Aspects of Nucleon form factors measurements:

- Phenomenological study of proton anti-proton annihilation into light meson pairs
- Contribution to ALPOM2 experiment

Supervisors: Egle Tomasi-Gustafsson
Dominique Marchand
Collaborators: Y. Bystritskiy
N. Piskunov

WangYing
The electromagnetic FFs: GE and GM
- Inside structure of nucleon
 Spatial distributions of charge and magnetization current inside the nucleon.

How to measure?
Can be approached from two sides within one photon exchange assumption

1. Space-like region (SL)
 \[ep \rightarrow ep \]

2. Time-like region (TL)
 \[\bar{p}p \rightarrow e^+ e^- \rightarrow \bar{p}p \]
Content

Time-like region ($\bar{p} p \rightarrow e^+ e^-$)
PANDA experiment

- Neutral particles
 $p\bar{p} \rightarrow \pi^0\pi^0, \eta\eta, \eta\pi^0$

Space-like region ($e^- p \rightarrow e^- p$)
Experiment preparation ALPOM2

- Experimental prediction for $np \rightarrow np$ (pn)
Motivation of my work

- The reaction $\bar{p}p \rightarrow e^+e^-$ allows to measure electromagnetic proton form factors.
- Important simulation work is under way.
- The reaction $\bar{p}p \rightarrow \pi^+\pi^-$ is the main background:
 - has a large cross section,
 - contains information on the quark content of the proton
 - allow to test different QCD models

Largest cross sections come from multi-pions

$(5 > 4 > 2)$

It is necessary to fully understand the process $\bar{p}p \rightarrow \pi^+\pi^-$.
We develop effective Lagrangian model based on s,t,u channel Feynman diagrams.

The aim is to reproduce all available data and make reliable predictions at higher energies.

Our model should work in Panda energy region.

Two-body neutral final states produced in antiproton-proton annihilations at $2.911 \leq \sqrt{s} \leq 3.686$ GeV

\[p + \bar{p} \rightarrow \pi^0 + \pi^0, \eta + \pi^0, \eta + \eta, \pi^0 + \gamma, \gamma + \gamma \]

Energy under 2.911 GeV

Sum of resonances:

\[T_{L,J} = \sum_{i=1} G_i B_L(p) B_J(q) \exp(i\phi_i) \frac{M_i^2 - s - iM_i \Gamma_i}{M_i^2 - s} \]
Calculation $pp \rightarrow \pi^0\pi^0$

Differential cross section

$$\frac{d\sigma}{d \cos \theta} = \frac{1}{2\pi} \frac{1}{s} \frac{1}{\beta_p} |\mathcal{M}|^2$$

- Vertex:
 $$-i g_{\pi NN}(i\gamma_5)(2\pi)^4$$
- Propagator:
 $$\frac{i}{(2\pi)^4} \frac{\hat{q}_t + M_p}{q^2 - M_p^2}$$

$$|\mathcal{M}_n|^2 = \mathcal{M}_n A^*(a) = \frac{g_{\pi NN}^4}{(q^2 - M_p^2)^2} Tr \left[(\hat{p}_1 - M_p)(\hat{q} + M_p)^2(\hat{p}_2 + M_p) \right]$$

Add Regge factors and form factors (compositeness of particles, absorption, ISI, FSI...)

$$R_N(t) = \left(\frac{s}{p_3} \right)^{\frac{1}{2}} P_2 \left(\frac{t - M_p^2}{M_p^2} \right)$$

$$R_\Delta(u) = \left(\frac{s}{p_3} \right)^{\frac{3}{2}} P_4 \left(\frac{t - M_\Delta^2}{M_\Delta^2} \right)$$
our fit of $\pi^0\pi^0$

Data from T. A. Amstrong al. PRD(56) 5 1997
Test of quark counting

\[d\sigma/dt \sim s^{2-n} f(t/s) \]

n total number of leptons, photons and quark components

Reaction \(pp \rightarrow \pi^0\pi^0 \)

\[n = n_l + n_f = 2 \times (3 + 2) = 10 \]
\[2 - n = -8 \]

\[d\sigma/dt \sim s^{-8} f(t/s) \]
Π and η mesons are pseudoscalar mesons. The decay to ηη can be described from π^0π^0 using the well-known decomposition of singlet and octet states, where the mixing angle is Θ ≈ 40°.

\[\eta \approx \frac{(u\bar{u} + d\bar{d})}{\sqrt{2}} + s\bar{s} \]

\[|q\bar{q} > = \cos \Theta |\eta > + \sin \Theta |\eta' > \]

\[|s\bar{s} > = - \sin \Theta |\eta > + \cos \Theta |\eta' > \]

\[f(\eta\eta) = f(\pi^0\pi^0) \cos^2 \Theta \]
\[p p \rightarrow \eta \pi^0 \]
II part
ALPOM2 experiment
Hadron form factor measurement

Polarized ep elastic scattering

\[\frac{G_E}{G_M} = -\frac{P_t}{P_\ell} \left(\frac{E_e + E'_e}{2M_p} \right) \tan \left(\frac{\theta_e}{2} \right) \]

1st step: measure the proton analyzing powers (Ay) in GeV region

(Analyzing power is the Polarization of the beam)

ALPOM2 (JINR- Dubna):

p+CH2 → One Charge particle + X

np → p n (np)
Introduction of ALPOM2

- Polarized protons will be produced by the fragmentation of the polarized deuteron beam
- Protons interact with activated target CH2
- Through the drift chambers to reconstruct the trajectories
- Finally the particles will be detected by the hadron calorimeter
Differential cross section of np → np(pn)

Red circles are from experiment, and the red line represents Zero-exchange (ZE) and the blue line is Charge-exchange (CE).

\[
\frac{d\sigma}{dt} = \frac{1}{64\pi s q^2} (|T_\pi(u) + T_\rho(u)|^2 + \frac{1}{4}|T_\pi(t) + T_\rho(t)|^2 + |T_P(t)|^2)
\]
Analyzing power and Figure of Merit

\[\mathcal{F}^2(\cos \theta) = A_y^2(\cos \theta) \cdot \frac{d\sigma / d\cos \theta}{\sigma_{tot}}. \]

The statistical error

\[\Delta P = \sqrt{\frac{2}{N_{inc}\mathcal{F}^2}} \]

Figure of Merit considered both cross section and the analyzing power.

It can predict the statistical error when you know the experiment condition.

Also it can help to decide which energy which reaction to have better expected data.
Summary

I) We have built a promising model based on effective lagrangian to describe 2 meson production in pbar p annihilation
- Parameters fixed on π^0π^0
- Neutral channel obtained from SU3 symmetry: η η, η π^0
- Encouraging results on angular distributions and the expected s dependence have been obtained

II) Calculation of Figure of Merit for proton and neutron polarimetry at 7.5 GeV/c momentum and comparison of the elastic and charge exchange reactions np->np(pn) for JLAB experiments.
Perspectives

Optimize the parameters to improve charged pion description at small angles

Apply similar formalism to other channels: \(\gamma \gamma, \gamma \pi^0, KK \)

Goal:

To build a generator based on our model

Thank you!