Atomic Mass Evaluation

Wenjia HUANG

Centre de Sciences Nucléaires et de Sciences de la Matière huang@csnsm.in2p3.fr

May 10, 2016

Outline

Introduction

- Atomic Mass
- Mass Measurements

2 Evaluation technique

- History
- Input data
- Least-squares method
- Correlations

Outline

Introduction

- Atomic Mass
- Mass Measurements

2 Evaluation technique

- History
- Input data
- Least-squares method
- Correlations

Atomic Mass

- Nuclear physics : shells, shapes, pairng, nuclear models ...
- Nuclear astrophysics : r,rp, vp-process
- Atomic physics : QED
- Metrology : Fundamental constants

Atomic Mass

- Nuclear physics : shells, shapes, pairng, nuclear models . . .
- Nuclear astrophysics : r,rp, vp-process
- Atomic physics : QED
- Metrology : Fundamental constants

Why "Atomic" mass?

- Almost all measurements give the mass of the atom or of the single charge
- easy to calculate Q-value...

Mass Measurements

- Indirect methods: Energy
 - ▶ Reaction Energies A(a,b)B: $Q_r = M_A + M_a M_b M_B$
 - ★ (n, γ) and (p, γ) are the backbones
 - $\star\,$ close to stability
 - Decay Energies: α , β , p decays
 - \star far from stability

Mass Measurements

- Indirect methods: Energy
 - ▶ Reaction Energies A(a,b)B: $Q_r = M_A + M_a M_b M_B$
 - ★ (n, γ) and (p, γ) are the backbones
 - $\star\,$ close to stability
 - Decay Energies: α , β , p decays
 - \star far from stability

- Direct Methods: Flight time or frequency
 - ► TOF (MSU, GANIL et al)
 - ▶ Penning Traps (ISOLDE, TRIUMF et al)
 - ▶ Storage Rings (GSI, IMP)

Storage Ring

Theorem

$$\frac{\Delta T}{T} = \frac{1}{\gamma_t^2} \frac{\Delta \frac{m}{q}}{\frac{m}{q}} + (1 - \frac{\gamma^2}{\gamma_t^2}) \frac{\Delta V}{V}$$

W.J HUANG (CSNSM)

Storage Ring

Theorem

Penning Trap

0 0.5 1 cm

Cyclotron frequency

 $\omega_c = q/mB$

The free cyclotron frequency is inversely proportional to the mass of the ions

$$A = 100u, q = +1, B = 6T \Rightarrow v_c = \omega_c/2\pi \approx 1 \text{ MHz}$$

• In the early 1950's, it was found that many relations (direct and indirect) overdetermined the mass value of many nuclides.

• In the early 1950's, it was found that many relations (direct and indirect) overdetermined the mass value of many nuclides.

• Aaldert H. Wapstra established a procedure using a least-squares method to solve the problem of overdetermination.

• In the early 1950's, it was found that many relations (direct and indirect) overdetermined the mass value of many nuclides.

- Aaldert H. Wapstra established a procedure using a least-squares method to solve the problem of overdetermination.
- Best values for the atomic masses and their associated uncertainties

• In the early 1950's, it was found that many relations (direct and indirect) overdetermined the mass value of many nuclides.

- Aaldert H. Wapstra established a procedure using a least-squares method to solve the problem of overdetermination.
- Best values for the atomic masses and their associated uncertainties
- AME1955, AME1961, AME1964, AME1971, AME1977, AME1983, AME1993, AME2003, **AME2012**

AME2012

 $3827 \text{ masses} = \text{AME}_{2003} + 323$

3353 ground states = AME2003 + 174

 $474 \text{ isomers}(> 100 \text{ns}) = \text{AME}_{2003} + 149$

AME2016 is coming... W.J HUANG (CSNSM)

AME

Input data for AME

- Reaction Energies (eV)
 - (**p**,**n**), (**n**, γ)

• Desintegration Energies (eV)

- β -decay(β^-, β^+)
- α -decay(α)

• Mass Spectrometry (u)

▶ Frequency correlations between all known and unknown

Figure: Connections plot with primary, secondary and unconnected items.

- primary : A,B,C,D \Rightarrow used in LSM
- secondary : E,F,G \Rightarrow deduced from primaries
- unconnected : H, I \Rightarrow systematic #

Data Connections–Real

Figure: Diagram of connections for input data.

W.J HUANG (CSNSM)

AME

May 10, 2016 13 / 18

Treatment of Data–LSM-1

Q equations to N parameters (Q > N)

$$\sum_{j=1}^{N} k_{ij} m_j = q_i \pm dq_i \quad i = 1, \dots, Q \quad \Rightarrow \quad K |m\rangle = |q\rangle$$

Simple construction

$${}^{t}KWK |m\rangle = {}^{t}KW |q\rangle$$
$$A |m\rangle = {}^{t}KW |q\rangle$$

A: normal matrix, W: error matrix $\omega_i = 1/(dq_i dq_i)$

Parameters-Masses

$$|\bar{m}\rangle = A^{-1t}KW |q\rangle \Rightarrow |\bar{m}\rangle = R |q\rangle$$

W.J HUANG (CSNSM)

Flow-of-information matrix

 $F = {}^t R \otimes K$

G.Audi(1986)

- The(i, j) element of F represents the influence of datum i on mass m_j
- A column of F represents all the contribution brought by all data to a given mass m_j
- A row of F represents the influences given by a single piece of data to each nuclide, their sum is the significance of the data

Adjusted input data

$$\left|\bar{q}\right\rangle = KR\left|q\right\rangle$$

Variance and Covariance (in nano-amu^{**}2)

n	Н	D	$4 \mathrm{He}$	28Si	40Ar	107Ag	109Ag	133 Cs
0.241391								
-0.00617	0.00879							
0.01217	0.00262	0.01480						
-0.00000	-0.00000	-0.00000	0.00401					
-0.00508	0.00950	0.00441	0.00000	0.27456				
0.03548	0.02669	0.06219	-0.00000	0.04041	5.76521			
0.14414	0.02641	0.02317	0.00001	0.13582	0.53570	654005		
-0.16098	0.01971	-0.00122	0.00000	0.08311	0.23177	26.30821	2022748.7	
-0.02979	0.04845	0.01877	0.00000	0.18089	0.37448	4.66230	6.32697	73.75107

Covariance matrix provided to Codata group as request

now available on <u>AMDC</u> website http://amdc.in2p3.fr/

Covariance matrix used in ESR and CSRe data?

Thank you!