety
 - Asynchronous Readout R&D: challenging

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

ALICE-ITS: Boundaries of the CPS Development

New fabrication process (TowerJazz CIS 0.18 μm)

- Expected to be ration tolerant enough
- Expected to allow for fast enough readout
- Larger reticule: ~ 25 x 32 mm²

Drawback of smaller feature size

• 1.8 V operative voltage (instead of 3.3 V)

 \Rightarrow reduced dynamics in signal processing circuit and epi-layer depletion voltage

• Increase risk of Random Telegraph Signal (RTS) noise

Requirements of the larger surface to cover

- Good fabrication yield ⇒ sensor design robustness
- Mitigate noisy pixels
- Sensor operation stable along 1.5 m ladder (voltage drop)
- Material budget
 - Minimize power consumption
 - > Minimal connexions to the outside \Rightarrow sensor periphery (slow-control, steering, ...)

STAR-PXL	ALICE-ITS	added-value
0.35 μm	0.18 μm	speed, TID, power
4 ML	6 ML	speed. power
twin-well	quadruple-well	speed, power
EPI 14/20 μm	EPI 18/40 μm	SNR
EPI \gtrsim 0.4 k $\Omega \cdot cm$	EPI \sim 1 - 8 k $\Omega \cdot cm$	SNR, NITD

ALICE-ITS: Readout chain components

Typical readout components

- **AMP:** in-pixel low noise pre-amplifier
- Filter: in-pixel filter
- **ADC** (1-bit = discriminator): may be implemented at end-of-column or pixel level
- Zero suppression (SUZE): only hit pixel info is retained and transferred
 - Implemented at sensor periphery (usual) or inside pixel array
- Data transmission: O(Gbps) link implemented at sensor periphery

r.o. alternatives

- Rolling shutter (synchronous): || column r.o. reading N-lines at the time (usually N = 1-2)
- data-driven (asynchronous): only hit pixels are output upon request (priority encoding)
- Rolling shutter: best approach for twin-well process
 - Trade-off between performance, design complexity, pixel dimensions, power, ...
 e.g.: Mimosa-26 (EUDET-BT), Mimosa-28 (STAR-PXL)

ALICE-ITS: Two Architectures for the pixel chip

Exploring the new technology

Technology Exploration & Sensor Performances

Goal: understand the detection performances in terms of external parameters
 ⇒ Optimization for ALICE-ITS (and evaluate adequacy for other applications)

External parameters

- Diode and spacing (footprint) size/geometry
- Pixel size/geometry: square vs elongated
 - Elongated pixels in row direction (less rows)
 - \Rightarrow Lower t_{ro} of rolling shutter
- Diode layout of elongated pixels
 - → Staggering \Rightarrow lower diode inter-distance
- Epi-layer: thickness and resistivity (profile)

Performances in terms of

- Noise
- CCE, SNR @ seed pixel
- Hit pixel multiplicity \Rightarrow data transmission
- $\epsilon_{det}^{}, \sigma_{sp}^{}$ & Fake-rate
- Rad. Tolerance

Exploratory chips: MIMOSA-32ter & MIMOSA-34

- TowerJazz 0.18um technology validation & performances optimization
- MIMOSA-32ter
 - Analog-output: source follower or feedback-loop (t_{int}~34 or 12 μs)
 - Sub-matrices of 16x64 pixels with different sizes (20x20,33,40,80 μm²), diodes geometries (octagonal vs square) and some with deep P-well
 - Epi-layer: 18 μ m HR (ρ = 1 k Ω cm)
- MIMOSA-34
 - Analog-output: source follower (t_{int} ~ 32µs)
 - 30 sub-matrices with 16x64 staggered pixels
 - Dimensions: 22 or 33 x(27, 30, 33, 44, 66) μm²
 - > **Diode/footprint:** 1+1, 2, 5, 5+5, 8, 11, 15 μ m² / 11,15 μ m²
 - **Epi-layer:** 18, 20, 30 μm HR (ρ = 1 6 kΩ cm)

Test purposes

- Validate new technology: epi-layer characteristics, deep P-well and Rad. tolerance
- Study: sensing node charge collection, elongated pixels performances

MIMOSA-32ter: performances

CERN-SPS BT Set-up

- Beam: 60-120 GeV/c π⁺
- $T_{cooling} = 15, 20 \& 30^{\circ}C$

Main results

- 20x20 μ m² pixel (performances vs rad. dose @ 30°C)
 - → Small noise increase: $21 \rightarrow 26 e^{-} ENC$
 - > SNR_{seed} reduction: $26-28 \rightarrow 19 (30\%)$
 - > ϵ_{det} > 99% for 1MRad \oplus 10¹³n_{ed}/cm²
 - $\sim \sigma_{sp} \sim 3.2 \, \mu m$
- 20x40 μm² pixel (@ 20°C)
 - > ϵ_{det} > 99% for 1MRad \oplus 10¹³n_{eo}/cm²
 - > σ_{sp} ~ 5.0 μm

Technology validation

- HR epi-layer 🗸
- deep P-well (no parasitic charge coll.)
- Radiation tolerance

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

Noise distribution

MIMOSA-34: performances vs diode & pixels sizes

DESY BT Set-up (August 2013):

