

Aspects of Nucleon form factors measurements:

- Phenomenological study of proton anti-proton annihilation into light meson pairs
- Contribution to ALPOM2 experiment

Supervisors: Egle Tomasi-Gustafsson

Dominique Marchand

Collaborators: Y. Bystritskiy

N. Piskunov

WangYing

Nucleon Form Factors (FFs)

The electromagnetic FFs: GE and GM

- Inside structure of nucleon
 - Spatial distributions of charge and magnetization current inside the nucleon.

How to measure?

Can be approached from two sides within one photon exchange assumption 1.Space-like region (SL) $ep \rightarrow ep$ 2.Time-like region (TL) $pbar p \rightarrow e+e$ $e+e- \rightarrow pbar p$

S. Pacetti et al. / Physics Reports 550–551 (2015) 1–103

Content

Time-like region ($\overline{p} p \rightarrow e+ e$ -) PANDA experiment

- Neutral particles

pbar p $\rightarrow \pi^0 \pi^0$, $\eta \eta$, $\eta \pi^0$

Space-like region ($e - p \rightarrow e - p$) Experiment preparation ALPOM2

- Experimental prediction for $np \rightarrow np$ (pn)

Panda (Proton annihilation at Darmstadt)

Motivation of my work

- The reaction $\bar{p}p \rightarrow e^+e^-$ allows to measure electromagnetic proton form factors.
- Important simulation work is under way.
- The reaction $\bar{p}p \rightarrow \pi^+\pi^-$ is the main background :
 - has a large cross section,
 - contains information on the quark content of the proton
 - allow to test different QCD models

Largest cross sections come from multi-pions (5 > 4 > 2)

1 SEPTEMBER 1997

ARTICLES

T. A. Amstrong, al

Calculation $pp \rightarrow \pi^{\circ}\pi^{\circ}$

Differential cross section

- ✓ (e.g.)Nucleon exchange
 - Vertex: $-ig_{\pi NN}(i\gamma_5)(2\pi)^4$

• Propagator:
$$\frac{i}{(2\pi)^4} \frac{\hat{q}_t + M_p}{q_t^2 - M_p^2}$$
$$|\overline{\mathcal{M}}_n|^2 = \mathcal{M}_n A^*(a) = \frac{g_{\pi NN}^4}{(q^2 - M_p)^2} Tr\left[(\hat{p}_1 - M_p)(\hat{q} + M_p)^2(\hat{p}_2 + M_p)\right]$$

5

Add Regge factors and form factors (compositeness of particles, absorption, ISI, FSI...)

$$R_N(t) = \left(\frac{s}{p_3}\right)^{\frac{1}{2} + p_2\left(\frac{t - M_p^2}{M_p^2}\right)}$$
$$R_\Delta(u) = \left(\frac{s}{p_3}\right)^{\frac{3}{2} + p_4\left(\frac{t - M_\Delta^2}{M_\Delta^2}\right)}$$

Test of quark counting

PRL (1973) 31. 18. S. J. Brodsky, G. R. Farrar Scaling Laws at Large Transverse Momentum

 $d\sigma/dt \sim s^{2-n} f(t/s)$

n total number of leptons, photons and quark components

Reaction pp $\rightarrow \pi^{o}\pi^{o}$

n=ni+nf=2x(3+2)=10 2-n=-8

 $d\sigma/dt \sim s^{-8} f(t/s)$

LETTERE AL NUOVO CIMENTO (1973) 5 14 V. A. Matveev et al. Automodelity in Strong Interactions.

From pion to eta through SU(3)

Physics Letters B 471 (1999) 271-279

Π and η mesons are pseudoscalar mesons. The decay to ηη can be described from $π^0 π^0$ using the well-known decomposition of singlet and octet states, where the mixing angle is $Θ \approx 40^\circ$

$$f(\eta\eta) = f(\pi^0\pi^0) \cos^2\Theta$$

II part ALPOM2 experiment

Hadron form factor measurement

11

(Analyzing power is the Polarization of the beam)

- ALPOM2 (JINR- Dubna):
- $p+CH2 \rightarrow$ One Charge particle + X
- $n p \rightarrow p n (np)$

-Polarized protons will be produced by the fragmentation of the polarized deutron beam

-Protons interact with actived target CH2

-Through the drift chambers to reconstruct the trajectories

-Finally the particles will be detected by the hadron calorimeter

Differential cross section of $np \rightarrow np(pn)$

Red circles are from experiment, and the red line reprents Zeroexchange (ZE) and the blue line is Charge-exchange (CE).

$$\frac{d\sigma}{dt} = \frac{1}{64\pi sq^2} (|T_{\pi}(u) + T_{\rho}(u)|^2 + \frac{1}{4}|T_{\pi}(t) + T_{\rho}(t)|^2 + |T_P(t)|^2) - \frac{12}{12}$$

Analyzing power and Figure of Merit

$$\mathcal{F}^2(\cos\theta) = A_y^2(\cos\theta) \cdot \frac{d\sigma/d\cos\theta}{\sigma_{tot}}$$

The statistical error

$$\Delta P = \sqrt{\frac{2}{N_{inc}\mathcal{F}^2}}$$

Figure of Merit considered both cross section and the analyzing power.

It can predict the statistical error when you know the experiment condition.

Also it can help to decide which energy which reaction to have better expected data.

Summary

I)We have built a promising model based on effective lagrangian to describe 2 meson production in pbar p annihilation

- Parameters fixed on п⁰п⁰
- neutral channel obtained from SU3 symmetry: $\eta \eta$, $\eta \pi^0$
- Encouraging results on angular distributions and the expected s dependence have been obtained

II) Calculation of Figure of Merit for proton and neutron polarimetry at 7.5 GeV/c momentum and comparison of the elastic and charge exchange reactions np->np(pn) for JLAB experiments.

Perspectives

Optimize the parameters to improve charged pion description at small angles

Apply similar formalism to other channels: $\gamma \gamma, \gamma \pi^0, KK$

Goal:

To build a generator based on our model

