Research of supersymmetry in the 0 lepton channel with ATLAS detector at LHC

Baptiste Abeloos

Laboratoire de l'Accélérateur Linéaire

ATLAS experiment at LHC (CERN)

ATLAS experiment

Collision of two protons with the ATLAS detector

Research of supersymmetry
 Jet energy scale
 Jet energy resolution

Standard Model of particle physics

Standard Model issues:

- No candidate for **gravitation**
- Don't explain the origin of the neutrinos mass
- Don't explain the matter-antimatter asymmetry
- No candidate for dark matter
- hierarchy problem

Standard Model particles : quarks - leptons - gauge bosons - Higgs boson

Supersymmetry and MSSM

The supersymmetry:

- Unify the boson and the fermions
- Predict the existence of new particles

The MSSM:

- The MSSM is the minimal model with supersymmetry
- Symmetry breaking (4 neutralinos and 2 charginos)
- Conservation of the R-parity

The MSSM

- quark \leftrightarrow squark
- lepton \longleftrightarrow slepton
- higgs \longleftrightarrow higgsinos
- bosons de jauges \longleftrightarrow jauginos

MSSM

• New particle correction compensate the SM correction

- \rightarrow fix the hierarchy problem
- Unify the runing coupling constant
- Provide a candidate for dark matter (neutralino)

Research of squarks and gluinos

- $\tilde{\chi}^0$ is the ligthest supersymmetric particle
- Neutralinos can't be detected (weak interaction)
- $\overrightarrow{Met} = -\sum \overrightarrow{p_T}$

 \rightarrow Need a good p_T^{jet} measurement for MET reconstruction

Jets energy scale

Reconstruction des jets

Event display

Jet reconstruction and calibration

Reconstruction:

- A jet is a collection of objects generated by the hadronization of a parton
- Reconstructed from calorimeter cells (topo-cluster)
- Topo-culsters are calibrated (EMTopo, LCTopo, EMPFlow)
- \bullet They are merged in a radius R=0.4

Jet calibration:

Corrections based on MC are applied to correct:

- Non compensation of the calorimeter
- Dead material
- Pile-up
- Energy leakages

JES with $\gamma+\mathit{jets}$ events

- Corrections based on data
- Comparison between a jet and a referance object
- Severals in-situ methods are applied
 - Di-jets events (relative calibration in η)
 - Z+jet/ γ +jet
 - Absolute calibration based on a reference objects (Z or $\gamma)$
 - For central jets
 - Multi-jet for high p_T

 \longrightarrow This methods are combined for the final JES

JES with $\gamma+\mathit{jets}$ events

- Using the $\sqrt{s} = 13 TeV$ data.
- \bullet Select events with γ and jet back to back
- Project the γ transverse momentum on the jet axis:

$$m{
ho}_T^{Ref} = m{
ho}_T^\gamma imes |\cos(\Delta \Phi)| \qquad (1)$$

• Comparison between $p_T^{leadjet}$ and p_T^{Ref} in differents regions of p_T :

$$\mathcal{B} = \frac{p_T^{jet}}{p_T^{Ref}} \tag{2}$$

Combination with the in-situ methods

<u>Uncertainties on</u>:

- Generator
- Topology
- Pile-up
- Photon calibration (PES, PER)
- Purity of the photon selection
- Statistical error
- Out-of-cone

Combination with the in-situ methods

Research of squarks and gluinos

- $\tilde{\chi}^0$ is the ligthest supersymmetric particle
- Neutralinos can't be detected (weak interaction)
- $\overrightarrow{Met} = -\sum \overrightarrow{p_T}$

 \rightarrow Need a good p_T^{jet} measurement for MET reconstruction

Squarks and gluinos exclusion plots

Requirement	Signal Region						
	2jl	2jm	2jt	4jt	5j	6jm	6jt
$E_{\rm T}^{\rm miss}$ [GeV] >				200			
$p_{\rm T}(j_1) [{\rm GeV}] >$	200 300 200						
$p_{\rm T}(j_2) [{\rm GeV}] >$	200	50	200	100			
$p_{\rm T}(j_3) [{\rm GeV}] >$	_			100			
$p_{\rm T}(j_4) [{\rm GeV}] >$	_			100			
$p_{\rm T}(j_5) [{\rm GeV}] >$	-			100			
$p_{\rm T}(j_6) [{\rm GeV}] >$	-			100			
$\Delta \phi(\text{jet}_{1,2,(3)}, E_{\text{T}}^{\text{miss}})_{\text{min}} >$	0.8	0.4	0.8	0.4			
$\Delta \phi(\text{jet}_{i>3}, E_{\text{T}}^{\text{miss}})_{\text{min}} >$	_			0.2			
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV^{1/2}}] >$	1	5	20	_			
Aplanarity >	-			0.04			
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})>$	-			0.2	0.25 0.2		0.2
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1200	1600	2000	2200	1600	1600	2000

 \rightarrow **Optimize the signal selection** for 2016 data

Conclusion

<u>Conclusion</u>:

- ${\scriptstyle \bullet}$ Worked on the JES in 2015/2016
- \bullet Provided the $\gamma+{\rm jet}$ calibration and uncertainties to the collaboration
- Currently finalizing the JER results
- Working on the signal selection for the SUSY 0 lepton analysis
- Plan to work on the Z+jet background estimation

Thank you for your attention !

Background

• W+jet

- Z/ γ +jet (planning to work on this in 2016)
- Diboson
- top
- Multi-jet

Production cross section - Run 1/Run 2

→ Higher cross section at $\sqrt{s} = 13 TeV$ than at $\sqrt{s} = 8 TeV$ → L = 20.3 fb^{-1} in 2012 at $\sqrt{s} = 8 TeV$ → L = 3.2 fb^{-1} in 2015 at $\sqrt{s} = 13 TeV$ → expect L = 20 fb^{-1} in 2016 at $\sqrt{s} = 13 TeV$