- 2BT: 8xSi-strips & 6xMIMOSA-26 (120 μm thick)
- ~4.4 GeV/c e⁻ beam
- MIMOSA-34: Various pixels & diode dimensions
 - Pixel (22x27,30,33,44,66) & diode (8,11,15) sizes (μm²)
 - Excellent SNR_{seed} for various considered pixels \Rightarrow e.g. MPV > 40 for 22x66 μ m² pixel $\Rightarrow \epsilon_{det} \sim 100\%$
 - **33x66 μm² pixel:** Not tested in BT but with β-source
 - > Excellent MPV (> 50) \Rightarrow expects $\varepsilon_{det} \sim 100\%$ & $\sigma_{sp} \sim 10\mu m$
 - Pixel size adapted for ALICE-ITS outer layers (MISTRAL-O)

Process \triangleright 0.35 μm		0.18 μm				
Pixel Dim. $[\mu m^2]$	20.7×20.7	20×20	22×33	20×40	22×66	33×66
$\sigma^{bin}_{sp}[\mu m]$	3.7 ± 0.1	3.2 ± 0.1	~ 5	5.4 ± 0.1	\sim 7	\sim 10 μm ?

- Variations showed acceptable degradation of performances for nominal TID + NIEL @ ALICE-ITS
- Next-step: optimization with pre-ampli scheme

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

Seed pixel SNR vs pixel size

Going MISTRAL-O

Main features of the Sensors Studied on Beam

Full Scale Building Block (FSBB) sensor Complete (fast) chain of double-row r.o. and 2D sparcification (SUZE): t_{r.o.} = 40 μs Sensitive area (~1 cm²) ≈ area of final building bock Similar Nb of pixels (~170k) than complete final chip (160k) Fabricated with 18 μm thick high-ρ epi-layer BUT: pixels are small (22x32.5 μm² staggered layout) & sparsification circuitry is oversized (power!)

 Tested @ DESY (~4 GeV/c e⁻) in Jun. 2015, and CERN-SPS (~ 120 GeV/c π⁻) in Oct. 2015

Large-pixel prototype (MIMOSA-22THRb)

- Two slightly different large pixels
 - > $36x62.5 \ \mu\text{m}^2$ and $39x50.8 \ \mu\text{m}^2$ (staggered layout)
- Pads over pixel array (3ML used for in-pixel circuitry)
- Double-row r.o. with no-sparsification ($t_{r.o.} \sim 5 \mu s$)
- Fabricated with 18 μ m thick high- ρ epi-layer
- **BUT:** only \leq 10 mm², 4k pixels & no sparsification
- Tested in Frascati (450 MeV/c e⁻) in Mar. & May 2015

Main goals of MIMOSA-22THRb & FSBB-M0 Prototyping

Parametres investigated	MIMOSA-22THRb7/6	FSBB-M0bis
Sensing node geometry	Х	Х
Epitaxial layer parametres	Х	Х
In-pixel signal processing	X	x
on 3 ML (Pre-Amp, clamping)	X	-
Pads over pixels	Х	-
Large pixel detection efficiency	X	-
at 30 $^\circ$ C (incl. after OB radiation load)	Х	-
Large pixel single point resolution	Х	-
Complete signal sensing & processing chain	_	Х
Fake rate (160,000 pixels)	x	Х
Impact of voltage drop	_	Х
Cluster encoding data size	X	x

FSBB BT @ CERN-SPS in Oct. 2015

Experimental set-up

- 3 pairs of FSBB planes on T4/H6 (120 GeV/c π^-)
- Particle flux: trigger rate ~4, 25 & 100 kHz/cm²
- All measurements performed at T_{coolant} = 30 °C

Measurements as a function of discriminator threshold

- Detection efficiency vs fake rate (noisy pixel)
- Spatial resolution associated with binary encoding of 22x32.5 μm² pixels
- Radiation tolerance @ $T_{coolant}$ = 30 °C: up to 1.6 MRad \oplus 1.0×10¹³ n_{eq} /cm²
- Studies of the impact of operation parameters on sensor performances
 - e.g. input voltage (VDD), pixel current, ...
- Study of the impact of noisy pixel masking on efficiency and spatial resolution

Main FSBB-M0 detection performances (1/3)

Detection performances stability

- Same results obtained @ DESY (4.5 GeV/c e^{-}) and CERN-SPS (120 GeV/c π^{-})
- Same results for different particles rates: 1 25 hits/frame
- Robust performances in terms of operation parameters

Main FSBB-M0 detection performances (2/3)

Spatial resolution vs cluster pixel size

Main FSBB-M0 detection performances (2/3)

Spatial resolution vs cluster pixel size

Main FSBB-M0 detection performances (3/3)

Study of rad. tolerance @ T ≥ 30 °C: loads relevant to ALICE-ITS inner layers

• Load: 1.6 MRad ⊕ 10¹³n_e/cm²

Diode/Footprint: 9/13.3 µm²

Main FSBB-M0 detection performances (3/3)

Study of rad. tolerance @ T ≥ 30 °C: loads relevant to ALICE-ITS inner layers

• Load: 1.6 MRad \oplus 10¹³n_{ed}/cm²

Main FSBB-M0 detection performances (3/3)

