Accélérateur Linéaire et Tandem à Orsay

Development of new neutron-rich radioactive beams

Study of the experimental timeline to build a UC C_{x} target
NESTER Group- ALTO Collaboration
Graduate school PHENIICS 2014-2017 (2 ${ }^{\text {ème }}$ année)

Julien Guillot

Thesis supervisor : Brigitte Roussière (IPNO)
Co-supervisors : Sandrine Tusseau-Nenez (Polytechnique)

Unité mixte de recherche CNRS-IN2P3
Université Paris-Sud 11
91406 Orsay cedex
http://ipnweb.in2p3.fr

- Strong demand of exotic beams for the nuclear structure study by β decay
- A method of production of radioactive beams: ISOL technique (Isotope Separation On-Line)

$\mathrm{I}=\mathrm{I}_{\mathrm{P}} \cdot \sigma . \mathrm{N} . \varepsilon_{\mathrm{r}} \cdot \varepsilon_{\text {ion }} \cdot \varepsilon_{\text {tr }}$
I_{p} : intensity of the incident particle beam from the accelerator $\sigma:$ cross section of interest isotopes
ε_{r} : release efficiency of element of the target to the ion source $\varepsilon_{\text {ion }}$: ionization efficiency of this element

$\varepsilon_{\mathrm{tr}}$: transport efficiency of the separator

Synthesis of UC_{x} target

Reaction of carburization: $\mathrm{UO}_{2(\mathrm{~s})}+6 \mathrm{C}_{(\mathrm{s})} \rightarrow \mathrm{UC}_{2(\mathrm{~s})}+2 \mathrm{C}_{(\mathrm{s})}+2 \mathrm{CO}_{(\mathrm{g})}$

Questions addressed:

- What is the optimal grinding time? (Slide 5)
- What is the pressure to be applied on the pellets and its holding time? (Slide 6)
- What is the optimum thickness of the pellets? (In progress - Slide 7)
- What are the precursors to choose? (Slide 8-11)
- Carbon sources (carbon black, MWCNT, graphite, graphene)
- Uranium oxide or oxalate
- Optimize the structure of the pellet to be stable at high temperature
- How fast should be done sintering? (In progress)

Study of uranium oxide milling: (Guillot etal; NММв, Vol 374, 1 May 2016, P 116-120)

Specific surface area evolution, for the 3 types of samples, as a function of the milling time. (Error bars $\pm 0,10 \mathrm{~m}^{2} . \mathrm{g}^{-1}$)

Model	Phase	Crystallographic data	D-0	D-240	W-240	S-240
$\mathbf{U O}_{2+\mathrm{x}}$	UO_{2}	cell parameter(Å)	5.4576 ± 0.0001	5.4579 ± 0.0002	5.4597 ± 0.0004	5.4608 ± 0.0009
		quantity (wt\%)	50.8 ± 0.7	23.6 ± 0.7	16.7 ± 0.8	44.3 ± 0.5
		cristallite size (nm)	170 ± 4	221 ± 25	200 ± 0	214 ± 7
		microstrain	0.00074 ± 0.00002	0.00183 ± 0.00005	0.00048 ± 0.00001	0.00068 ± 0.00001
		x	0.14	0.13	0.11	0.10
$\mathbf{U O}_{2+\mathrm{x}}$	$\mathrm{U}_{4} \mathrm{O}_{9}$	cell parameter(Å)	5.4389 ± 0.0002	5.4467 ± 0.0004	5.4463 ± 0.0003	5.4484 ± 0.0003
		quantity (wt\%)	39.3 ± 0.8	45.6 ± 1.1	53.5 ± 1.0	33.2 ± 0.5
		cristallite size (nm)	249 ± 8	106 ± 11	200 ± 0	200 ± 0
		microstrain	0.00100 ± 0.00001	0.00580 ± 0.00008	0.00224 ± 0.00004	0.00422 ± 0.00004
		x	$0.34 *$	0.25	0.26	0.24
$\mathbf{b - \mathbf { U } _ { 4 } \mathbf { O } _ { 9 }}$	$\mathrm{U}_{3} \mathrm{O}_{7}$	cell parameter(Å)	5.4170 ± 0.0000	5.4383 ± 0.0011	5.4395 ± 0.0005	5.4357 ± 0.0008
		quantity (wt\%)	9.8 ± 0.4	30.8 ± 1.0	29.7 ± 0.6	22.5 ± 0.4
		cristallite size (nm)	39 ± 2	11.0 ± 0.5	25.2 ± 0.9	10.9 ± 0.3
		microstrain	0.00008 ± 0.0006	0.0102 ± 0.0004	0.00512 ± 0.00009	0.0034 ± 0.0005
		x	0.57	0.34	0.33	0.37

Table : Rietveld refinements using Maud software and Delft isotropic model.
*: hyperstoichiometric $U_{3} O_{7}$ phase. : fixed crystallite size for a convergent refinement.

