Origin of cosmic rays with LHAASO and Auger

PN Presenter: Zizhao ZONG

Institut de Physique Nucléaire Orsay, France

PHENIICS Doctoral School Days, 10 May 2016 Orsay, France

1

About the thesis

- 2nd year PhD student in IPN-Orsay
- Working for LHAASO and the Pierre Auger Observatory

LHAASO and **Auger** are both scientific projects aiming to search for the cosmic-ray origin

LHAASO

(Large High Altitude Air Shower Observatory) Energy range of air shower detection: 10¹⁴eV to 10¹⁸eV (around "knee" region)

Auger

Energy range of air shower detection: above 10¹⁸eV

WFCTA in LHAASO

WFCTA : (Wide Field of View Cherenkov Telescope Array)

Three phases: $30TeV \sim 10PeV$ in Cherenkov mode $10PeV \sim 100PeV$ in Cherenkov mode $100PeV \sim 1EeV$ in Fluorescence mode

WFCTA:

 32×32 PMTs in each camera $16^{\circ} \times 14^{\circ}$ field of view $\sim 0.5^{\circ}$ pixel size12 (or 18) telescopes

WFCTA Layout

Hybrid observations together with WCDA(Water Cherenkov Detector Array) and KM2A(1km² Array), 1/4 of the WCDA used as shower core detector.

Single Telescope Simulations

Shower simulation by CORSIKA:

Telescope simulation:

WFCTA image and parameterization

🔊 🔵 🛛 WFCTA Event Reconstruction Viewer

Reconstruction: Primary Energy

 $log_{10}recEnergy = f(log_{10}SIZE, R_c, \delta, dist, core)$ $= f_1(log_{10}SIZE, R_c) + f_2(\delta, dist, core)$

Primary Energy related Direction related

Tests and R&D for Auger Upgrade

The key element of Auger upgrade will be the installation of a Scintillator Surface Detector (SSD) on top of each existing Water Cherenkov Detector. It will provide a measurement of primary composition by deducing electromagnetic and muonic components of the shower.

We tested different scintillator/fiber configurations and developed a fiber/PMT coupling method for SSD. April 2016, the detector with IPNO coupling was assembled and tested in KIT and will be installed in the Engineering Array on the observatory side

Preliminary results

signal charge dist.

Signal of charge = 6.52 pC 32.6 p.e./MIP

Peak to Valley ratio > 40

SSD efficiency

Conclusions:

LHAASO-WFCTA

Single WFCTA telescope simulation finished **Reconstruction results:**

Primary Energy: $\sim 20\%$, bias < 6% ~0.3° θ_{zenith} : ~1°

 $\varphi_{azimuth}$:

Auger Upgrade SSD ۲

Tests to optimize SSD scintillator/fiber/optical coupling configuration are finished

One SSD detector in the Engineering Array (EA) is equipped with IPNO coupling. The preliminary test results show that it has a good performance.

Next steps:

LHAASO-WFCTA: •

Multi-telescope simulations & Hybrid analysis with WCDA and KM2A

Auger Upgrade SSD: ٠ EA data analysis & Long term performance of the SSD detectors in the EA