HOW MUCH DOES A COLLIDER COST? And is it worth it? A COST-BENEFIT ANALYSIS OF THE LHC

Stefano Forte Università di Milano & INFN

LAL Orsay, March 27, 2016

WHAT IS COST-BENEFIT ANALYSIS (CBA) ALL ABOUT?

Jules Dupuit (1801-1866)

"De la mésure de l'utilité des travaux publics" (Annales des Ponts ets Chaussées, 1844)

What is the benefit produced by a bridge on which no toll is levied?

WHY CBA? WHAT IS IT GOOD FOR?

What is the benefit of this bridge?

- Benefits may be quite diverse:

 someone is willing to pay a ticket in order to dive from the bridge
 someone else is willing to pay in order to take a picture of it
- The decision to build the bridge may well depend on other considerations (political, social, cultural, etc.)
 AND THIS IS
 AS IT SHOULD BE!

THE USES OF CBA

The european commission

2014: 5th edition, 364 pages

CBA routinely used as assessment tool:

mandatory for EU grants when total cost beyond 50 M€

• Performed following a standardized methodology (5 editions of the EC CBA Guide)

THE BENEFITS OF BIG SCIENCE PROJECTS?

Battelle The Business of Innovation

\$3.8B Investment in Human Genome Project Drove \$796B in Economic Impact Creating 310,000 Jobs and Launching the Genomic Revolution

A 1 to 140 'return' from the Human Genome Project?

THE FUNDING OF BIG SCIENCE PROJECTS

LHC

Updates Press releases

SSC

SCIENTIFIC AMERICAN SUBSCRIBE

THE SCIENCES

The Supercollider That Never Was

The Texas-based high-energy accelerator would have easily found the Higgs and been capable of searching for still more evidence of new physics

By David Appell on October 15, 2013

EIB lends € 300 million for CERN's major collider

18 Dec 2002

Geneva, 18 December 2002. The European Investment Bank (EIB) is lending EUR 300 million to fin final phase of construction of the Large Hadron Collider (LHC) at CERN¹, the European Organizatior Research. The EIB loan will also help to finance the instrumentation to record and analyse the high-e particle collisions at the LHC. A loan to enable construction of this major project was foreseen by CEF governing Council when it approved the LHC in 1996.

THE EIBURS PROJECT

- The European Investment Bank Institute issued a call for proposals on its University Research Sponsorship program
- Our team presented a proposal and won a competitive grant

www.eiburs.unimi.it

THE TEAM

GOALS AND DELIVERABLES

Four research papers

- <u>The Evaluation of Research</u>
 <u>Infrastructures: a Cost-Benefit</u>
 <u>Analysis Framework</u>
- <u>The rate of return to investment in</u> R&D infrastructure: an overview
- <u>Research infrastructures in the</u> <u>LHC era: a scientiometric</u> approach
- <u>Appraisal of Research</u>
 <u>Infrastructures: Approaches</u>,
 <u>methods and practical</u>
 <u>implications</u>

Two pilot case studies

- <u>The socio-economic impact of the</u> <u>LHC: An exploratory cost-benefit</u> analysis at the frontiers of
- + <u>science</u>
 - <u>The socio-economic impact of the</u> <u>National Hadrontherapy Centre for</u> <u>Cancer Treatment (CNAO):</u> <u>applying a CBA analytical</u> framework.

=

<u>A final report with</u> guidelines

THE MODEL (Florio, Sirtori, 2015)

NET PRESENT VALUE:

NPV =
$$\sum_{i} \frac{B_{t_i}^u - C_{t_i}}{(1+r)^{t_i}} + B^{nu}$$

- The **net** value is the difference between benefits and costs
- Costs (C_{t_i}) and user benefits $(B_{t_i}^u)$ are defined at times t_i and must be converted to a **present** value using a discount rate r
- The model is a classification of the benefits which in turns involves (a) a classification of beneficiaries, and (b) an understanding of the non-use benefits
- We argue that the model is of general applicability for any research infrastructure
- The model is tested by applying it to the LHC

THE USE BENEFITS AND THEIR USERS

Knowledge output (publications): scientists

Technological spillovers: firms

Human capital formation: students and postdocs

Cultural benefits: visitors & outreach

NON USE BENEFITS

QUASI OPTION VALUE:

the value of future (=option) possible (=quasi) discoveries

unpredictable, in fundamental science: assumed zero

EXISTENCE VALUE:

the value attached to the existence of something, even if useless

estimated using standard methods of environmental economics

THE LHC CASE STUDY

TIME HORIZON	33 years: 1993 - 2025	
UNIT OF ANALYSIS	the LHC and its experimental facilities	
SOCIAL DISCOUNT RATE	3% in real terms (adopted by the EC Guide to CBA of Investment Projects)	
SHADOW PRICES	proxied by marginal WTP or marginal costs	
COUNTERFACTUAL	business as usual	
QUASI-OPTION VALUE	assumed 0	
NEGATIVE EXTERNALITIES	assumed 0	

