Energy calibration and Higgs couplings measurement in the diphoton channel with the ATLAS detector

Christophe Goudet

Pheniics Days Orsay, May 9, 2016

Introduction

• Higgs precision measurement led by electrons and photons (and muons) .

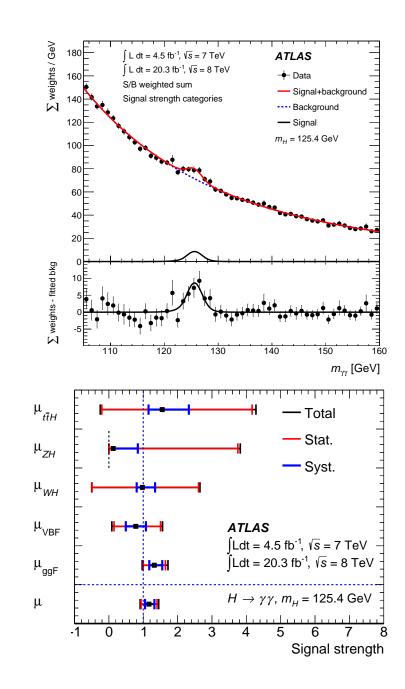
 $m_H = 125.09 \pm 0.21(\text{stat}) \pm 0.11(\text{syst}) \text{ GeV}$ (ATLAS+CMS) PhysRevLett.114.191803

- Run 2 ongoing at an increased center of mass energy of 13 TeV. **30 times more Higgses are expected**
- Higgs couplings may bring hints of new physics :

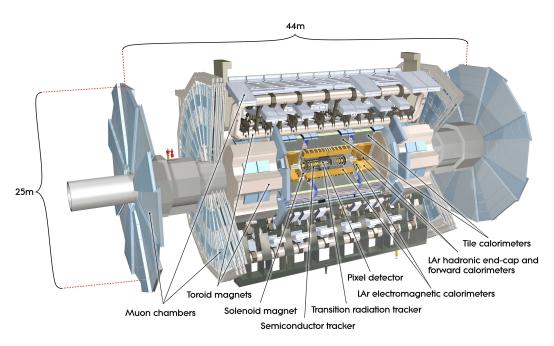
$$\mu = \frac{\sigma^{meas}}{\sigma^{SM}}$$

 With reduced statistical uncertainties
 → need to reduce systematic uncertainties.

• Calibration is a important source of systematic. Needs to be improved in Run 2.



ATLAS experiment



Performance goals of the ATLAS detector

<u>``</u>				
Detector component	Required resolution	η coverage		
		Measurement	Trigger	
Tracking	$\sigma_{p_T}/p_T = 0.05\% p_T \oplus 1\%$	±2.5		
EM calorimetry	$\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$	±3.2	±2.5	
Hadronic calorimetry (jets)				
barrel and end-cap	$\sigma_E/E=50\%/\sqrt{E}\oplus 3\%$	± 3.2	± 3.2	
forward	$\sigma_E/E = 100\%/\sqrt{E} \oplus 10\%$	$3.1 < \eta < 4.9$	$3.1 < \eta < 4.9$	
Muon spectrometer	σ_{p_T}/p_T =10% at p_T = 1 TeV	±2.7	±2.4	

- Large acceptance
 Radiation hard
- Silicon and TRT tracker in 2T magnetic field Measure position and momentum of
- charged particles
 Liquid argon electromagnetic calorimeter (LAr)

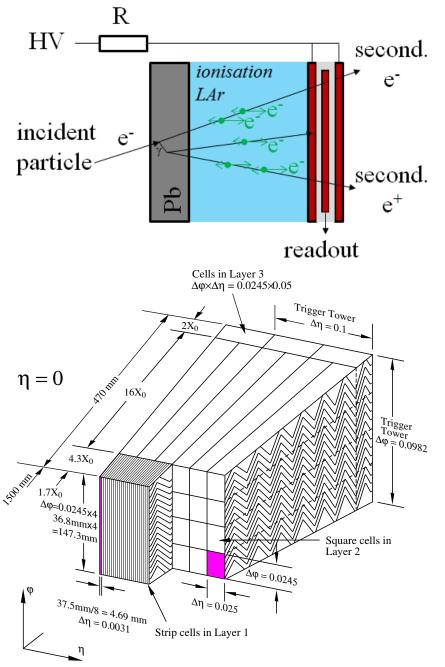
Measure energy of electrons and photons.