Study of rad. tolerance @ T ≥ 30 °C: loads relevant to ALICE-ITS inner layers

• Load: 1.6 MRad \oplus 10¹³n_{ed}/cm²

MIMOSA-22THRb BT @ Frascati in May 2015

Experimental set-up

- Beam: 450 MeV/c e⁻
- Telescope: 2xMi28 (digital output) and 4xMi18 (analog-output) sensors thinned to 50 μm
- **Trigger:** beam injection signal ⇒ synchronisation due to small spill length (few ns)

- Measurements as a function of discriminator threshold
 - Detection efficiency vs fake rate (noisy pixel)
 - Spatial resolution associated with binary encoding of $36x65.2 \ \mu m^2 \& 39x50.8 \ \mu m^2$ pixels
 - Radiation tolerance @ T_{coolant} = 30 °C: up to 150 kRad ⊕ 1.5×10¹² n_{eq}/cm²

Main MIMOSA-22THRb detection performances (1/2)

Validation of large pixel design for the outer layers of the ALICE-ITS!

Final Sensor: MISTRAL-O

Combination of 4 FSBB-M0 with MIMOSA-22THRb7 pixels

Main characteristics

- Chip dimensions: 15 x 30 mm²
- Sensitive area: 13.5 x 29.95 mm²
 - 1.5 mm wide side band (insensitive) (evolving towards 1 mm)
- 832 columns of 208 (160k) pixels
- Pixel dimensions: 36 x 65 μ m²
- In-pixel Pre-Amp & clamping (fringe capa)
- End-of-column signal discriminator
- Discriminator's output 2D sparsification (SUZE)
- Fully programmable control circuitry
- Pads over pixel array

Typical performances (based on FSBB-M0 & MIMOSA-22THRb tests)

- $t_{r_0} \sim 20 \ \mu s; \sigma_{s_0} \sim 10 \ \mu m;$ Power consumption $\leq 80 \ mW/cm^2$
- Rad. Hardness > 150 kRad ⊕ 1.5x10¹² n_g/cm² @ T ≥ 30 °C

Forthcoming Challenges
Forthcoming Challenges: R&D @ IPHC

Micro Vertex Detector (MDV) of CBM @ SIS100

Goals

- Study of super-dense nuclear matter with relativistic ion-collisions
- Study open charm from 30 GeV p-Au (10 MHz)
- Low-momentum tracker for 1-12 GeV Au-Au (30-100 kHz)
- Beam on target > 2021
- MVD sensor requirements

Sensor properties	MISTRAL - O	MIMOSIS-100 (preliminary)
Active surface	13.5 x 29.95 mm ²	~ 10 x 30 mm²
Pixels	832 colls x 208 pixels	~ 1500 colls x 300 pixels
Pixel pitch	36 x 65 µm² 🛛 🗕	
Integration time	20.8 µs	30 µs
Data rate	320 Mbps	> 6x 320 Mbps
Rad tol. (non-io)	>10 ¹² n _{eq} /cm²	>3 x 10 ¹³ n _{eq} /cm ²
Rad tol (io)	> 100 kRad	> 3 MRad
Operation Temperature	+30°C	-20°C in vacuum

In reach with lightly modified APIDE (FSBB?)

Towards ILC vertex detector

Technology Perspectives for Performance Improvements

• HV/HR-CMOS sensors: $d_{dep} \sim 0.3 \sqrt{\rho_{sub} \times U_{bias}}$

- Extend sensitive volume & improved q-collection
 - \Rightarrow Faster signal & stronger rad. tolerance
- Not bound to CMOS processes using epi-layers
 - Easier access to VDSM (< 100 nm) process
 - Higher in-pixel µ-circuitry density
- Unanswered questions
 - > Minimal pixel dimensions (σ_{sp}) ?
 - > Uniformity over large sensitive area & production yield?

2-tiers chips

- Signal sensing (front-end) & processing (r.o.) parts distributed over two interconnected tiers (AC coupling)
- Smart sensor \Rightarrow 1 r.o. pixel addressing N pixel-front-ends
 - \Rightarrow Reduce density of interconnections
- Can combine 2 diff. CMOS processes: front-end/r.o.
- Benefits: small pixels ⇒ resolution, speed, datacompression and robustness
- Challenges: interconnection technology (reliability & cost)

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

van Peric: CPIX14, Bonn, 2014

Summary

- Substantial experience has been collected with running STAR-PXL proving added value of CPS to physics
 - Demonstrated that CPS can provide spatial resolution and material budget required for numerous applications
- CPS are suited for vertex detectors (<< 1 m²) and have attractive features for tracking devices (>> 1 m²)
- Forthcoming Challenges
 - CPS for inner trackers: ALICE-ITS \Rightarrow large area (10 m²) to cover with 20-30k sensors
 - Improve rad. tolerance: CBM experiment @ FAIR/GSI $\Rightarrow \ge 10^{14} \text{ n}_{sc}/\text{cm}^2$
 - Improve readout speed: ILC vertex detector $\Rightarrow \leq 1 \ \mu s$
- Perspectives for technological advances
 - HV/HR-CMOS sensors: improvement on charge collection
 - \Rightarrow faster signal and stronger rad. tolerance
 - 2-tier sensors: combine of 2 CMOS processes for sensing & r.o. parts
 ⇒ more in-pixel intelligence

