

Constraining Galileon models with recent cosmological data and perspectives

> **Jérémy Neveu** March 25, 2016 UPSUD – LAL

LAL Seminar

Jérémy Neveu

UPSUD - LAL 1 / 38

Context

Two theories to describe our Universe

Macroscopic scale

General Relativity

Particle Physics

Microscopic scale

$$S_{\rm RG} = \int d^4 x \sqrt{-g} \left[\frac{M_P^2}{2} (\mathbf{R} - \mathbf{\Lambda}) - \mathcal{L}_{\rm SM} \right]$$

UPSUD - LAL 2 / 38

Dark Matter

If galaxies contain only visible matter, then their rotation curve must follow Newton's law...

Jérémy Neveu

UPSUD - LAL 3 / 38

Dark Matter

If galaxies contain only visible matter, then their rotation curve must follow Newton's law...

... but it doesn't ! What is the nature of this Dark Matter?

Jérémy Neveu

Dark Matter

If galaxies contain only visible matter, then their rotation curve must follow Newton's law...

Dark Energy

If Universe contains only matter, then its expansion must slow down...

... but it doesn't ! What is the nature of this Dark Matter?

Jérémy Neveu

UPSUD - LAL 3 / 38

Dark Matter

If galaxies contain only visible matter, then their rotation curve must follow Newton's law...

Dark Energy

If Universe contains only matter, then its expansion must slow down...

... but it doesn't ! What is the nature of this Dark Matter?

... but it accelerates ! What is the nature of this Dark Energy?

Jérémy Neveu

UPSUD - LAL

Going beyond the Standard Models...

Accelerated expansion of the Universe, dynamics of galaxies, etc...

\Rightarrow 95% of the energy content of the Universe is UNKNOWN

Jérémy Neveu

Going beyond the Standard Models...

Accelerated expansion of the Universe, dynamics of galaxies, etc... \Rightarrow 95% of the energy content of the Universe is UNKNOWN

Dark Matter

- Supersymmetry
- Axions
- Extra spatial dimensions ? : KK particles, Branon...
- Modified Newton law (MOND) ?

Going beyond the Standard Models...

Accelerated expansion of the Universe, dynamics of galaxies, etc...

\Rightarrow 95% of the energy content of the Universe is UNKNOWN

Dark Matter

- Supersymmetry
- Axions
- Extra spatial dimensions ? : KK particles, Branon...
- Modified Newton law (MOND) ?

Dark Energy

- Cosmological constant Λ? Fine tuning problems...
- Quintessence
- Chameleon
- Galileon

Part I : Galileon cosmology

- Galileon Lagrangians
- 2 Expansion of a Galileon Universe
- 3 Linear perturbations
- Part II : Cosmological constraints
- Cosmological data
- **5** ACDM and FWCDM constraints
- **6** Galileon constraints
- Part III : Perspectives and summary
- Future dark energy experiments: Galileon forecasts
- B Discussions and summary

Part I

Galileon cosmology

Jérémy Neveu

UPSUD - LAL 6 / 38

Galileon Lagrangians

The Galileon theory

Modification of the General Relativity :

- to explain the accelerated expansion of the Universe
- without impacting the local gravitation

Jérémy Neveu

UPSUD - LAL 7 / 38

Principles [Nicolis, Rattazzi & Trincherini, 2009] :

Lagrangians constructed to obtain a second-order equation of motion for π and invariant under a Galilean symmetry $\pi \mapsto \pi + a + b_{\mu} x^{\mu}$

 \Rightarrow only 5 Lagrangians possible \Rightarrow 5 free parameters c_i

Other constructions

- Xdim : Galileon π is the position of our 4D brane inside a 5D bulk [Hinterbichler et al. (2010)]
- Massive gravity : Galileon is the fifth polarisation of a massive graviton in dRGT theories [de Rham et al. (2010)]
- Particular case of the Horndeski theories [Horndeski (1974)] describing the most general second order scalar field theories in curved space
- In the Xdim context, the Galilean symmetry appears naturally