• Scintillating tiles hadronic calorimeter

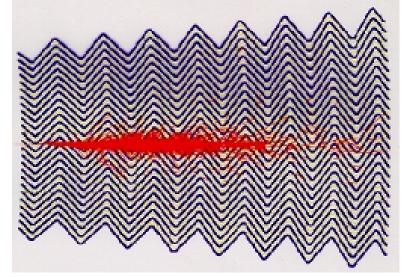
Measure energy of jets

Muon chambers

Electromagnetic calorimeter (LAr)



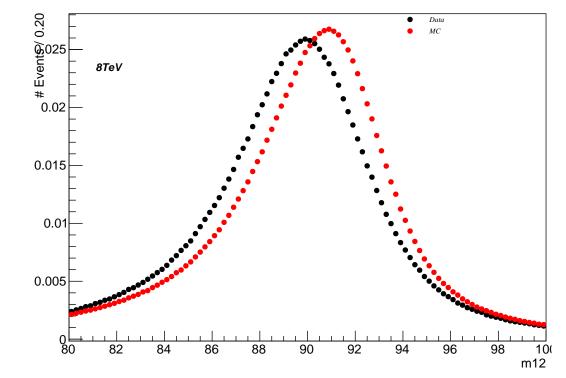
- 1.4m < *r* < 2m
- Sampling calorimeter :
 - absorber : lead
 - active material : Liquid Argon (88K)
- Accordion geometry gives uniformity and hermeticity along ϕ .
- Longitudinally segmented for pion discrimination



Energy scale factors

After MVA calibration, mass distribution of $Z \rightarrow ee$ for data and MC still have **discrepancy**.

A data-driven analysis is performed to match data to MC distribution (relative matching).



A correction, applied to both electrons of Z decay, is computed to shift the central value of data distribution :

energy scale factor (α) $E^{corr} = E^{meas}(1 + \alpha)$

Resolution constant term

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

• *a* : sampling term (10%). Linked to the fluctuations of electromagnetic showers. Can be simulated.

• b/E : noise term ($350cosh(\eta)$ MeV). Measured in dedicated runs.

• c : constant term (0.7%). Must be measured on data.

We observe that data distribution is larger than MC. An **additional constant** term (C) is measure to enlarge MC up to the data width. Both MC electrons undergo the correction :

Resolution constant term (C)

 $E^{corr} = E^{meas}(1 + N(0, 1) * C)$

N(0, 1): a Gaussian distributed random number

Template method

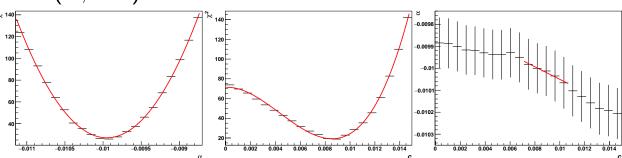
The template method is used to measure α and C simultaneously.

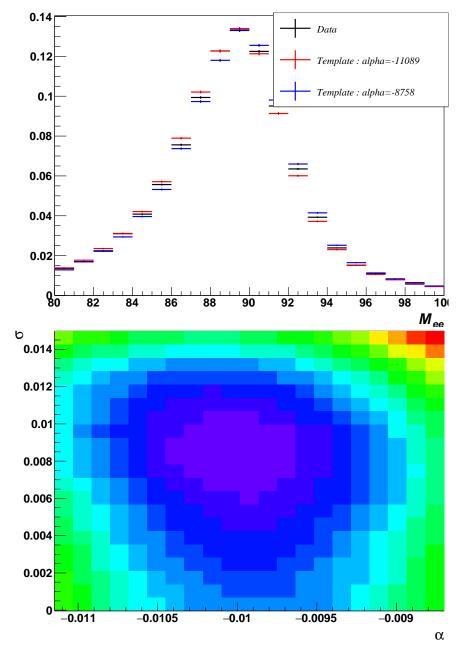
- Create distorded MC (templates) with test values of α and C.
- Compute χ^2 between Z mass distribution of data and template.

• Fit the minimum of the χ^2 distribution in the (α, C) plane.

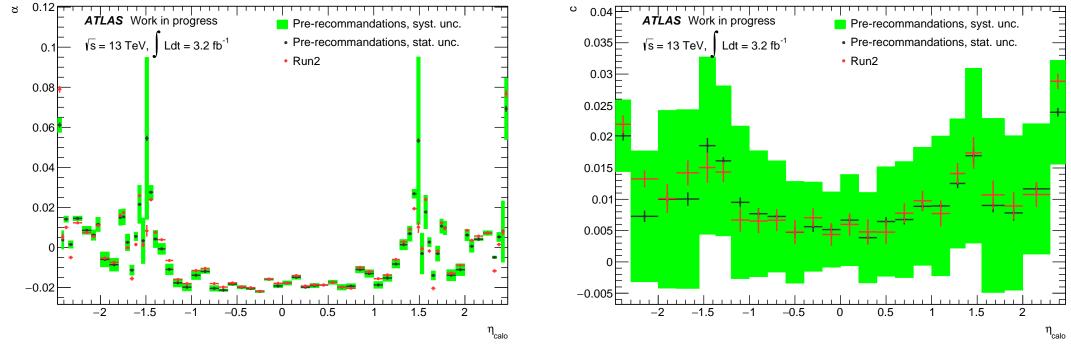
 \bullet Fit performed in 2 steps of 1D fits :

- fit $\chi^2 = f(\alpha)$ at constant C (lines) $\rightarrow (\alpha_{\min}, \chi^2_{\min})$. • fit $\chi^2_{\min} = f(C) \rightarrow (C, \Delta C)$
- project C in $\alpha_{min} = f(C)$, corresponding bin gives $(\alpha, \Delta \alpha)$.