ALPIDE (ALice Plxel DEtector): readout architecture

Concept similar to hybrid pixel readout architecture

TowerJazz CIS quadrupole well process: both N & P MOS can be used

Continuously power active in each pixel

- Low power consumption analogue front-end (< 50nW/pixel) based on single stage amplifier with shaping
 - High gain ~100
 - Shaping time few μs
- In-pixel discriminator
- Binary output stored into multi-event buffer awaiting for external readout
- Only zero-suppressed data transferred to periphery ⇒ priority encoder readout

ALPIDE: performances assessment

APIDE-1 beam test @ DESY (5-7 pions)

- Final sensor dimensions: 15x30 mm²
- ~0.5M pixels of 28x28 μm²
- 4 different sensing node geometries
- Possibility of reverse biasing the substrate
 ⇒ default is -3 V (better epi-layer depletion)
- Possibility to mask pixels (fake-rate mitigation)
 ⇒ default is O(10⁻³) pixels

Performances

- $\varepsilon_{det} > 99\%$, $\sigma_{sp} < 5\mu m$, fake-rate < 10⁻⁵
- Slight deterioration after irradiation

Exploring full sensor chain: Prototypes fabricated

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

The Testing Probes

Laboratory tests

- Noise characterization and fake rate
- ⁵⁵Fe X-ray source
 - ~6keV line
 - Gain, CCE and CNR
- 90 Sr β^{-} source (Q = 2.28 MeV)
 - $\, {\scriptstyle \succ \,} \,$ SNR, $\boldsymbol{\epsilon}_{_{det}}$ and cluster multiplicity

- Test-beam (TB) facilities
 - SPS: ~100 GeV/c π[±]
 - DESY: ~5 GeV/c e⁻
 - Frascati: ~500 MeV/c e[−]
 - SNR, ϵ_{det} , cluster multiplicity and σ_{sp}

MISTRAL-O: Synchronous readout

Design addresses 3 issues

- Increasing S/N at pixel-level
 - Sensing node optimization
- ADC @
 - ≻ end-of-column ⇒ MISTRAL
 - → pixel \Rightarrow **ASTRAL**

Window of 4x5 pixels

- SUZE at chip periphery
 - 2D sparsification algorithm with 4x5 pixels window (evolution from 1D sparsification on ULTIMATE chip)

Power vs Speed

- **Power:** only the selected rows (N=1,2,3 ...) to be readout
- Speed: N rows of pixels are readout in ||
 - > Integration-time (t_{int}) = frame readout time $\Rightarrow t_{int}$

$$\int_{tt} = \frac{(Row \ readout \ time) \times (No. \ of \ Rows)}{N}$$

R&D of CMOS pixel sensors

ALICE-ITS =NEW DRIVING APPLICATION OF CPS based on a better suited (180 nm) CMOS process (TDR approved by LHCC in March '14)

- ✤ 1st real scale sensor prototype adapted to 10 m² fabricated
 - → 1st test results validate achitecture in 180 nm technology
 - → 2-4 times faster read-out w.r.t. 0.35 µm technology, with up to 60 % power reduction

AIDA Telescope

- Big surface and thin reference planes with high spatial resolution
- Sensing area = 4x3.8cm2
- Additional plane with high temporal

resolution

 \Rightarrow time stamping

Sensor integration in Ultra Light Devices

Double sided ladders expected benefits

- Alignment & tracking (pointing)
- Beam background rejection ?
- Material budget, 1 mechanical support
- Redundancy (efficiency)
- Each layer optimized
 - read-out speed vs resolution
- PLUME coll. (Bristol, DESY, IPHC)
- Plume 01 prototype (<2012)
 - Fabricated
 - 2 x 6 Mimosa 26 chips
 - 2 mm low density SiC foam
 - Validated in test beam (2011)
 - Operated with air cooling
 - > 0.6 % X₀
- Plume 02 prototype
 - Under construction (spring 2015)
 - Reduced mat. Budget
 - ➢ Reduced width (24.5 mm ⇒18mm)
 - Lighter (alu) flex cable, mechanical support
 - > 0.6 % X_0 ⇒ ~ 0.35 % X_0 (cross-section)

Width = 18 mm

Next Forthcoming device: CBM Micro-Vertex Detector (MVD)

Device under Study: ILC Vertex Detector

ILD-VXD at **ILC**

3 double-sided layers

- $\sigma_{sp} \lesssim 3 \,\mu m$
- \sim 0.3 % X₀ / layer
- Radiation load: O(100) kRad +
 O(10¹¹) n_{eq}/cm² (1yr)

52

BTF Telescope Simulation: Performances (I)

BTF Telescope Simulation: Performances (II)

BTF Analysis strategy & Efficiency correction

Analysis strategy

- Reconstruct tracks and extrapolate @ DUT
- Associate DUT hits to track within track-hit distance cut
- Evaluate DUT ϵ_{det} and σ_{sp}
- **Efficiency Correction:** $\varepsilon_{det}^{corr} = (\varepsilon_{det}^{raw} p)/(1 p)$

