

Development of new neutron-rich radioactive beams

Study of the experimental timeline to build a UC_x target

NESTER Group- ALTO Collaboration

Graduate school PHENIICS 2014-2017 (2^{ème} année)

Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 11

91406 Orsay cedex

http://ipnweb.in2p3.fr

Julien Guillot

Thesis supervisor : Brigitte Roussière (IPNO)

Co-supervisors : Sandrine Tusseau-Nenez (Polytechnique)

- Strong demand of exotic beams for the nuclear structure study by β decay
- A method of production of radioactive beams: ISOL technique (Isotope Separation On-Line)

- σ : cross section of interest isotopes
- $\epsilon_r\,$: release efficiency of element of the target to the ion source
- $\boldsymbol{\epsilon}_{\text{ion}}$: ionization efficiency of this element
- $\boldsymbol{\epsilon}_{tr}~$: transport efficiency of the separator

TIMELINE TO BUILD A UCX TARGET

Synthesis of UC_x target

Reaction of carburization: $UO_{2(s)} + 6C_{(s)} \rightarrow UC_{2(s)} + 2C_{(s)} + 2CO_{(g)}$

Questions addressed:

- What is the optimal grinding time? (Slide 5)
- What is the pressure to be applied on the pellets and its holding time? (Slide 6)
- What is the optimum thickness of the pellets? (In progress Slide 7)
- What are the precursors to choose? (Slide 8-11)
 - Carbon sources (carbon black, MWCNT, graphite, graphene)
 - Uranium oxide or oxalate
 - Optimize the structure of the pellet to be stable at high temperature
- How fast should be done sintering? (In progress)

GRINDING

Tuesday 10 May 2016

Study of uranium oxide milling: (Guillot et al; NIMB, Vol 374, 1 May 2016, P 116–120)

Specific surface area evolution, for the 3 types of samples, as a function of the milling time. (Error bars $\pm 0,10 \text{ m}^2.\text{g}^{-1}$)

Model	Phase	Crystallographic data	D-0	D-240	W-240	S-240
UO _{2+x}	UO ₂	cell parameter(Å)	5.4576 ± 0.0001	5.4579 ± 0.0002	5.4597 ± 0.0004	5.4608 ± 0.0009
		quantity (wt%)	50.8 ± 0.7	23.6±0.7	16.7 ± 0.8	44.3 ± 0.5
		cristallite size (nm)	170 ± 4	221 ± 25	200 [♦] ± 0	214 ± 7
		microstrain	0.00074 ± 0.00002	0.00183 ± 0.00005	0.00048 ± 0.00001	0.00068 ± 0.00001
		x	0.14	0.13	0.11	0.10
UO _{2+x}	U ₄ O ₉	cell parameter(Å)	5.4389 ± 0.0002	5.4467 ± 0.0004	5.4463 ± 0.0003	5.4484 ± 0.0003
		quantity (wt%)	39.3 ± 0.8	45.6±1.1	53.5 ± 1.0	33.2 ± 0.5
		cristallite size (nm)	249 ± 8	106 ± 11	200♦±0	200 [♦] ± 0
		microstrain	0.00100 ± 0.00001	0.00580 ± 0.00008	0.00224 ± 0.00004	0.00422 ± 0.00004
		x	0.34*	0.25	0.26	0.24
b-U ₄ O ₉	U ₃ O ₇	cell parameter(Å)	5.4170 ± 0.0000	5.4383 ± 0.0011	5.4395 ± 0.0005	5.4357 ± 0.0008
		quantity (wt%)	9.8 ± 0.4	30.8 ± 1.0	29.7 ± 0.6	22.5 ± 0.4
		cristallite size (nm)	39 ± 2	11.0 ± 0.5	25.2 ± 0.9	10.9 ± 0.3
		microstrain	0.00008 ± 0.0006	0.0102 ± 0.0004	0.00512 ± 0.00009	0.0034 ± 0.0005
		X	0.57	0.34	0.33	0.37

Table : Rietveld refinements using Maud software and Delft isotropic model.

*: hyperstoichiometric U_3O_7 phase. • : fixed crystallite size for a convergent refinement.

