Studying ρ-N couplings with HADES in pion-induced reactions

TECHNISCHE UNIVERSITÄT DARMSTADT

Federico Scozzi for the HADES Collaboration IPN Orsay/TU Darmstadt

HADES detector

- Located at SIS18, GSI
- Beams: heavy-ions, protons, pions
- Low-mass fixed-target experiment
- Hadron and lepton identification

- Acceptance: 85% azimuthal coverage, 18-85deg in polar angle
- 80.000 channels
- Fast DAQ: 50kHz event rate

Physics motivation

- Strong broadening of in-medium states
- Significant contribution from higher (than Δ) mass resonances
- Understanding of ρ-baryon coupling mechanism
- Crucial to better control medium effects

Physics motivation

- Study of electromagnetic structure of baryons
- Important role of pion cloud at small q²

I.G. Aznauryan, V.D. Burkert Prog. Part. Nucl. Phys. 67, 1 (2012)

Pion beams with HADES

Secondary π momentum $p_{\pi} = 0.69$ GeV/c

- Excitation of N(1520) baryonic resonance
- Beam intensity I = $3-4 \times 10^5 \pi/s$
- Target: Polyethylene (CH₂)_n and Carbon

 Total ~15 days of continues measurement

Electron ID

- Particle velocity vs momentum
- RICH information using backtracking algorithms

Signal-to-background estimates using RICH rotation technique

Characterizing "true" (signal) and "random" (background) track-RICH ring matches

- 1. Rotate RICH software-wise by 60°
- 2. Match tracks with rings
- 3. Lose correlations and get only random matches

- Background (red curve) from rotated RICH data sample
- Total (black curve) from the standard sample
- Signal = Total Background

TECHNISCHE

Inclusive invariant mass spectrum (raw)

dN_{raw}/dM_{ee} [MeV/c²] 0³ 0^{2} 200 400 600 M. [MeV/c² 1 N_{e+e-} CB Signal 200 600 400 800 0 M_{ee} [MeV/c²]

- Signal = N_{e+e-}- CB
- Same-event like-sign CB geometric and/or arithmetic mean
- CB rejection cuts:
 - Opening angle > 9°
 - Tracks with a not fitted track in the vicinity of 4° are excluded from further analysis
- Signal (M<140 MeV/c²) = 13138
- Signal (M>140 MeV/c²) = 1084

→ Efficiency corrections based on Monte Carlo simulations

Cocktail simulations

Sources: •σ(π⁰) = 16.6 mb

 π -p → N(1520) → ne⁺e⁻ = 20 mb Wolf / Zetenyi "QED" model with BR = 4 × 10⁻⁵

 $\sigma(\eta) = 0.3 \text{ mb } (p); 0.7 \text{ mb } (C)$

from Landolt-Bornstein

Searching for π^0 and η with full conversion method

A.V. Anisovichet al.(Bn-Ga) Eur. Phys. J. A 47 (2011)27

Constraining the ρ contribution

- Cross section for ρ → π⁺π⁻ determined from PWA (Bonn-Gatcina)
- PWA analysis performed in 4π and inside HADES acceptance

→ N(1520) coupling to ρ N: 17% → Total ρ N contribution: 2.3 mb

Comparison with simulation

- Efficiency corrected data and simulations filtered through the HADES acceptance
- Cocktail without ρ contribution do not describe measured data!

Comparison with np-pp data

quasi-free n+p 1.25 GeV

p+p 1.25 GeV

0.6

0.8 Mee [GeV/c2]

π-

p

n

Summary

- HADES Di-Electron spectrometer in combination with pion beam is an unique tool to understand in details baryon-p couplings
- Significant off-shell ρ contribution originating from N(1520) shown by combined PWA and e⁺e⁻ data
- The comparison between dilepton spectra coming from π-p and pn-pp interactions show spectacular similarities

Summary

- HADES Di-Electron spectrometer in combination with pion beam is an unique tool to understand in details baryon-p couplings
- Significant off-shell ρ contribution originating from N(1520) shown by combined PWA and e⁺e⁻ data
- The comparison between dilepton spectra coming from π-p and pn-pp interactions show spectacular similarities

Outlook

Additional insights from the angular distribution of dileptons

$$rac{d\sigma}{dMd\cos heta_{\gamma^*}d\cos_e} \propto \Sigma_{\perp}(1+\cos^2 heta_e) + \Sigma_{\parallel}(1-\cos^2 heta_e) \qquad , \ \propto A(1+B(heta_{\gamma^*},M)\cos^2 heta_e)$$