- Due to MS non-Gaussian tails some track-hit distance seems quite large (few 100μm)
 - Enlarging the track-hit distance has 2 consequences on non-efficient events
 - Increases probability to get a fake hit in this area
 - → Increases probability to associate a real hit from other track
- Method
 - > Use efficient events to get the distribution of the 2nd closest hit to the track
 - Use normalized cumulated distribution to estimate p

BTF Telescope Simulation: $\sigma_{Tel} @ 1^{st}$ DUT position

Telescope resolution @ 1^{st} DUT position (both DUTs supposed thinned to 50μ m)

$$σ_{_{Tel}}$$
 = (5.77 ± 0.01 $_{_{stat}}$ ± 0.20 $_{_{syst}}$) μm

Telescope resolution confirmed with Geant3 based simulation

CMOS Pixel Sensors: Established Architecture

- Main characteristics of MIMOSA-26 sensor equipping EUDET BT :
 - $_{\rm 0}$ 0.35 μm process with high-resistivity epitaxial layer (coll. with IRFU/Saclay)
 - column // architecture with in-pixel amplification (cDS)
 and end-of-column discrimination, followed by Ø
 - binary charge encoding
 - active area: 1152 columns of 576 pixels $(21.2 \times 10.6 \text{ mm}^2)$
 - $_{
 m o}\,$ pitch: 18.4 $\mu m
 ightarrow \, \sim$ 0.7 million pixels
 - hinspace charge sharing \Rightarrow σ_{sp} \sim 3.-3.5 μm
 - $t_{r.o.} \lesssim 100 \ \mu s \ (\sim 10^4 \ \text{frames/s})$ \hookrightarrow suited to $> 10^6 \ \text{part./cm}^2/\text{s}$
 - JTAG programmable
 - rolling shutter architecture
 - \Rightarrow full sensitive area dissipation \cong 1 row
 - $ho~\sim$ 250 mW/cm 2 power consumption (fct of N $_{col}$)
 - $_{
 m o}~$ thinned to 50 μm (yield \sim 90 %)

Pixel array: 576 x 1152, pitch: 18.4 µm CMOS 0.35 µm OPTO technology Active area: -10.6 x 21.2 mm² Chip size : 13.7 x 21.5 mm² In each pixel: stability: several test point + Amplificatio nted all along readou > CDS (Correlated Double Sampli Pixels out (analogs Discriminators Zero suppression Data transmissio Width: ~350 µm 152 column-level discrimina offset compens gain prea by latch Zero suppression log Reference Voltages Buffering for 1152 **IO** Pads ower supply Pads Current Ref Memory ma Circuit control Pads Readout contr LVDS Tx & Rx Bias DACs JTAG controlle Memory IP blocks

Various applications: VD demonstrators, NA63, NA61, FIRST, oncotherapy, dosimetry, ...

⁵⁵Fe source: CCE/Noise/CNR vs diode for large pixels

CCE, TN and CNR vs sensing node for large pixels with HR18 epi-layer

- Good to excellent CCE, even for small sensing diodes or for $33x66 \ \mu m^2$ pixels
- = TN ~ 17/11 e⁻ ENC for single 10.9/8 μ m² sensing diodes
- TN ~ 17/15 e⁻ ENC for pairs of 5/2 μ m² sensing diodes
- High CNR: up to ~60 for 8 μ m² sensing diodes
- Pixel detection performances fully satisfactory \Rightarrow confirmation from beam test (see next slide)

33*66 um

22*66 um

⁵⁵Fe source: CCE & Noise vs diode for small pixels

• CCE and TN for 22x33 μ m² pixels for different diode dimensions (footprint 10.9 μ m²)

- CCE is highest for HR18 epi-layer
- Weak dependence of CCE with diode dimensions \Rightarrow around 30% for $2\mu m^2$
- Nearly linear variation of TN with diode dimensions $\Rightarrow 8 \rightarrow 16 e^{-} ENC \text{ for diode } 2 \rightarrow 10.9 \ \mu\text{m}^{2}$
- Small sending diode with > 10 μ m² footprint attractive in terms of CCE

⁵⁵Fe source: radiation tolerance for 22x33 μm² pixels

- 22x33 μm² pixels with diode of 8 and 10.9 μm²: TN and CCE/CNR @ T = 30°C from ⁵⁵Fe source for different irradiations
- Comparison when possible of CNR and SNR from 4.4 GeV e⁻ TB (DESY)
- Comments:
 - Small diode more sensitive to TID
 - TID impacts both CCE and TN
 - CNR of 10.9 μ m² diode pixel exceeds 20 (MPV) after 250 kRad + 2.5x10¹²n_{er}/cm²

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

MIMOSA-34: sensing node impact for small pixels

DESY BT Set-up (August 2013):

