Searching for the neutrinoless double beta decay with the SuperNEMO experiment : Development of reconstruction algorithms and analysis tools. Integration and commissioning of the demonsrator

Steven Calvez PHENIICS days 2016, 05/10/16

2nd year PhD in LAL - Supervisor Xavier GARRIDO calvez@lal.in2p3.fr

Outline

- Neutrinoless double beta decay
- The SuperNEMO experiment
- γ reconstruction algorithms
- Analysis software development
- Sensitivity studies
- Demonstrator integration and commissioning

Brief reminder

- The neutrino is the only neutral fundamental fermion
- Mass and nature unknown :

 $\begin{array}{l} \mbox{Dirac particle} \Leftrightarrow \nu \neq \overline{\nu} \\ \mbox{Majorana particle} \Leftrightarrow \nu \equiv \overline{\nu} \end{array}$

- If neutrinos are Majorana particles :
 - Lepton number violation
 - See-Saw mechanism (small neutrino masses)
 - Leptogenesis (matter/antimatter asymmetry)
- Best known experimental way : search for the neutrinoless double beta decay

Double beta decay

 Radioactive decay naturally occuring in a few even-even nuclei where the single beta decay is energetically impossible (⁴⁸Ca,⁷⁶Ge,⁸²Se,⁹⁶Zr,¹⁰⁰Mo,¹¹⁶Cd,¹³⁰Te,¹³⁶Xe,¹⁵⁰Nd, ...)

Double beta decay

Second order process :

 $T_{1/2}^{2\nu 2\beta} \sim 10^{18}$ - 10^{21} years

- Forbidden by the Standard Model
- Only if Majorana neutrinos

$${\sf T}_{1/2}^{0
u2eta} > 10^{24}$$
 - 10^{25} years

Double beta decay

Second order process :

 $T_{1/2}^{2\nu2\beta} \sim 10^{18}$ - 10^{21} years

0ν2β

- Forbidden by the Standard Model
- Only if Majorana neutrinos

$$\mathsf{T}_{1/2}^{0\nu2\beta} > 10^{24}$$
 - 10^{25} years

Double beta decay : Experimental signature

Two different energy spectra

- \blacktriangleright $2\nu 2\beta$: continuous $\beta\mbox{-like}$ spectrum, the neutrinos escape the detection
- \blacktriangleright $0\nu 2\beta$: peak at the transition energy $Q_{\beta\beta},$ all the energy is carried by the two electrons

The SuperNEMO experiment

• Neutrinoless double beta decay

• The SuperNEMO experiment

- γ reconstruction algorithms
- Analysis software development
- Sensitivity studies
- Demonstrator integration and commissioning

The SuperNEMO experiment

$$x 20 = SuperNEMO$$

Located in Modane (LSM) under 4200 m.w.e.

 $\beta\beta$ source foil : 7 kg of ⁸²Se (d = 53 mg/cm²)

 $\beta\beta$ source foil : 7 kg of $^{82}Se~(d=53~mg/cm^2)$

Calorimeter : $520 \times 8" \text{ PM} + 192 \times 5" \text{ PM}$ coupled to polystyrene scintillators

 $\begin{array}{l} \beta \beta \text{ source foil :} \\ 7 \text{ kg of } {}^{82}\text{Se} (d = 53 \text{ mg/cm}^2) \\ \hline \textbf{Calorimeter :} \\ 520 \times 8'' \text{ PM} + 192 \times 5'' \text{ PM} \\ \text{coupled to polystyrene scintillators} \\ \hline \textbf{Tracking chamber :} \\ 2034 \text{ wires in Geiger regime} \end{array}$

 $\begin{array}{l} \beta \beta \text{ source foil :} \\ 7 \text{ kg of } {}^{82}\text{Se} (d = 53 \text{ mg/cm}^2) \\ \hline \textbf{Calorimeter :} \\ 520 \times 8" \text{ PM} + 192 \times 5" \text{ PM} \\ \text{coupled to polystyrene scintillators} \\ \hline \textbf{Tracking chamber :} \\ 2034 \text{ wires in Geiger regime} \end{array}$

\rightarrow Commissioning and data taking by the end of 2016

γ reconstruction algorithms

- Neutrinoless double beta decay
- The SuperNEMO experiment
- γ reconstruction algorithms
- Analysis software development
- Sensitivity studies
- Demonstrator integration and commissioning

Software : simulation and reconstruction

Use SN@ilWare software developped by and for the SuperNEMO collaboration : relies on GEANT4 and Genbb (event generator).