Run 2 results

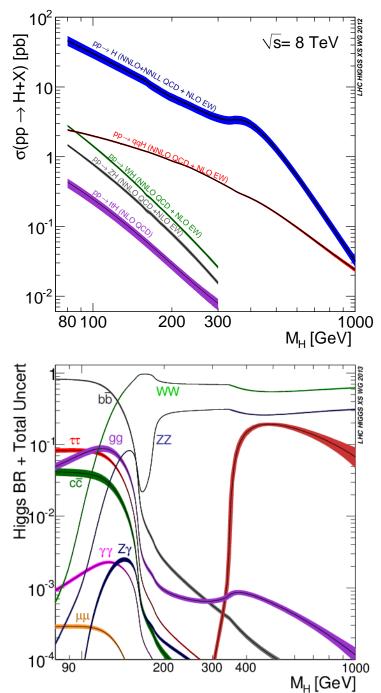


Scales are measured with 13TeV data at 25ns

 α discrepancies are below 0.1% out of the crack (1.37 < $|\eta| < 1.55$).

Higgs boson at the LHC

- Higgs boson predicted in 1964, discovered in 2012.
- Gives mass to weak boson, and fermions through Yukawa coupling.
- Several production mode are available at the LHC.
 - $ggH : gg \rightarrow H$
 - VBF : $qq \rightarrow Hjj$
 - VH : $Z(W) \rightarrow Z(W)H$
 - ttH : $t\overline{t} \rightarrow t\overline{t}H$
- At a mass of 125 GeV, many decay modes available :
 - $H \rightarrow b\overline{b}$: dominant decay mode ($\sim 57\%$) but high background in hadronic machines.
 - $H \rightarrow 4I$: low expected events, almost no background.
 - $H \rightarrow \gamma \gamma$: low branching ratio (0.28%) but clean signature. High but smooth background.



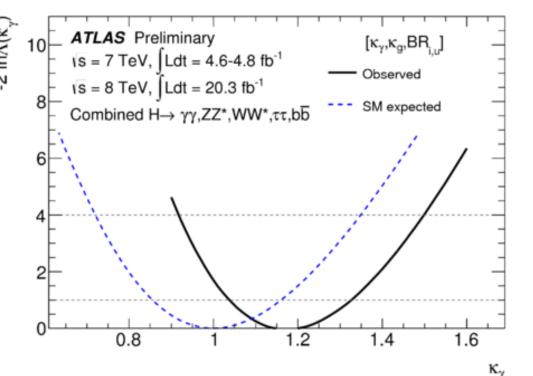
Likelihood Method

A function (likelihood) is built to evaluate the best set of parameters $(\vec{\mu}, \vec{\theta})$ of a model to agree the best with a dataset in a category.

$$\mathcal{L} = \underbrace{\frac{(n_s(\vec{\mu}, \vec{\theta}) + b)^{n_{obs}}}{n_{obs}!}}_{(1)} e^{-(n_s(\vec{\mu}, \vec{\theta}) + b)} \underbrace{\prod_{j=1}^{n_{obs}} \psi(\vec{x_j}; \vec{\mu}, \vec{\theta})}_{j} \underbrace{e^{-\frac{\theta^2}{2}}}_{(3)}$$

(1) **Poissonian law** to evaluate the probability to observe $n_{obs} (\equiv \text{ signal} + \downarrow)$ background) events when $(n_s + b)$ are expected.

(2) Probability density function of the observables x (diphoton invariant mass for example) for the jth event.
(3) Constraint on the nuisance parameter θ. See next slide.



Nuisance parameters

There are some **external measurements** that contribute to the likelihood and have some **uncertainties**. A **free nuisance parameter** is added for each of these measurements. In order to take into account these external measurements, a **constraint is put on these nuisance parameters**.

For example, the luminosity is re-defined as $L(1 + \delta_L \theta_L)$, with θ_L the nuisance parameter and δ_L the uncertainty on the luminosity (assumed to be Gaussian). In this case, a Gaussian constraint is chosen.