SEM observation of raw and 240 minutes milled powder

XRD phase identification for raw and powders ground at different times. Vertical lines correspond to ICDD patterns.

Study of the influence of pressing on the open porosity:

Variation pression with 3 minutes of dwell time Variation dwell time with the same pression (3 tons)

\square Open porosity before sintering
\square Open porosity after sintering
\square Close porosity before sintering

- low-tonnage improve open porosity
- No influence on the dwelling time
\square Close porosity after sintering

carbon sources used:

SEM pictures realised on Sigma-Zeiss

Exposition time in the air	2 h	6 h	12 h
Side view			
Top view			

Strong hygroscopicity of lanthanum oxide
Choice to start with $\mathrm{La}(\mathrm{OH})_{3}$
Strong degassing during carburization could induce additional porosity

Raw powder	Specific surface area $\left(\mathbf{m}^{2} / \mathbf{g}\right)$	$\mathbf{G}_{\text {BET }}(\mathbf{n m})$
Lanthanum hydroxide	11	122
Graphite	2	2000
Carbon nanotubes	292	36
Carbon black	37	83

SSA values determined on a Quantachrome 2002e

- Agglomeration of lanthanum hydroxide, carbon black and MWCNT fibers
- Nanometric size carbon black and MWCNTs
- Micrometric size of graphite and lanthanum hydroxide

Internship M2, Julien Guillot, Supervisor Alexander Gottberg CERN 2014 CARBON PRECURSORS

Homogeneity of the mixture

$$
2 \mathrm{La}(\mathrm{OH})_{3}+11 \text { carbon pellets }
$$

pressed at 6 tons (1 ton for carbon black) for 1 min

The raw powder of $\mathrm{La}(\mathrm{OH})_{3}$ mixed with various carbon sources in an agate mortar

The ground powder of $\mathrm{La}(\mathrm{OH})_{3}$ mixed with various carbon sources using stirring and ultrasound

Homogeneity of the mixture

- SEM analysis of $2 \mathrm{La}(\mathrm{OH})_{3}+11$ carbon pellets

Conventional protocol

New
protocol

SEM pictures realised on Sigma-Zeiss

- Loss of $\mathrm{La}(\mathrm{OH})_{3}$ particle-size advantage after grinding due to probable fast particle growth in nano-La(OH) ${ }_{3}$ agglomerates at high temperature
- Best mixture with wet mixing + ultrasound + + stirring for the carbon sources (CB and MWCNT)
- Importance of nanosized carbon precursors for good homogenization in the pellet

Test of the sintering: (Gullote etat; in peeparation in NMM 2016

$\mathrm{LaC}_{2}+4 \mathrm{C}$ (Graphite)

Techniques	BET		He pycnometry		XRD	
	SSA $\left(\mathbf{m}^{\mathbf{2}} \cdot \mathbf{g}^{-1}\right)$		Open porosity (\%)		crystallites size (nm)	
	green	carburized	green	carburized	green	carburized
Mix graphite	16	0,428	32	63	23	55
Mix carbon black	28	12	52	-	23	37
Mix MWCNT	96	49	83	83	23	26

$\mathrm{LaC}_{2}+4 \mathrm{C}$ (Carbon Black)

$\mathrm{LaC}_{2}+4 \mathrm{C}$ (Carbon Black) 3 days
$\mathrm{LaC}_{2}+4 \mathrm{C}$ (Carbon Black) 3days
The mixture with carbon nanotubes powder has a good stability at high temperature.
After 6 days sinterring the LaC_{2} grains are always nanometrics.

Dwell time	BET
	SSA ($\mathbf{m}^{\mathbf{2}} / \mathbf{g}$)
none	49
3 days	60
6 days	59

SEM pictures realised on Sigma-Zeiss

Targets of uranium oxalate or oxide with carbon nanotubes by optimized mixing

Carbon nanotubes

Exfoliation of graphite sheets and inserting UCx particles

Different samples :

- UO_{2} ground + MWCNT (new protocol)
- $\quad \mathrm{UO}_{2}$ ground + graphene
- $\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}+$ graphite (conventional)
- $\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}+\mathrm{MWCNT}$ (new protocol)
- Conventional PARRNe
- Sintering test on all samples
- Different carbon ratio on conventional PARRNe

Irradiations of different synthesized samples
\rightarrow TANDEM (MAY 2016)
To correlate the structure of the pellets and the FP release properties

Thank you for your attention