Galileon Lagrangians

Galileon Lagrangians

$$\mathcal{L}_1 = \pi$$
, $\mathcal{L}_2 = (
abla_\mu \pi) (
abla^\mu \pi)$, $\mathcal{L}_3 = (\Box \pi) (
abla_\mu \pi) (
abla^\mu \pi)$,

$$\mathcal{L}_{4} = (\nabla_{\mu}\pi)(\nabla^{\mu}\pi) \left[2(\Box\pi)^{2} - 2\pi_{;\mu\nu}\pi^{;\mu\nu} - \frac{R}{R} (\nabla_{\mu}\pi)(\nabla^{\mu}\pi)/2 \right],$$

$$\mathcal{L}_{5} = (\nabla_{\mu}\pi)(\nabla^{\mu}\pi) \left[(\Box\pi)^{3} - 3(\Box\pi)\pi_{;\mu\nu}\pi^{;\mu\nu} + 2\pi_{;\mu}^{;\nu}\pi_{;\nu}^{;\rho}\pi_{;\rho}^{;\mu} - 6\pi_{;\mu}\pi^{;\mu\nu}\pi^{;\rho} G_{\nu\rho} \right]$$

• π field coupled to Ricci scalar and Einstein tensor

 \Rightarrow modified gravity !

Jérémy Neveu

UPSUD – LAL 9 / 38

Galileon Lagrangians

Galileon action [Appleby & Linder (2011)]

Properties

- Only 5 *c_i* free parameters (beside the couplings to matter).
- Can assume $c_1 = 0$ to avoid an explicit cosmological constant
- No theoretical problems : no ghosts, no instabilities, preserves General Relativity thanks to Vainshtein screening effect.

Jérémy Neveu

Properties

- Only 5 *c_i* free parameters (beside the couplings to matter).
- Can assume $c_1 = 0$ to avoid an explicit cosmological constant
- No theoretical problems : no ghosts, no instabilities, preserves General Relativity thanks to Vainshtein screening effect.

Direct couplings to matter

- conformal : $c_0 \pi T^{\mu}_{\ \mu}/M_P$
- disformal : $c_G \partial_\mu \pi \partial_\nu \pi T^{\mu\nu} / M_P M^3$ (can originate from Xdim, massive gravity)

Jérémy Neveu

Properties

- Only 5 *c_i* free parameters (beside the couplings to matter).
- Can assume $c_1 = 0$ to avoid an explicit cosmological constant
- No theoretical problems : no ghosts, no instabilities, preserves General Relativity thanks to Vainshtein screening effect.

Direct couplings to matter

- conformal : $c_0 \pi T^{\mu}_{\ \mu}/M_P$
- disformal : $c_G \partial_\mu \pi \partial_\nu \pi T^{\mu\nu}/M_P M^3$ (can originate from Xdim, massive gravity)

Question

How to predict the expansion history of a Galileon Universe?

Jérémy Neveu

UPSUD - LAL 11 / 38

Expansion of a Galileon Universe

Expansion of a Galileon Universe

• FLRW metric :
$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$$

Expansion of a Galileon Universe

• Example with the (00) Einstein equation : $\delta S/\delta g_{00}=0$

UPSUD - LAL 12 / 38

(Expansion of a Galileon Universe)

Expansion of a Galileon Universe

• FLRW metric :
$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$$

Expansion of a Galileon Universe

• Example with the (00) Einstein equation : $\delta S/\delta g_{00}=0$

(Expansion of a Galileon Universe)

Expansion of a Galileon Universe

Expansion of a Galileon Universe

$$(1 - 2c_0y)\bar{H}^2 = \frac{\Omega_m^0}{a^3(t)} + \frac{\Omega_r^0}{a^4(t)} \qquad \qquad x = M_P^{-1}d\pi/d\ln a$$

$$y = \pi/M_P + \underbrace{\frac{c_2}{6}\bar{H}^2x^2 - 2c_3\bar{H}^4x^3 + \frac{15}{2}c_4\bar{H}^6x^4 - 7c_5\bar{H}^8x^5 - 3c_6\bar{H}^4x^2 + 2c_0\bar{H}^2x}_{\Omega\pi} = \text{"new" }\Omega_{\text{Dark Energy}}$$

Degeneracy problem !