The contribution from luminosity will hence be :

$$L(1+\delta_L\theta_L)e^{-\theta_L^2/2}$$

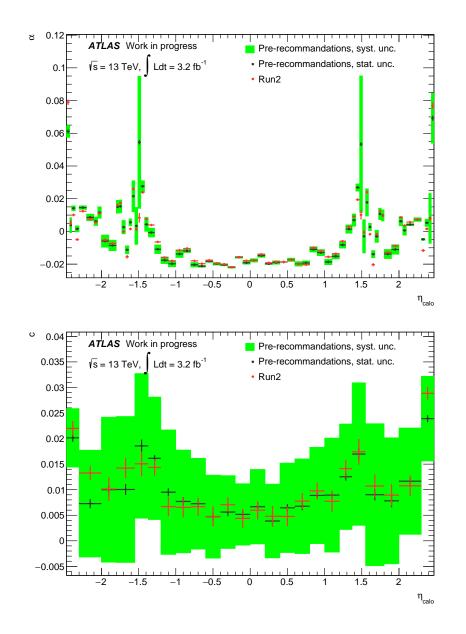
Error Estimation

A test statistic is defined as : $t_{\mu} = -2 ln \frac{\mathcal{L}(\mu, \hat{\theta})}{\mathcal{L}(\hat{\mu}, \hat{\theta})}$, with $\hat{\theta}$ and $\hat{\mu}$ the best (fitted) parameters, and $\hat{\hat{\theta}}$ the fitted nuisance parameters for a fixed μ . Uncertainty are given by : $\mathbf{t}_{\hat{\mu}\pm\mathbf{1}\sigma} = \mathbf{1}$ and $\mathbf{t}_{\hat{\mu}\pm\mathbf{2}\sigma} = \mathbf{4}$ in 1D Gaussian limit.

Conclusion

- Higgs measurement uncertainties are dominated by statistics : new challenges ahead to keep it that way with 30× more stat.
- Electron calibration under control. Calibration systematics (dominant in Higgs measurements) need improvement to use the full potential of new statistics.
- Stronger constraints on Higgs couplings may bring hints of BSM physics.

Stay tuned !



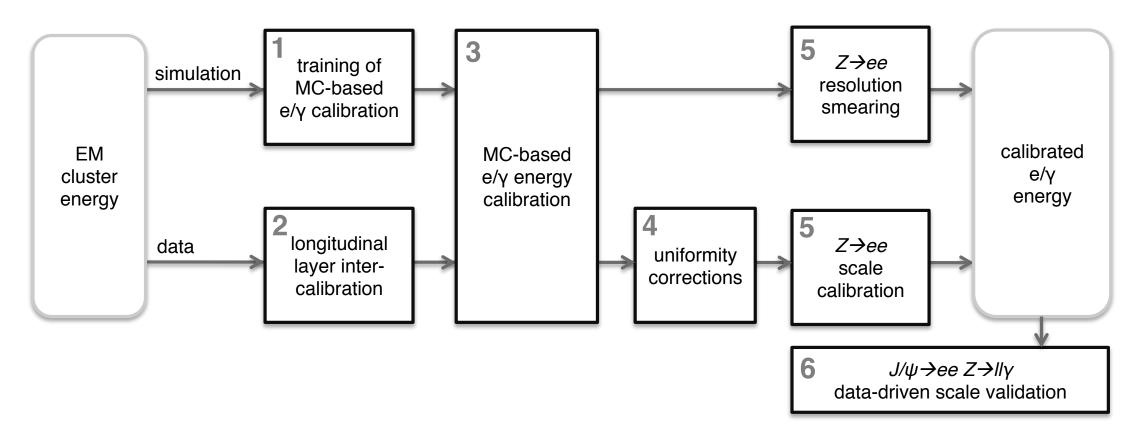
Energy calibration and Higgs couplings measurement in the diphoton channel with the ATLAS detector

Christophe Goudet

Pheniics Days Orsay, May 9, 2016

Full calibration

To reach the physics analyses, data and simulated reconstructed events must pass a calibration procedure. This procedures aim to correct the measured energy to **retrieve the true energy of the particle at the interaction point**.



Electrons and photons follow the same steps but with dedicated analyses.