SEM observation of raw and 240 minutes milled powder

XRD phase identification for raw and powders ground at different times. Vertical lines correspond to ICDD patterns.

Tuesday 10 May 2016

Study of the influence of pressing on the open porosity:

PRESSING

Variation pression with 3 minutes of dwell time

- Open porosity before sintering
 Open porosity after sintering
 Close porosity before sintering
- Close porosity after sintering

Variation dwell time with the same pression (3 tons)

- low-tonnage improve open porosity
- No influence on the dwelling time

THICKNESS

Tuesday 10 May 2016

In order to correlate the thickness with the release of targets, graphite pellets have been pressed to different thicknesses and doped with stable Europium to simulate fission products. The mixture was composed 10g of graphite and 50 mg of Europium. These pellets have been heated (1200°C during 4h) and weighted in order to determine the quantity of europium get out.

CARBON PRECURSORS

carbon sources used:

SEM pictures realised on Sigma-Zeiss

Strong hygroscopicity of lanthanum oxide Choice to start with La(OH)₃ Strong degassing during carburization could induce additional porosity

Raw powder	Specific surface area (m²/g)	G _{BET} (nm)	
Lanthanum hydroxide	11	122	
Graphite	2	2000	
Carbon nanotubes	292	36	
Carbon black	37	83	

SSA values determined on a Quantachrome 2002e

- Agglomeration of lanthanum hydroxide, carbon black and MWCNT fibers
- Nanometric size carbon black and MWCNTs
- Micrometric size of graphite and lanthanum hydroxide

CARBON PRECURSORS

Homogeneity of the mixture

$2 \text{ La}(OH)_3 + 11 \text{ carbon pellets}$

pressed at 6 tons (1 ton for carbon black) for 1 min

The raw powder of La(OH)₃ mixed with various carbon sources in an agate mortar

The ground powder of La(OH)₃ mixed with various carbon sources using stirring and ultrasound

CARBON PERCURSORS

Homogeneity of the mixture

• SEM analysis of 2 La(OH)₃ + 11 carbon pellets

SEM pictures realised on Sigma-Zeiss

- Loss of La(OH)₃ particle-size advantage after grinding due to probable fast particle growth in nano-La(OH)₃ agglomerates at high temperature
- Best mixture with wet mixing + ultrasound + + stirring for the carbon sources (CB and MWCNT)
- Importance of nanosized carbon precursors for good homogenization in the pellet

Test of the sintering: (Guillot *et al*; in preparation in NIMB 2016)

	BET		He pycnometry		XRD	
Techniques	SSA (m².g ⁻¹)		Open porosity (%)		crystallites size (nm)	
	green	carburized	green	carburized	green	carburized
Mix graphite	16	0,428	32	63	23	55
Mix carbon black	28	12	52	-	23	37
Mix MWCNT	96	49	83	83	23	26

LaC2 + 4C (MWCNT) 6days

LaC2 + 4C (Carbon Black)

The mixture with carbon nanotubes powder has a good stability at high temperature. After 6 days sinterring the LaC₂ grains are always nanometrics.

	BET	
Dwell time	SSA (m²/g)	
none	49	
3 days	60	
6 days	59	

LaC2 + 4C (MWCNT) (no dwell time)

LaC2 + 4C (MWCNT) 3 days SEM pictures realised on Sigma-Zeiss

WAYS TO EXPLORE AND ALTO EXPERIMENT

Targets of uranium oxalate or oxide with carbon nanotubes by optimized mixing

Exfoliation of graphite sheets and inserting UCx particles

Uranium oxalate made at IPNO

Carbon nanotubes

Different samples :

- UO₂ground + MWCNT (new protocol)
- UO₂ ground + graphene
- $(UO_2)_2(C_2O_4)_3$ + graphite (conventional)
- (UO₂)₂(C₂O₄)₃ + MWCNT (new protocol)
- Conventional PARRNe
- Sintering test on all samples
- Different carbon ratio on conventional PARRNe

Irradiations of different synthesized samples

→ TANDEM (MAY 2016)

To correlate the structure of the pellets and the FP release properties

Tuesday 10 May 2016

Thank you for your attention