Equations invariant under a scale transformation γ : $x \mapsto x/\gamma, c_i \mapsto c_i \times \gamma^i, c_G \mapsto c_G \times \gamma^2, c_0 \mapsto c_0 \times \gamma$! \Rightarrow The same $\overline{H}(z)$ evolution can be obtained with small x and high c_i s or high x and small c_i s

Jérémy Neveu

UPSUD - LAL 13 / 38

Expansion of a Galileon Universe

Expansion of a Galileon Universe

Two solutions :

• a value of x is known at some instant of the Universe history

or

• break the degeneracy with a new parametrisation

Jérémy Neveu

UPSUD - LAL 14 / 38

New parametrisation

Expansion of a Galileon Universe

New parametrisation

We set
$$x_0 = x(z = 0)$$
 the x initial condition :

$$\bar{c}_i = c_i x_0^i, \ \bar{c}_G = c_G x_0^2, \ \bar{c}_0 = c_0 x_0, \ \bar{x} = x/x_0, \ \bar{y} = y/x_0$$

[Neveu et al., A&A 555, A53 (2013)]

UPSUD – LAL 15 / 38

New parametrisation

Expansion of a Galileon Universe

New parametrisation

We set
$$x_0 = x(z = 0)$$
 the x initial condition :

$$\overline{c_i} = c_i x_0^i, \ \overline{c_G} = c_G x_0^2, \ \overline{c_0} = c_0 x_0, \ \overline{x} = x/x_0, \ \overline{y} = y/x_0$$

$$\overline{H}^2 = \frac{\Omega_m^0}{a^3} + \frac{\Omega_r^0}{a^4} + \frac{c_2}{6}\overline{H}^2 x^2 - 2c_3\overline{H}^4 x^3 + \frac{15}{2}c_4\overline{H}^6 x^4 - 7c_5\overline{H}^8 x^5 - 3c_G\overline{H}^4 x^2$$

$$= \frac{\Omega_m^0}{a^3} + \frac{\Omega_r^0}{a^4} + \frac{\overline{c_2}}{6}\overline{H}^2 \overline{x}^2 - 2\overline{c_3}\overline{H}^4 \overline{x}^3 + \frac{15}{2}\overline{c_4}\overline{H}^6 \overline{x}^4 - 7\overline{c_5}\overline{H}^8 \overline{x}^5 - 3\overline{c_G}\overline{H}^4 \overline{x}^2$$
Bonus: $\overline{x}(z = 0) = 1 \Rightarrow \overline{x}$ is known at $z = 0.1$

[Neveu et al., A&A 555, A53 (2013)]

Expansion of a Galileon Universe

Solving the Galileon equations

4 differential equations with 3 unknown functions $\bar{H}(z)$, $\bar{x}(z)$, $\bar{y}(z)$

By definition : $\bar{y}' = \bar{x}$

Einstein equation (00) :
$$\frac{\delta S_{\text{Gal}}}{\delta g_{00}} = 0$$

$$(1-2\bar{c}_0\bar{y})\bar{H}^2 = \frac{\Omega_m^0}{a^3} + \frac{\Omega_r^0}{a^4} + \frac{\bar{c}_2}{6}\bar{H}^2\bar{x}^2 - 2\bar{c}_3\bar{H}^4\bar{x}^3 + \frac{15}{2}\bar{c}_4\bar{H}^6\bar{x}^4 - 7\bar{c}_5\bar{H}^8\bar{x}^5 - 3c_G\bar{H}^4\bar{x}^2 + 2\bar{c}_0\bar{H}^2\bar{x}$$
Einstein equation (ij) :
$$\frac{\delta S_{\text{Gal}}}{\delta g_{ij}} = 0$$
Equation of motion π :
$$\frac{\delta S_{\text{Gal}}}{\delta\pi} = 0$$

$$\Rightarrow \begin{cases} \frac{d\bar{H}}{d\ln a} = f(\bar{c}_i, \bar{x}, \bar{H}, \Omega_r^0) \\ \frac{d\bar{x}}{d\ln a} = g(\bar{c}_i, \bar{x}, \bar{H}, \Omega_r^0) \\ \frac{d\bar{x}}{d\ln a} = g(\bar{c}_i, \bar{x}, \bar{H}, \Omega_r^0) \end{cases}$$
the numerical integration with BK4 method