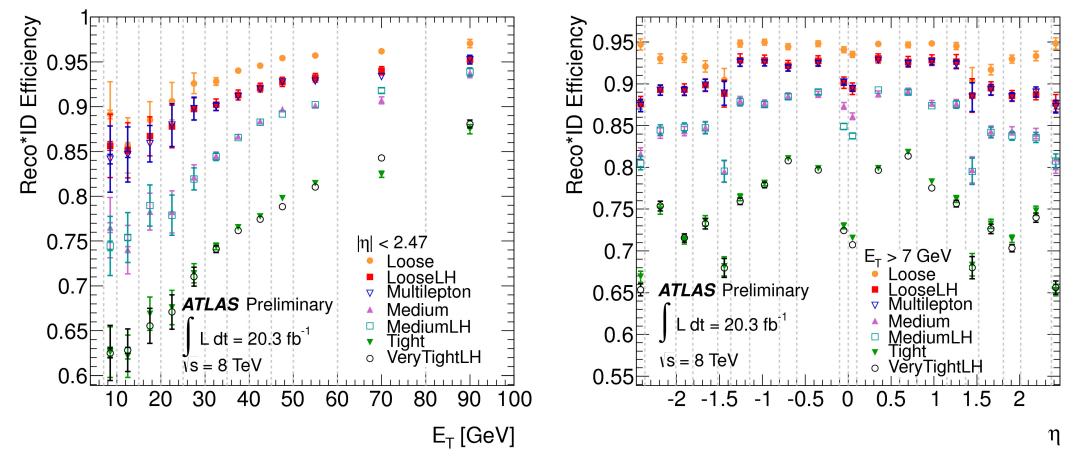
Identification variables

Туре	Description	Name
Hadronic leakage	Ratio of $E_{\rm T}$ in the first layer of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster	
	(used over the range $ \eta < 0.8$ or $ \eta > 1.37$)	
	Ratio of $E_{\rm T}$ in the hadronic calorimeter to $E_{\rm T}$ of the EM cluster	R _{Had}
	(used over the range $0.8 < \eta < 1.37$)	
Back layer of	Ratio of the energy in the back layer to the total energy in the EM accordion	
EM calorimeter	calorimeter	
Middle layer of	Lateral shower width, $\sqrt{(\Sigma E_i \eta_i^2)/(\Sigma E_i) - ((\Sigma E_i \eta_i)/(\Sigma E_i))^2}$, where E_i is the	$W_{\eta 2}$
EM calorimeter	energy and η_i is the pseudorapidity of cell <i>i</i> and the sum is calculated within	
	a window of 3×5 cells	
	Ratio of the energy in 3×3 cells over the energy in 3×7 cells centered at the	R _o
	electron cluster position	, í
	Ratio of the energy in 3×7 cells over the energy in 7×7 cells centered at the	R_{η}
	electron cluster position	
Strip layer of	Shower width, $\sqrt{(\Sigma E_i(i - i_{\text{max}})^2)/(\Sigma E_i)}$, where <i>i</i> runs over all strips in a window	wstot
EM calorimeter	of $\Delta \eta \times \Delta \phi \approx 0.0625 \times 0.2$, corresponding typically to 20 strips in η , and	
	$i_{\rm max}$ is the index of the highest-energy strip	
	Ratio of the energy difference between the largest and second largest energy	Eratio
	deposits in the cluster over the sum of these energies	
	Ratio of the energy in the strip layer to the total energy in the EM accordion	f_1
	calorimeter	
Track quality	Number of hits in the B-layer (discriminates against photon conversions)	n _{Blayer}
	Number of hits in the pixel detector	n _{Pixel}
	Number of total hits in the pixel and SCT detectors	n _{Si}
	Transverse impact parameter	d_0
	Significance of transverse impact parameter defined as the ratio of d_0	σ_{d_0}
	and its uncertainty	
	Momentum lost by the track between the perigee and the last	$\Delta p/p$
	measurement point divided by the original momentum	
TRT	Total number of hits in the TRT	n _{TRT}
	Ratio of the number of high-threshold hits to the total number of hits in the TRT	F _{HT}
Track-cluster	$\Delta\eta$ between the cluster position in the strip layer and the extrapolated track	$\Delta \eta_1$
matching	$\Delta \phi$ between the cluster position in the middle layer and the extrapolated track	$\Delta \phi_2$
	Defined as $\Delta \phi_2$, but the track momentum is rescaled to the cluster energy	$\Delta \phi_{\rm res}$
	before extrapolating the track to the middle layer of the calorimeter	
	Ratio of the cluster energy to the track momentum	E/p
Conversions	Veto electron candidates matched to reconstructed photon conversions	isCor

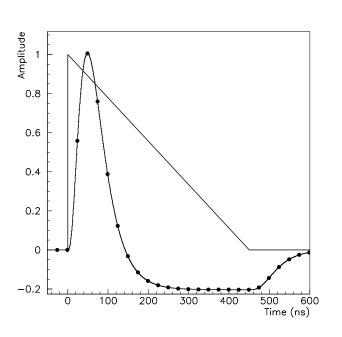
Reconstruction & Identification efficiencies

Not all electrons pass the reconstruction and identification criteria.

3 menus with increasing purity (but deceasing efficiencies) are defined : loose, medium, tight. The efficiency of these procedures is given as a function of the p_T and $\eta = -ln(tan(\theta/2))$.



Energy measurement in LAr



- Signal drift time (\sim 600ns) too long for collisions every 25ns (pile-up).
- Analog signal pass through an bipolar filter to reduce signal time. Shape optimize signal over pileup and electronic noise.
- ADC sampling every 25ns (4 points are kept).
- Energy computed using calibration constants and optimal filtering of the samples.

$$E_{cell} = \underbrace{\sum_{i=1}^{n} a_i(s_i - ped) \cdot G_{ADC \to DAC} \cdot \left(\frac{M_{phys}}{M_{calib}}\right)^{-1} \cdot F_{DAC \to \mu A} \cdot F_{\mu A \to MeV}}_{ADC}$$

Reconstruction & Identification

Reconstruction links the energy deposit in detector cells to a **physical particle and its properties**.