- 2BT: 8xSi-strips & 6xMIMOSA-26 (120 μm thick)
- ~4.4 GeV/c e⁻ beam
- MIMOSA-34: 22x33 μm² pixels @ T = 30°C
 - Sensing node impact (HR18)
 - Sub-arrays: P-29 10.9/10.9 μm² diode/footprint
 P-20 8.0/10.9 μm² diode/footprint
 - $8\mu m^2$ diode features ~20% higher SNR (MPV) \Rightarrow slightly higher ϵ_{det} (both > 99%)
 - $Q_{clus} \sim 1350/1500 e^{-}$ for $8/10.9 \mu m^2$ diode \Rightarrow marginal charge loss
 - Binary residue: 5-5.5 μ m $\Rightarrow \sigma_{sp} < 5 \mu$ m

β^{-} (⁹⁰Sr) source vs 4.4 GeV e⁻ (DESY)

- β^- (⁹⁰Sr) vs 4.4 GeV e⁻ for 22x66 μ m² pixels: SNR & ϵ_{det} for HR18/HR30
- Conclusion: lab test with β^- (⁹⁰Sr) source allow estimating ϵ_{det}

From 22x66 to 33x66 µm² pixels

- 22x66 vs 33x66 μ m² pixels: SNR & ϵ_{det} with β^- (⁹⁰Sr) for HR18/HR30
- Comment: 33x66 μ m² (8/15 μ m² diode/footprint) pixels exhibit high SNR \Rightarrow high ϵ_{det}

33x66 µm² pixels vs epitaxial-layer

- 33x66 μ m² pixels (8/15 μ m² diode/footprint): SNR & ϵ_{det} with β^- (⁹⁰Sr) for HR 18,20,30
- Comments:
 - Single 8/15 μm² diode/footprint provides high SNR despite large pixel (low sensing node density)
 - HR30 epi-layers gives high SNR (MPV ~ 70) from β^- (⁹⁰Sr) \Rightarrow pretty high ϵ_{det} for high SNR cut (e.g. 10)
 - Expected spatial resolution for 33x66 μ m² pixels: $\sigma_{sn} \approx 10 \mu$ m

Det. Efficiency & Fake rate

Measured from 128 columns ended with discriminators: MIMOSA-22THRa1

MISTRAL-like: fake rate

Enlarged input transistor gate: Effective mitigation of fake rate due to noisy pixels

- STEPS VALIDATED IN 2012 :
 - * Several in-pixel amplifier variants lead to satisfactory SNR & det. eff. ($20 \times 20 \ \mu m^2$) incl. after 1 MRad & $10^{13} n_{eq}$ /cm² at 30° C
 - * Results pres. at VCI-2013 (J. Baudot)
- CALL FOR IMPROVEMENT :
 - * Pixel circuitry noise :
 - tail due few noisy pixels
 - $\, \hookrightarrow \,$ attributed to RTS noise
 - \Rightarrow required optimising T geometries

FSBB-M0bis main features

har, 22 Januray 2015 416 columns

- TJsc-0.18 CIS process, HR (~1–2k Ω cm) 18/25/30 μ m epitaxy, thinned to 50 μ m
- Staggered pixel: 22x32.5 μm² including pre-amplification and clamping with 6 metal layers (ML)
- 416x416 = 173k of col. x row of pixels ended by discriminator (8-cols with analogue output)
- Double-row readout at 160MHz clock frequency \Rightarrow 40µs integration time
- On-chip 3-stage sparsification: SUZE-02 (different from MISTRAL-0, SUZE-03)
- 4 Memories of 512x32 bits
- 2 output nodes at 320Mbits/s (used only one for TB)
- Integrated JTAG and regulators
- Sensitive area is 13.7 x 9.0 mm ~ 1.2cm²
- Improvements w.r.t FSBB-M0 ⇒ shortcomings solved
 - Mitigation of cross coupling effects
 - \Rightarrow now capable of operating full matrix
 - Bit transmission: bit inversion at discriminator output
- Two sensing node variations in same chip
 - > (NMOS T_{input} Pre-Amp W/L = $1.5/0.28\mu$ m)
 - > Diode/Footprint: 8/16 μm^2
 - > Diode/Footprint: 9/13.3 μm^2

Main FSBB-M0 Detection Performances (2/3)

- Study of detection efficiency stability :
 - * Difference between SPS (120 GeV pions) & DESY (4.5 GeV electrons)
 - $_{*}\,$ Effect of occupancy : from \sim 1 hit/frame to \sim 25 hits/frame

 \Rightarrow No variation observed

9

MIMOSA-22THRb6/7: characteristics

Design features

- 64x64 pixel array (staggered): 56 columns ended with discri. and 8 with analog output
- Readout \approx 5µs (100MHz clock)
- Epitaxial layer: HR18

Mi22-THRB6: 36×62.5µm²

Purpose of the chip

- Validate pads over pixels
- Validate in-pixel circuitry concentrated on $\approx 3ML \Rightarrow$ modified clamping capacitor
- Validate large pixel performances w.r.t. TDR requirements on layers 3-6

⇒ MISTRAL-O

Reminder of lab results: Individual pixel response to ⁵⁵Fe X-rays

- Mi22THRb7 has a gain quite uniform
- Mi22THRb6 shows gain dispersion among pixels \Rightarrow were not sure about the effect on ϵ_{det}