05/10/16 PHENIICS days 2016 👒 calvez@lal.in2p3.fr

γ detection and reconstruction in SuperNEMO

The NEMO experiments are able to look for 0v2β and to measure the backgrounds thanks to a variety of event topology : 1e⁻, 2e⁻, 1e⁻1e⁺, 1e⁻1α, 1eNγ, 2eNγ...

 \rightarrow Look for ^{208}TI and ^{214}Bi events in the 1eNy channels

- The γ reconstruction is important for :
 - background identification
 - study of double beta decay towards the excited states of the daughter nucleus.

γ -tracko-clustering

- Clustering : Gather the neighbouring calorimeter hits into clusters
- Tracking : Compute the probability a γ flew from one cluster to another based on Time-Of-Flight
- Better reconstruction efficiency and fidelity

Analysis software development

- Neutrinoless double beta decay
- The SuperNEMO experiment
- γ reconstruction algorithms
- Analysis software development
- Demonstrator integration and commissioning.

Analysis software development

- Implement the end of the event reconstruction chain and provide the analysis tools to the collaboration :
 - Particle identification according to the user definitions
 - Perform relevant topological measurement (energy, vertices separation, TOF probabilities, angle, etc...)
 - Event selection and construction of the final analysis channels
 - Serialize the event model into a more user-friendly and analysis-oriented framework (ROOT TTrees for instance)

Sensitivity studies

- Neutrinoless double beta decay
- The SuperNEMO experiment
- γ reconstruction algorithms
- Analysis software development
- Sensitivity studies
- Demonstrator integration and commissioning.

Analysis overview

- Simulate and reconstruct Monte-Carlo datasets for signal and backgrounds (several years of CPU hours)
- Select $\beta\beta$ -like events
- Perform cuts to optimize the signal selection and background rejection (machine learning tools like Boosted Decision Trees...)
- Evaluate the demonstrator sensitivity for the neutrinoless double beta decay search, assuming the target background contributions

Demonstrator performance

- Should reach the NEMO3 sensitivity in less than a year.
- Less than one background count in total in the energy region of interest in the demonstrator.
- \blacktriangleright Demonstrator with 17.5 kg.y should reach $\langle m_{\beta\,\beta}\rangle <$ 0.2 0.4 eV

Demonstrator integration and commissioning

 The demonstrator is under construction in Laboratoire Souterrain de Modane, in the Frejus tunnel under the Alps.

Demonstrator integration and commissioning

Mechanical structure and clean tent in LSM

Demonstrator integration and commissioning

Integration and commissioning of the calorimeter

The end

Thank you for your attention !

Backup

BACKUP

05/10/16 PHENIICS days 2016 👒 calvez@lal.in2p3.fr

30 / 40

Experimental challenges

- Find a peak at the end of the 2ν2β spectrum
- $\blacktriangleright \ 2\nu 2\beta \ irreducible \ background \rightarrow improve \\ energy \ resolution$
- High Q_{ββ} isotope to rise above natural radioactivity
- Radiopure source and materials