• Divide the central part $(|\eta| = |ln(tan(\theta/2))| < 2.47)$ into towers of size $\Delta \eta \times \Delta \phi = 0.25 \times 0.25$

- Sum energies from all cells and all layers of the tower
- Sliding window (3 \times 5 towers) algorithm look for 2.5 GeV of transverse energy

• Track matching and clustering :

- \blacktriangleright no track \rightarrow photon \rightarrow 3 \times 7 cluster
- \blacktriangleright track \rightarrow electron \rightarrow 3 \times 7 cluster
- \blacktriangleright conversion vertex \rightarrow converted photon \rightarrow 3 \times 7 cluster

Identification is to separate prompt electrons from both jets and other electrons from either hadron decay or photon conversion. A multivariate likelihood method using 23 variables

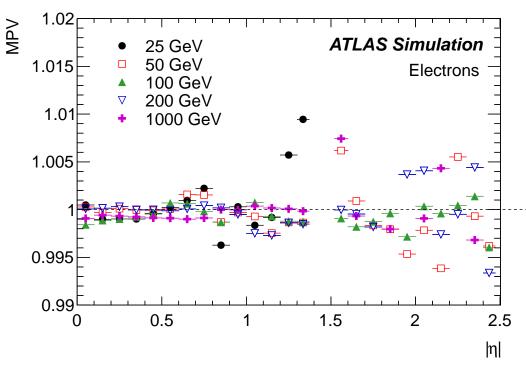
of energy deposit and tracking is used.

MVA calibration

- Simulated events are passed through a full GEANT4 simulation of the ATLAS detector.
- Events are then categorized in η and p_T bins, separately for electrons and photons.
- A multivariate analysis (MVA) is performed to compute the true energy from detector observables.
- Plot shows most probable value (MVP) of E^{corr}/E^{true} .

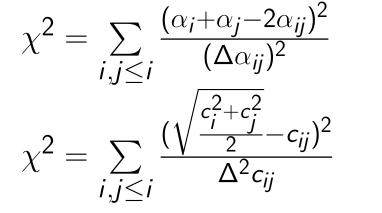
MVA uses :

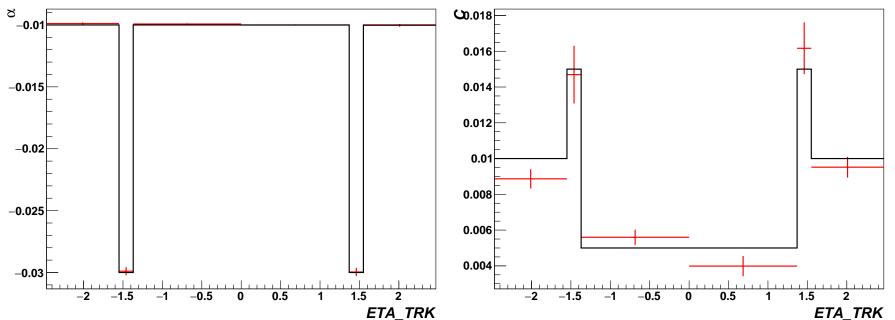
- Energies in all layers of the ECAL
- EM shower shape variables
- Barycenters of energy deposits



Inversion Procedure

Obtaining electron scales from Z scales need the minimizations of the following χ^{2} 's

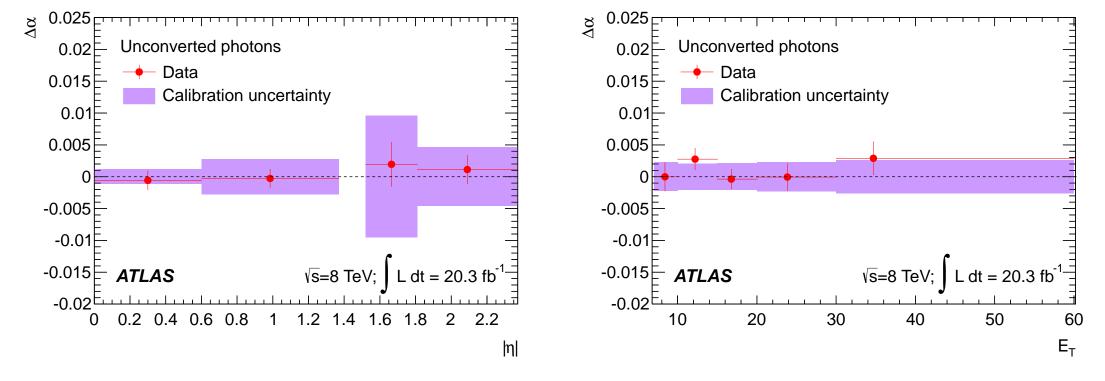




(1)

Photon correction

Electrons scale factors are also applied to photons. An additionnal scale factor ($\Delta \alpha$) is measured from $Z \to I I \gamma$.