Reminder of lab results: Temp. dependence of pixels to ⁵⁵Fe X-rays

- Mi22THRb7 has quite stable response vs T
- Mi22THRb6 shows a significant dependence with T: $/T \Rightarrow /gain$

Hot pixel masking effect on ε_{det} & σ_{sp} : Motivation

Reducing I pix

- Increases ϵ_{det} \Rightarrow dramatical effect for highly irradiated sensors
- Increases fake rate ⇒ factor of 10 increase for highly irradiated sensors
- Masking procedure can be a good strategy for highly irradiated sensors
 ⇒ can reduce fake rate by ~1 2 orders of magnitude depending masking fraction

It is then important to study the effect of masking on ε_{det} & σ_{sp}

- Masking will cut away some single pixel clusters
- ε_{det} relative reduction should be prop. to (masking fraction) x (fraction mult. = 1 clusters)
 - > Should be a marginal effect due to sizeable pixel cluster multiplicity of FSBB
 - > $\Delta \epsilon_{det}$ vs (fraction mult. = 1 clusters) should be linearly related
- σ_{sp} should get marginally degraded due to loss of hit position information of masked pixels

Tested the above hypothesis on different sensors and varied configurations

- Non-irradiated sensors @ nominal configuration
- Highly irradiated sensor (1.6MRad + $10^{13}n_{eq}$ (MeV)/cm²) for I_{pix} = 30 & 50 (nominal) μ A

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

(::)

Hot pixel masking effect on ε_{det} & σ_{sp} : Results (I)

Masking 0.00%

Masking 0.50%

Masking 1.00%

Masking 2.00%

7.5

8.5

9

Threshold / noise = TN

75

Hot pixel masking effect on ε_{det} & σ_{sp} : Results (II)

Motivation for depleted CPS

- High energy physics trend
 - Tolerate high non-ionizing part. Fluences 10¹⁵ n_{eq}/cm² (tracker / vertex)
 - Integration time ≪ µs
- X-rays detection
 - Require thickness (Beer-Lambert attenuation law)
 - Require equivalent collection properties all over epi-layer
- Fully depleting the sensitive layer is a key
 - However situation different / sensors for hybrid-systems (CERN-RD50)
 - ➡ Same substrate embed sensitive and first amplification layer

- Open questions
 - Which structure to enforce depletion?
 - Depth & uniformity on chip area
 - impact on in-pixel treatment µ-circuits?
 - Noise, transistor behavior

J. Baudot - Fully depleted CPS - ANIMMA April 2015

Way 1: High Voltage

Experiments

HV-CMOS

- ATLAS, µ2e, CLIC
- Groups in Bonn, CERN, Genève, Heidelberg, Karlsruhe, Marseille...

Deleted depth demonstrated

• new collab. → CERN-RD53

5 to 15 µm with 60-70V

Fast amplification ~ 1 µs

Concept

- Low resistivity (10-20 Ω.cm)
 - ➡ High Voltage applied few 10s V
- HV-compliant CMOS technologies

S.Feigl et al., PoS (TIPP2014) 280

- Depleted depth demonstrated 40-50 µm with 150-200 V
- Hint of tolerance beyond $10^{14} n_{ea}/cm^2$

Only 30% signal loss after 10¹⁵ n_{ea}/cm²

! Prototypes area 10 mm²

J. Baudot - Fully depleted CPS - ANIMMA April 2015

Way 2: High Resistivity

- Experiments
 - ALICE, CBM
 - soft X-rays detection
 - Groups in Bonn, CERN, RAL, Strasbourg

- Concept
 - High Resistivity thin epi-layer
 - ➡ moderate voltage \lesssim 10 V

See next slides for IPHC developments

J. Baudot - Fully depleted CPS - ANIMMA April 2015

Depleted-CPS prototypes

- 2 Technologies explored
- Tower Jazz 0.18 µm → Pegasus-1/2
 - Various sensitive layers
 - epi with >1 k Ω .cm, 18, 30, 40 μ m thick
 - Czochralski substrate-thick
 - Main architecture tested
 - Analogue readout with 10 µs integration time
 - Collection node AC-coupled to amplificator
 - Small matrix: 32 columns x 56 rows
 - Pixel size 25x25 µm²

EPC-ESPROSS 0.15 µm → MIMOSA-33

- high resistivity 50 µm thinned + passivated substrate
- Main architecture tested
 - Analogue read-out with 11 µs integration time
 - Back-side biasing through IP structure
- Small matrix: 8 columns x 44 rows
- Pixel size 25x25 µm²

J. Baudot - Fully depleted CPS - ANIMMA April 2015

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

Ongoing prototypes design

Submission to Tower-Jazz 0.18 µm technology (June 2015)

MIMOSA - 22 SX

- Forerunner of sensors dedicated to X-rays with energy < 5 keV
 - Pixel pitch $\leq 25x25 \,\mu\text{m}^2$ and $\approx 10^4$ photons/pixel/sec
- Developed with the detector group of SOLEIL ٠
- "Not so small" matrix: 5.6x 4.4 mm²
- combine :
 - AC coupled collection diode from PEGASUS
 - read-out architecture developed for ALICE
- Binary output:
 - From 2 discriminators/column → energy window selection
 - Photons detected individually \rightarrow counting & spatial resolution
- <u>Small analogue prototype</u>