UPSUD - LAL 16 / 38

(Expansion of a Galileon Universe)

Solving the Galileon equations

• Two trivial initial conditions at z = 0:

Expansion of a Galileon Universe

$$\bar{x}(z=0) = 1, \quad \bar{H}(z=0) = 1$$

• 1 assumption in the $\bar{c}_0 \neq 0$ case : $\bar{y}_0 = 0$ to get $G_N(z) = G_N$ today

$$(1-2\bar{c}_0\bar{y})\bar{H}^2=...\Rightarrow G_N(z)\equiv G_N/(1-2\bar{c}_0\bar{y})$$

• 1 constraint equation : used to fix \bar{c}_5 given Ω_m^0, Ω_r^0 and the other \bar{c}_i s :

$$\bar{c}_5 = \frac{1}{7}(-1 + \Omega_m^0 + \Omega_r^0 + \frac{\bar{c}_2}{6} - 2\bar{c}_3 + \frac{15}{2}\bar{c}_4 - 3\bar{c}_G + 2\bar{c}_0)$$

 $\Rightarrow 5 (+1 \text{ or } 2) \text{ free parameters to constrain :} \\ \Omega^0_m, \Omega^0_r, \bar{c}_2, \bar{c}_3, \bar{c}_4, (\bar{c}_G, \bar{c}_0) \end{cases}$

Jérémy Neveu

UPSUD – LAL 17 / 38

Growth of structures in a Galileon theory

- Linear perturbations of the Galileon field $\delta\pi$
- Scalar perturbations of the metric ψ,ϕ :

Linear perturbations

$$ds^{2} = -(1+2\psi)dt^{2} + a^{2}(1-2\phi)\delta_{ij}dx^{i}dx^{j}$$

• Tensorial perturbations of the metric $\delta g_{ij} = a^2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & h_{\oplus} & h_{\otimes} \\ 0 & h_{\otimes} & h_{\oplus} \end{pmatrix}$

After computation, we obtain a new Poisson equation for gravity, with an **effective gravitational coupling** :

$$\nabla^2 \psi = 4\pi a^2 G_{\text{eff}}^{(\psi)}(z) \rho_m \delta_m, \quad G_{\text{eff}}^{(\psi)}(z) = \bar{G}\left(z, \bar{c}_i, \bar{x}, \bar{H}, \frac{d\bar{x}}{d\ln a}, \frac{d\bar{H}}{d\ln a}\right) G_N$$

and other quantities such as :

- normalisation factor of the kinetic terms of $\delta\pi$ and h_{ii}
- squared sound speed of scalar and tensorial perturbations $c_s^2(z)$ and $c_T^2(z)$

Linear perturbations

Theoretical constraints

Reducing the Galileon phase space

- **(**) no-ghost conditions (eg. positive normalisation of $\delta \pi$ kinetic term)
- 2 stability conditions (eg. $c_s^2 > 0$)

10

100

0.5

 $c_S^2(z)$

 \Rightarrow to be compared to data

Jérémy Neveu

UPSUD - LAL 19 / 38

1000

Part II

Cosmological constraints

Jérémy Neveu

UPSUD - LAL 20 / 38

Cosmological data

Type la supernovæ

- Use of most recent data : 740 SNe la precisely measured by a joint SNLS-SDSS analysis [Betoule et al. 2014]
 - Each SNIa is characterised by : z, magnitude $m_{B,mes}^*$, color C, stretch X_1
- B-band peak magnitude prediction for each SNIa at a given redshift z :

$$m_{B}^{*}(z) = 5 \log_{10} \left[(1+z) \int_{0}^{z} \frac{dz}{\overline{H}(z, \operatorname{cosmo})} \right] - \alpha X_{1} + \beta C + \mathcal{M}_{B}$$

compared with data by a χ^2 method $\Rightarrow \chi^2(\Omega_m^0, \bar{c}_2, \bar{c}_3, \bar{c}_4, \bar{c}_G)$