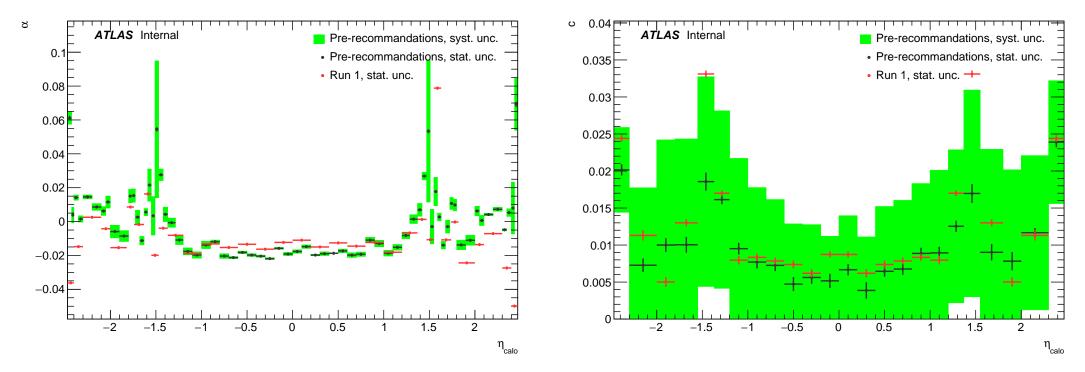


Run 2 prerecommandations

Run 2 early analyses need scales factors for 13TeV but not enough data will be available. Need to estimate run 2 scales from run 1 data.

Pre-recommandations are computed using 8 TeV data reprocessed with :

- new detector geometry
- new reconstruction algorithm
- new calibration machine learning

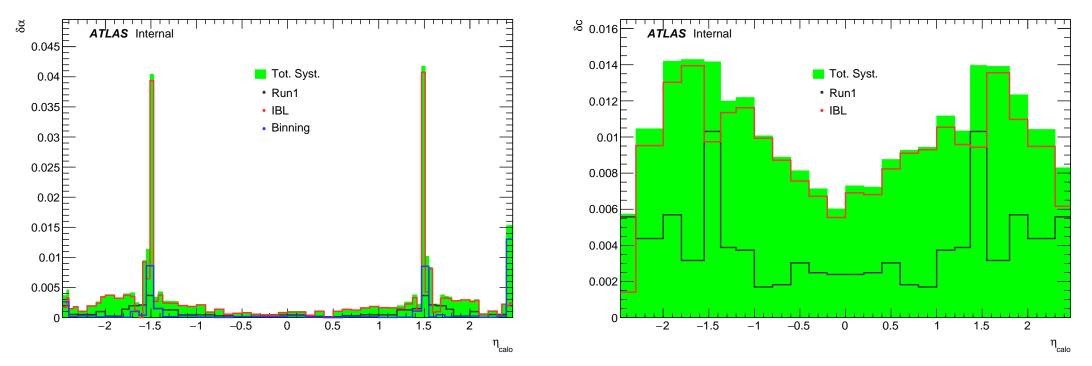


Run 2 pre-recommandations systematics

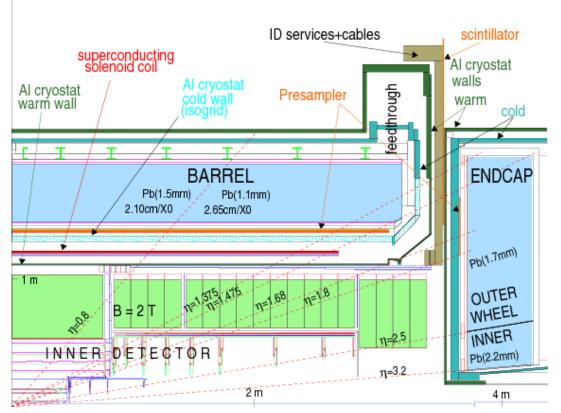
2012 systematics are used for the pre-recommandations.

Two more systematics are added in quadrature :

- Increasing the number of bin for α shows sub-patterns. Systematic is defined as difference between a bin value and the average of its sub-bins.
- Pre-recommandations being computed with 8TeV datasets, one needs to evaluate the impact of the center of mass energy. Systematic is defined as the scale measured from 13 TeV MC on 8*TeV* templates.



Detector splitting



- Detector is not uniform along η .
- To improve resolution,

calibration is performed in bin of

$\eta_{\it calo}$.