J. Baudot - Fully depleted CPS - ANIMMA April 2015

- Faster amplification \rightarrow target 10⁶ photons/pixel/sec
- Mitigation of noise

ILD - VXD Concept Addressed

- Two types of CMOS Pixel Sensors :
 - Inner layers : Priority to read-out speed & spatial resolution
 - Outer layers : Priority to power consumption and good resolution
- Inner layers : \sim 300 cm 2
 - L1 : small pixels with end-of-column
 - binary charge encoding $\mapsto \ \lesssim$ 3 μm
 - $_{pprox}$ 20imes14 μm^2 with 2-row read-out : \lesssim 40 μs
 - \approx 17imes17 μm^2 with 1-row read-out : 60 μs
 - \hookrightarrow 2-row read-out : 30 μs (tbc)
 - $\,\circ\,$ L2 : elongated pixels with in-pixel binary charge encoding $\mapsto\,\sim$ 5 μm
 - $_{pprox}$ 22imes33 μm^2 with 2-row read-out : \sim 8 μs
 - $_{pprox}$ 22imes33 μm^2 with 4-row (tbc) read-out : \sim 4 μs
- Outer layers : \sim 3000 cm 2
 - L3-6 : large pixels with end-of-col 3-4 bit ADCs
 - $\circ~$ 35imes35 μm^2 pixels : \lesssim 4 μm & 120 μs
 - $_\circ~$ 25imes50 μm^2 pixels : \lesssim 4 μm & 80 μs

Processes Suited to the R&D

- Specific aspects of Tower 0.18 μm CIS process : established contact
 - access to various starting materials (incl. in MPW)
 - designing details well known by the designers and testing crews
- COMPARISON TO L-FOUNDRY (INFO. TBC) : used by HL-LHC R&D groups

Process	Feature Size	Supply Voltage	Number of ML	Туре	Comments
Tower-SC	180 nm	1.8 V (3.3 V)	6	4-well	
L-Foundry	150 nm	1.8 V (3.3 V)	8	4-well	110 nm : 1.2 V

Process	MPW runs min. area cost duration		MLM runs area cost		
Tower-SC	5 x5 mm 2	37,500 USD	\gtrsim 4.5 months	none	
L-Foundry	???	???	???	$11x11 \text{ mm}^2$	60-80 kE

Process	Starting Material				Comments
	thickness	resistivity	source	availability	
Tower-SC	18-40 μm or more	\sim 1 - 10 k $\Omega \cdot cm$	internal & external	MPW, ER	
L-Foundry	??	High-Res	internal only ?	MLM, ER	

PXL in STAR Inner Detector Upgrades

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

CPS State-of-the-Art in operation: STAR-PXL detector

STAR-PXL HALF-BARREL

- 2 layers @ r = 2.8,8 cm
- 20 ladders (10 sensors) (0.37% X₀)
 - \rightarrow 200 sensors \Rightarrow 180x10⁶ pixels
- Air flow cooling: T < 35°C

Several Physics-runs 1^{st} run Mar-Jun 2014 2^{nd} run Jan-Jun 2015 Measured $\sigma_{ip}(p_T)$ matching requirements (~40 µm @ 600 MeV/c for π^{\pm}/K^{\pm})

Getting prepared for 3rd run (Jan. 2016)

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

Main FSBB-M0 detection performances (2/3)

Spatial resolution vs cluster pixel size

- Charge sharing depends on track impinging position w.r.t coll. diode
- Spatial resolution is mostly dependent on # pixels/cluster
- σ_{sp} (Mult=1) ~ 4.2 μ m < σ_{sp}^{digi} ~ 7.8 μ m

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

Main MIMOSA-22THRb detection performances (1/2)

Pixel type	Pixel dim.	Diode/Footprint	Pre-Amp T.	Clamping capa.	Integ. time
MIMOSA-22THRb7	39 μm x 50.8 μm	5/16 μm^2	N-MOS	MOS (N-well)	5 μs
MIMOSA-22THRb6	36 μm x 62.5 μm	7/16 μm^2	P-MOS	fringe (metal layers)	5 μs

- Excellent detection performances for both chip variations
 - ϵ_{det} > 99% & σ_{sp} ~ 10 µm (as expected)
- P-MOS vs N-MOS Pre-Amply input transistor
 - **P-MOS:** less RTS noise, higher gain and sensing node voltage
 - **N-MOS:** better pixel response uniformity, less T-dependency and maturity (STAR-PXL)

Alejandro Pérez Pérez, LAL Seminar, 22 Januray 2015

U residue

V residue Fake rate

<# Suze Windows>

Main MIMOSA-22THRb detection performances (2/2)

- Study of rad. tolerance @ T ≥ 30 °C: loads relevant to ALICE-ITS outer layers
 - Load: up to 150 kRad ⊕ 1.5×10¹²n /cm²

MIMOSA-22THRb7 (N-MOS Pre-Amp input transistor)

- Good detection performances after irradiation
- Validation of large pixel design for the outer layers of the ALICE-ITS!

Forthcoming Challenges

How to reach the right bottom corner of the "Quadrature"?