- Technical details :
 - α, β and M_B : nuisance parameters fitted on data jointly with the cosmological parameters as recommended by [Conley et al. 2011] : way to make SNe la better standard candles
 - Rigorous use of α, β et M_B
 - We assume $\Omega_r^0 = 0$ because here z < 1.4

Jérémy Neveu

UPSUD - LAL 21 / 38

Cosmological data

Cosmological Microwave Background

Full power spectrum prediction not available in Galileon theory
 ⇒ use of simplified set of observables : *I_a*, *R*, *z_{*}*, linked to
 the power spectrum first peak only

$$D_A(z) = \frac{c}{H_0} \frac{1}{1+z} \int_0^z \frac{dz'}{\bar{H}(z')}, \quad r_s(z) = \frac{c}{H_0} \int_0^{\frac{1}{1+z}} da \frac{\bar{c}_{s,m}(a)}{a^2 \bar{H}(a)}$$

$$l_{a} = (1+z_{*})\frac{\pi D_{A}(z_{*})}{r_{s}(z_{*})}, \quad R = \frac{\sqrt{\Omega_{m}^{0}H_{0}^{2}}}{c}(1+z_{*})D_{A}(z_{*})$$

- Preliminary results using Planck 2015 TT, TE, EE data
- Only $\bar{H}(z)$ needed to compute the observables

Technical details :

- z* evaluated using Hu & Sugiyama 1996 fitting formula
- Minimisation on h and $\Omega_b^0 h^2$ together with CMB predictions (following Komatsu et al. 2009 prescriptions)

 ΛCDM and FWCDM constraints

Galileon constraints

Cosmological data

Baryonic Acoustic oscillations

- 6 BAO $D_V(z)$ and 3 BAO/Lyman- α measurements
- Only $\overline{H}(z)$ needed to compute the observables

z	$D_V\left(rac{r_d^{\mathrm{fid}}}{r_d} ight)$ (Mpc)	$H\left(rac{r_d}{r_d^{\mathrm{fid}}} ight)$ (km/s/Mpc)	$D_A\left(rac{r_d^{\mathrm{fid}}}{r_d} ight)$ (Mpc)	r	Survey
0.106	456 ± 20	-	-	-	6dFGS
0.15	664 ± 25	-	-	-	SDSS MGS
0.32	1264 ± 25	-	-	-	BOSS LOWZ
0.44	1716 ± 83	-	-	-	WiggleZ
0.57	-	96.8 ± 3.4	1421 ± 20	0.539	BOSS CMASS
0.6	2221 ± 101	-	-	-	WiggleZ
0.73	2516 ± 86	-	-	-	WiggleZ
2.34	-	222 ± 7	1662 ± 96	0.43	BOSS DR11
2.36	-	223 ± 7	1616 ± 60	0.39	BOSS DR11

Technical details :

CMB and BAO data fitted simultaneously (same sonic horizon r_s(z))

Jérémy Neveu

UPSUD - LAL 23 / 38

Cosmological data

Growth of structures

- 8 growth rate measurements $f\sigma_8(z)$ [6dFGRS, WiggleZ, VIPERS, SDSS, et BOSS]
- Measurements **independent** from any fiducial cosmology hypothesis or GR requirement
- 4 Alcock-Paczynski parameter F(z) measurements (replace the fiducial cosmology hypothesis by a geometrical hypothesis on data)
- Only $\bar{H}(z)$ and $\delta_m(z)$ needed to compute the observables $\ddot{\delta}_m + 2H\dot{\delta}_m - 4\pi G_{\text{eff}}^{(\psi)}(t,\pi)\rho_m\delta_m = 0$
- Technical details :
 - Hypothesis : same value of σ₈ at z_{*} in ΛCDM and Galileon models :

$$\sigma_{8}(a) = \sigma_{8}(a_{\text{initial}}) \frac{D(a)}{D(a_{\text{initial}})}, \quad \sigma_{8}(a_{\text{initial}}) = \sigma_{8}^{\text{Planck}}(1) \frac{D^{\text{ACDM}}(a_{*})}{D^{\text{ACDM}}(1)}$$