- Information acquired thanks to co-operation of CERN admin, directorate, and experiments (access to procurement, fellow database, etc)
- All variables for which information is incomplete assigned a probability distribution and final distribution of costs and benefits obtained through a Monte Carlo

COSTS

A (very) difficult accounting problem:

- Long time span & need to forecast future costs
- Costs born both by CERN and by users (experiments, funding agencies)
- Many contributions in-kind
- · Need to apportion costs between LHC and the rest of the lab

AFFORMONMENT SHARE OF ENC-RELATED COSTS COVERED BT CERN (1995-2015)				
	ACCELERATORS		INFRASTRUCTURE	
CLIC	Q%	Building construction	80%	
CNGS	0%	Computing	80%	
Consolidation	100%	Energy	20%<2000, then 50%, 80% as of 2008	
Experimental Areas PS	0%	General Services	50%	
Experimental Areas SPS	50%	Medical service	20%<2000, then 50%, 80% as of 2008	
General R&D	0% before 2007; 50% from 2008	Site facility	72%	
General Services	0% before 2007; 50% from 2008	Technical infrastructure	80%	
LEP	0%	Waste management	70%	
LHC	100%		RESEARCH	
LHC injectors	100%	Computing	68%	
LHC injectors upgrade	100%	Controls	80%	
LHC upgrade	100%	Data analysis	58%	
Low and medium energy	0%	Electronics	50%	
Medical applications	0%	EU supported R&D general	50%	
PS complex	50%	General Services	50%	
R&D	50%	Grid computing	80%	
R&D CLIC	0%	LHC computing	100%	
SPS complex	67%	LHC detectors	100%	
	OUTREACH	LHC detectors upgrade	100%	
Communication	70%	non-LHC physics	0%	
Exchange programmes	50%	Theoretical physics	50%	
Exchanges	0%		SERVICES	
Knowledge and Technology Transfer	50%	Electronics	80%	
Schools	0%			

APPORTIONMENT SHARE OF LHC-RELATED COSTS COVERED BY CERN (1993-2013)

COSTS time profile

COSTS final results

ESTIMATED PARAMETERS OF DISTRIBUTION

Mean	13,467,999
Median	13,465,444
Standard deviation	393,437
Minimum	11,924,312
Maximun	14,846,518

Present value in kEuro

ESTIMATING BENEFITS

the fallacy of the hole in the ground

- If you pay someone for digging a hole in the ground, the benefit of having created a new job is cancelled by the cost
- And don't forget the cost of fixing the leg of those who fall into the hole

Benefits should be determined as incremental failure to do so will lead to meaningless (and typically unrealistic) results

Our guiding principles:

- results must be quantitative: if something cannot be estimated, set it to zero
- always determine the gain compared to a counterfactual

USE-BENEFITS: KNOWLEDGE OUTPUT

- For publications by CERN users (L0), costs and benefits exactly cancel
- The benefit consists of publications (L1) which cite L0 papers, those which cite the latter (L2) and so on
- Publication flows are forecast based on models tested on similar contexts (LEP experiments)
- The value of a publication is measured as the value of time a scientist spends on it (estimated)

USE-BENEFITS: KNOWLEDGE OUTPUT

Source: Preliminary scientometric analysis of INSPIRE database of papers and citations

USE-BENEFITS: KNOWLEDGE OUTPUT

ESTIMATED PARAMETE	RS OF DISTRIBUTION
Mean	277,051
Median	266,578
Standard deviation	102,768
Minimum	76,864
Maximun	612,859

Present value in KEuro

- The benefit due to human capital formation can be measured as the increase in salary for someone who benefitted from training at CERN
- This applies both to those who stay in academia and to those who go to industry
- Comparable to the benefit of going to a top university, as usually done to justify the high cost! Can be estimated with similar methods

2015-2016 College Salary Report

Want to make a smart decision about college? Let PayScale help you do your homework. Choose the degree and school that will set you up for the career of your dreams. The 2015-2016 College Salary Report has college rankings for over 1,000 schools by salary potential. Find the best colleges and majors to increase your earning potential.

T

TYPES AND QUANTITIES OF PEOPLE BENEFITTING FROM TRAINING AT THE LHC Number over the Average staying Variable 1993-2025 period at CERN

CERN fellows working on LHC	5,873	2 years	
CERN technical students working on LHC	3,940	1 year	Industry
CERN doctoral students working on LHC	1,332	3 years	Others (
User-students working on LHC	14,225	3 years	public ad
Post-doc researchers (users) working on LHC	11,301	2 years	Researc
TOTAL	36,671		
Sources: - CERN personnel statistics; - Interviews to CERN staff			Academ
Main assumptions: - Future number of beneficiaries; - Number of users-students and post-docs among users (assumed based			

Ρ

Т S

on their age group); - Incoming number of user-students and post docs

ASSUMED DISTRIBUTION OF FORMER LHC STUDENTS BY **PROFESSIONAL SECTOR**

Sector	CERN fellows	CERN technical students	CERN doctoral students	User-students and post-docs
dustry	20%	45%	20%	20%
hers (computing, finance, blic administration, …)	20%	45%	20%	20%
esearch centres	30%	5%	30%	30%
ademia	30%	5%	30%	30%
DTAL	100%	100%	100%	100%

Combine information on perceived or known effects on skills and salaries...