• 68 and 24 bins are used respectively for α and C.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.285 1.37 1.42 1.47 1.51 1.55

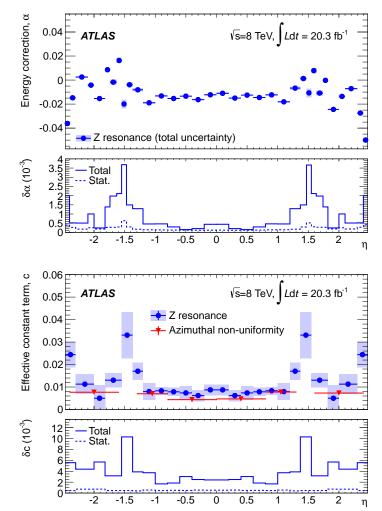
 $1.59\ 1.63\ 1.6775\ 1.725\ 1.7625\ \underline{1.8}\ 1.9\ \underline{2}\ 2.05\ 2.1\ 2.2\ \underline{2.3}\ 2.35\ 2.4\ 2.435\ \underline{2.47}$

Electrons are labelled by their η **bin**, hence Z are labeled by the combination of electrons bins. Scales are computed for each combination.

Run 1 : results and uncertainties

Uncertainties are evaluated as the difference between official scales and the ones measured with a changed parameter. They include :

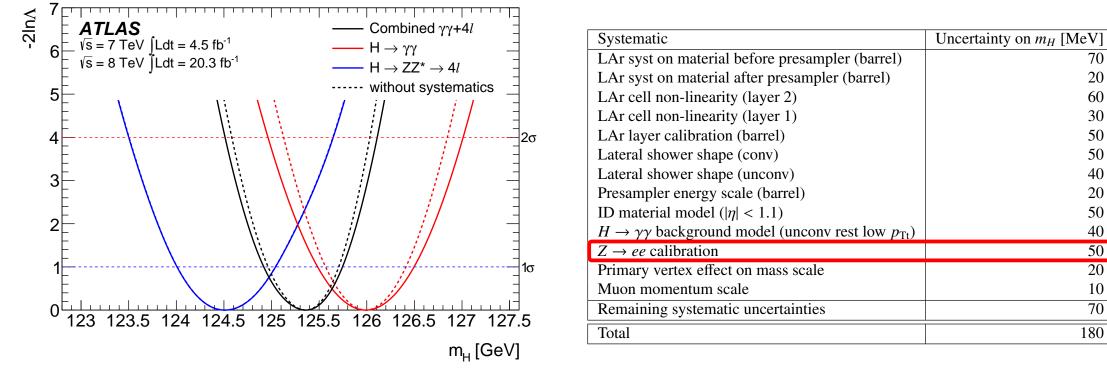
- electron identification quality from medium to tight.
- Z mass window
- electron p_T cut
- uncertainties on efficiencies scale factors
- energy loss through bremshtrahlung
- background
- pile-up
- measurement method



Mass measurement

Higgs mass is the last unknown parameter of the standard model :

 $m_H = 125.36 \pm 0.37(\text{stat}) \pm 0.18(\text{syst})$



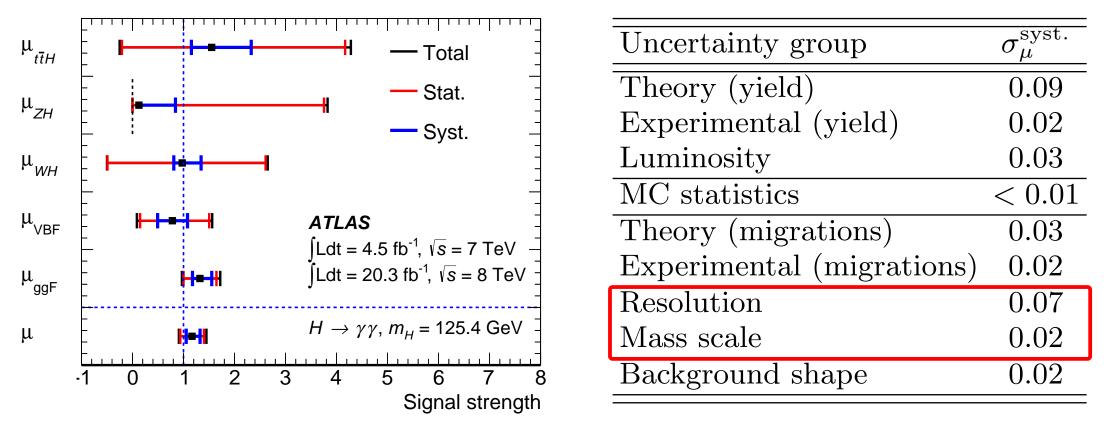
Statistical uncertainties highly dominant.

Run 2 will increase sensitivity to systematics.

$\mu_{\gamma\gamma}$ measurement

 $\mu_{\gamma\gamma}$ is a main variable to measure. It is related to the cross section (production probability) :

$$\mu_{\gamma\gamma} = \frac{(\sigma \times BR)^{meas}}{(\sigma \times BR)^{SM}} = 1.17 \pm 0.23 \text{(stat)} \stackrel{+0.10}{_{-0.08}} \text{(syst)} \stackrel{+0.12}{_{-0.08}} \text{(theory)}$$



If no improvements, calibration uncertainty will be dominant in run 2.

Goudet (LAL)