Constraining the Galileon parameters

Analyse
$$\chi^2(\Omega_m^0, \bar{c}_2, \bar{c}_3, \bar{c}_4, \bar{c}_G) = \chi^2_{SN} + \chi^2_{CMB+BAO} + \chi^2_{Struc}$$

Jérémy Neveu

Cosmological data

(ACDM and FWCDM constraints)

ACDM and FWCDM constraints

Galileon constraints

$\wedge \text{CDM}$ and FWCDM constraints

Blue : SNe Ia, Red : Growth, Green : CMB+BAO+Lyα, Yellow : combination [Preliminary – Neveu et al. (2016)]

Jérémy Neveu

UPSUD - LAL 25 / 38

ACDM and FWCDM constraints

∧CDM and FWCDM constraints

ACDM best fit values from different data samples

Probe	Ω_m^0	Ω^0_{Λ}	h	$\Omega_b^0 h^2$	χ^2	N _{data}
SNe la	$0.214\substack{+0.109\\-0.103}$	$0.588\substack{+0.158\\-0.157}$	-	-	691.0	740
Growth	$0.265\substack{+0.048\\-0.039}$	$0.759\substack{+0.078\\-0.091}$	-	-	2.9	12
$Planck+BAO+Ly\alpha$	$0.305\substack{+0.007\\-0.006}$	$0.693\substack{+0.006\\-0.006}$	0.695	0.0240	14.5	15
All	$0.303\substack{+0.007\\-0.006}$	$0.695\substack{+0.006\\-0.006}$	0.697	0.0241	710.6	767

FWCDM best fit values from different data samples

Probe	Ω_m^0	w	h	$\Omega_b^0 h^2$	χ^2	N _{data}
SNe la	$0.231\substack{+0.112\\-0.132}$	$-0.92\substack{+0.20\\-0.23}$	-	-	691.7	740
Growth	$0.261\substack{+0.048\\-0.039}$	$-1.11\substack{+0.14\\-0.15}$	-	-	3.0	12
$Planck+BAO+Ly\alpha$	$0.301\substack{+0.013 \\ -0.012}$	$-1.04\substack{+0.06\\-0.06}$	0.698	0.0241	15.5	15
All	$0.301\substack{+0.010\\-0.008}$	$-1.03\substack{+0.04\\-0.04}$	0.697	0.0241	711.7	767

Jérémy Neveu

UPSUD - LAL 26 / 38

Uncoupled Galileon model

Disformal coupling \bar{c}_G

Conformal coupling \bar{c}_0

Conformal \bar{c}_0 and disformal \bar{c}_G couplings ($\Omega_m^0 = 0.28$ fixed)

Galileon constraints

Comparing the models

Jérémy Neveu

UPSUD - LAL 31 / 38

Comparing the models

Galileon constraints

Jérémy Neveu

UPSUD - LAL

^{32 / 38}

Comparing the models

Galileon constraints

Jérémy Neveu

UPSUD - LAL 33 / 38

Galileon constraints

Comparing the models

UPSUD - LAL 34 / 38

Forecasts

Summary

Part III

Perspectives and summary

Jérémy Neveu

UPSUD - LAL 35 / 38

Summary

Future dark energy experiments : Galileon forecasts

LSST

Jérémy Neveu

UPSUD - LAL 36 / 38

Summary

Future dark energy experiments : Galileon forecasts

LSST

Jérémy Neveu

UPSUD - LAL 37 / 38

Summary

- Galileon theory : a good candidate to model dark energy :
 - good theoretical properties
 - weak modification of local gravity
- Accelerated expansion prediction in agreement with recent cosmological data [Neveu et al., A&A 555, A53 (2013), 569, A90 (2014), in prep. (2016)]
- Equivalent χ^2 s obtained for both Galileon and \wedge CDM models
- SN+CMB+BAO constraints confirmed in the uncoupled case by [Barreira et al., Phys.Rev.D. 87,103511 (2013)] using a full power spectrum CMB prediction [Neveu et al., 569, A90 (2014)]
- In Neveu et al. (2016), use of non-cosmological data as \dot{G}_N , GW, CMS results... and constraints on the tracker solution of the Galileon model
- Future dark energy experiments like LSST are precise enough to distinguish ACDM from Galileon theory with distance measurements and growth data