...with known distribution of occupational outcomes and salary flows in time

Mean	5,465,401
Median	5,460,616
Standard deviation	344,337
Minimum	4,554,290
Maximun	6,417,701

Present value in kEuro

Two main classes of benefits:

Acquisition of know-how by suppliers

can be estimated using procurement data

Technological results and products made freely available

can be estimated knowing usage data & 1-12 comparing to the price of similar commercial products

(no, we did not include the World Wide Web)

Studying CERN procurement....

Procurement: total & hi-tech

...and matching it to earning data for similar companies...

Distribution of EBITDA matched to CERN codes

...with incremental turnover determined from interviews (BUT: stay tuned for more!)

FREELY AVAILABLE SOFTWARE

ROOT: Multivariate analysis tool, available since 1997

> About 25000 users outside physics in 2013, mostly in finance

Savings determined from licence price of **Oracle Advance Analytics** (comparable commercial product)

GEANT4: Simulation software, available since 1999

About fifty research centers, space agencies and firms routinely using it (not including a large number of hospotals using it for medical applications)

Saving determined from development costs incurred by CERN

ROOT download data

ESTIMATED PARAMETERS OF DISTRIBUTION

Mean	5,306,344
Median	5,188,553
Standard deviation	1,698,262
Minimum	-1,455,883
Maximun	14,161,897

Present value in kEuro

USE-BENEFITS: CULTURAL BENEFITS

• Science labs receive a large number of visitors

benefits can be estimated as in the tourism industry (even when, like at CERN, no ticket purchase is required)

- The general public also profits from traveling exhibitions, media coverage, website visits
- Volunteers participate in distributed computing projects

benefits can be estimated based on time spent

USE-BENEFITS: CULTURAL BENEFITS

56.514.575

3 Ω

-YouTub

- Twitte

- Facebool

Google

05

1 130 064

USE-BENEFITS: CULTURAL BENEFITS

ESTIMATED PARAMETERS OF DISTRIBUTION

Mean	2,099,812
Median	2,022,731
Standard deviation	524,892
Minimum	951,678
Maximun	4,382,465

Present value in kEuro

NON-USE BENEFITS: THE EXISTENCE VALUE

- The value of non-use benefits can be assessed by contingent valuation: essentially by estimating the willingness to pay of the taxpayer based on a survey
- Protocols for performing contingent valuation surveys have been developed, and used in the quantitative assessment of damage
 e.g. in the Exxon Valdez oil spill

What is the value of this whale?

NON-USE BENEFITS: THE EXISTENCE VALUE

Survey to 1027 students in Italy, Spain, France, UK, consistent with NOAA protocol

WTP determined

Share of adult population with tertiary education

This WTP assumed to apply (stochastically) to people with tertiary from CERN member states + fraction of non-member population based om CERN visits

NON-USE BENEFITS: THE EXISTENCE VALUE

ESTIMATED PARAMETE	ERS OF DISTRIBUTION
Mean	3,197,227
Median	3,377,970
Standard deviation	1,039,558
Minimum	257,424
Maximun	4,672,187

Present value in kEuro

SUMMARY: COSTS AND BENEFITS

(MEURO)

- COSTS:
- USE BENEFITS:
- knowledge formation human capital technological spillovers cultural

13.5	\pm	0.4
0.3	±	0.1
5.5	\pm	0.3
5.3	\pm	1.7
2.1	\pm	0.5
3.2	\pm	1.0

NON-USE BENEFITS: existence value

ESTIMATED PARAMETERS OF DISTRIBUTIONMean2,855,528Median2,825,860

Standard deviation	2,134,763
Minimum	-6,220,259
Maximun	11,573,387
ESTIMATED PROBABILITIES	
Pr FNPV < 0	0.08

- Human capital, technological spillovers, cultural+existence value each give about 33% of benefits (publications negligible)
- Uncertainty largest on tech. spillovers
- Mean cost/benefit ratio (30 years) 1.2 with about one sigma significance; rate of return 4.7%
- More than 90% chance of positive NPV

CONCLUSIONS & OUTLOOK

THE MODEL

- The LHC case study shows that the model is viable
- One more (much easier) case study has been performed (CNAO)
- More are under way and will be needed for full validation & widespread adoption

THE LHC CASE STUDY

- More detailed studies using econometric methods required to reduce the dominant uncertainty: technological spillovers
- Contingent valuation can be improved and deepend by studying correlations
 STAY TUNED!

HL-LCC & FCC STUDIES

- MOU with CERN to extend these studies and perfrom CBA for future facilities
- Plenary presentation by M. Florio at the forthcoming FCC week in Rome

Particle accelerators are the cathedrals of the XX century (A. Weniberg, in coining the term "Big Science")

How do we estimate the benefit of a cathedral?