 \bullet = radioisotope; β = electron from β-decay; IC = internal conversion

05/10/16 PHENIICS days 2016 ∞ calvez@lal.in2p3.fr

Comparison NEMO3 SuperNEMO

	NEMO3 SuperNEMO			
Mass	7 kg	100 kg		
Isotopes	¹⁰⁰ Mo	⁸² Se,		
	7 isotopes	¹⁵⁰ Nd		
Energy resolution @3MeV				
FWHM - σ	8 % - 3.4 %	4 % - 1.7 %		
Source contaminations				
A(²⁰⁸ TI)	$\sim 100~\mu { m Bq/kg}$	\leq 2 μ Bq/kg		
A(²¹⁴ Bi)	\sim 300 $\mu Bq/kg$	\leq 10 μ Bq/kg		
Radon in tracker				
A(²²² Rn)	$\sim 5~{ m mBq/m^3}$	\leq 0.15 mBq/m 3		
0ν efficiency	18 %	30 %		
Exposure	35 kg.y	500 kg.y		
Sensitivity				
$T_{1/2}^{0\nu2\beta}$ (90% C.L.)	$>$ 1.1 10 24	$>$ 1 10 26		
$\langle m_{\beta\beta} \rangle$	< 0.33 - 0.87 eV	< 0.04 - 0.1 eV		
$ \begin{array}{ll} {\rm Sensitivity:} & T_{1/2}^{0 \vee 2 \beta} \propto \begin{cases} \varepsilon mt & {\rm without \ background.} \\ \varepsilon \sqrt{\frac{mt}{b \Delta E}} & {\rm with \ background.} \end{cases} $				

 $(T_{1/2}^{0\nu2\beta})^{\text{-}1}=G^{0\nu}~|M_{0\nu}|^2~\langle~m_{\beta\,\beta}\rangle^2$ (for Mass Mechanism)

NEMO-3 results

NEMO3 results for the $0\nu 2\beta$ search in ¹⁰⁰Mo (*Phys. Rev. D 92, 072011*):

Isotope choice

1

2β	$Q_{\beta\beta}$ [MeV]	$G_{0\nu} \ [10^{-14} \ { m y}^{-1}]$	$\mathcal{T}_{1/2}^{2 u}$ [y]	NA [%]
48 Ca	4.274	6.35	4.3 10 ¹⁹	0.187
76 Ge	2.039	0.62	$1.3 \ 10^{21}$	7.61
82 Se	2.996	2.70	9 .2 10 ¹⁹	8.73
96 Zr	3.348	5.63	$2.0 \ 10^{19}$	2.8
100 Mo	3.035	4.36	$7.0 \ 10^{18}$	9.63
116 Cd	2.805	4.62	$3.0 \ 10^{19}$	7.49
130 Te	2.530	4.09	$6.1 \ 10^{20}$	34.1
^{136}Xe	2.462	4.31	$2.1 \ \mathbf{10^{21}}$	8.9
^{150}Nd	3.368	19.2	7.9 10 ¹⁸	5.6

Nuclear matrix elements

Underlying mechanisms

Current experiments sensitivities $\beta\beta$ experiments current sensitivities

Underground laboratory

Time-of-Flight probability

TOF and internal probability

$$\chi^{2}_{int} = \frac{\left(\left(t_{2}^{exp} - t_{1}^{exp}\right) - \left(\frac{l_{2}}{\beta_{2c}} - \frac{l_{1}}{\beta_{1c}}\right)\right)^{2}}{\sigma^{2}_{t_{1}} + \sigma^{2}_{t_{2}}}$$
$$\sigma^{2}_{t_{i}} = \left(\frac{\partial t_{int}}{\partial t_{i}^{meas}}\right)^{2} \sigma^{2}_{t_{i}^{meas}} + \left(\frac{\partial t_{int}}{\partial E_{i}}\right)^{2} \sigma^{2}_{E_{i}}$$

with $\sigma_{t_i^{meas}}=400$ ps and energy FWHM = 8 % (at 1 MeV). For two electrons, the track length uncertainty is negligeable. Then,

$$P(\chi^{2}_{int}) = 1 - \frac{1}{\sqrt{2\pi}} \int_{0}^{\chi^{2}_{int}} x^{-\frac{1}{2}} e^{-\frac{x}{2}} dx$$

Energy spectra

- Simulate and select ββ-like events :
 - 0ν : signal
 - 2ν : irreducible background
 - ²⁰⁸TI and ²¹⁴Bi : source contamination
 - Radon : gas in tracker

ββ-like events energy distribution

- $Q_{\beta\beta}({}^{82}Se) = 2.996 \text{ Mev}$ $Q_{\beta}({}^{214}Bi) = 3.272 \text{ Mev}$ $Q_{\beta}({}^{208}T!) = 5.001 \text{ Mev}$