

Pheniics Days 11/05/16 Francesco Gizzarelli IRFU/CEA Saclay

Outline

- T2K experiment
- Motivations
- MicroMegas alignment and results
- Water/Scintillator CCQE cross section ratio
- Results
- Conclusion

The T2K experiment

- Physics goal
 - Neutrino oscillation (Δm^2_{23} , θ_{23} , θ_{13} , δ_{CP})
 - ν_{e} and $\overline{\nu}_{e}$ appeareance ($\nu_{\mu} \longrightarrow \nu_{e}$, $\overline{\nu}_{\mu} \longrightarrow \overline{\nu}_{e}$)
 - $v_{\rm u}$ and $\overline{v}_{\rm u}$ disappearence
 - Neutrino interaction cross section
 - Study of new phenomena (sterile neutrino, IV generation, new interactions)

- Long baseline neutrino experiment
 Tokai-to-Kamioka
- L ~ 295 km
- Beam line and near detectors at J-Parc in **T**okai
- Far detector in Kamioka
- ν and $\overline{\nu}$ mode
- Off-axis beam experiment

The near detectors (280 m)

INGRID

- On-axis detector
- 0°-0.9° coverage
 - Iron/scintillator tracking calorimeters, 16 modules
 - 1 all-scintillator proton module
 - Monitors beam intensity, direction, profile and stability

ND280

- Off-axis detector 2.5° (same SK direction)
- Sub-detectors allow a fully reconstructed event
- Fully magnetized detector B = 0.2 T
- **PØD**: π^0 detector
- 3 TPCs: momentum measurement, particle ID (dE/dx) Neutrino beam
- 2 FGDs: active target mass (2*1.2 ton)
- ECal: electron, gamma identification
- SMRD: improve muon identification

The far detector Super-K (295 km)

- 50 kton water cherenkov detector 1 km undergrond (Kamioka mine)
- 22 kton of Fiducial Volume
- ~11k PMTs in the inner detctor
- ~2k PMTs in the outer detector
- Veto entering background (cosmic rays, radioactivity) and rejects exiting events
- Excellent muon-electron separation thanks to cherenkov light ring shape
- Misidentification < 1%
- No magnetic field to distinguish particles from anti-particles

Outline

- T2K experiment
- Motivations
- MicroMegas alignment and results
- Water/Scintillator CCQE cross section ratio
- Results
- Conclusion

Neutrino interactions

Charged-Current Quasi-Elastic is the dominant interaction process for T2K's neutrino energy spectrum

$$E_{\nu}^{CCQE} = \frac{\left(m_n - \epsilon_B\right)E_{\mu} + \left(2m_n\epsilon_B - \epsilon_B^2 - m_{\mu}^2 + m_p^2 - m_n^2\right)/2}{m_n - \epsilon_B - E_{\mu} + P_{\mu}cos\theta_{\mu}}$$

- I. Fully reconstructed events allows to measure neutrino energy thanks to charge lepton kinematics
- II. Nucleon target is assumed at rest

Additional processes:

- Charged current single pion production ($CC1\pi$)
- Neutral current single pion production (NC1 π)
- Deep inelastic scattering (DIS)

Motivations

Why water?

- Relevance in SK and oscillation analysis:
 - i. Important systematics in the ND280-SK extrapolation
 - ii. Reduce oscillation analysis uncertanties
 - iii. Neutrino-nucleon scattering physics

Source of uncertainty	$\nu_{\mu} \ { m CC}$	$\nu_e~{\rm CC}$
Flux and common cross sections	2.7%	3.2%
Independent cross sections	5.0%	4.7%
SK	4.0%	2.7%
FSI+SI(+PN)	3.0%	2.5%
Total	7.7%	6.8%

FGD2 filled with plastic scintillators and water modules

Why ND280?

- Good performance for cross section measurement:
- i. High statistics
- ii. Full final state reconstruction and particle identification ($\mu, \ p, \ \pi$)
- iii. Several possible measurements $\nu_{\mu}, \, \bar{\nu}_{\mu}, \, \nu_{e}, \, C, O$

A very precise detector calibration is needed to reduce detector systematics

ND280 tracker

 Tracker = 3TPCs + 2FGDs 1 m dE/dx capability separate e/µ central cathode • $\sigma(p)/p < 10\% @ 1 \text{ GeV/c}^2$ Alignment improve particle momentum resolution MM 2 m PC2 **TPC1** 2 m FGD2 -GD1 FGD HREE TPC MODULES WITH UNITS FOR THE NO280 FX Fine Grained Detector of 2x2x0.3 m³ Total mass 2x1.2 ton FGD1 Fine segmentation to track low energy particles to tag **CCOE** events • Active material: scintillator bars (1x1x200 cm³) arranged in alternating x-y supermodules • FGD1 = 15 x-y supermodules FGD2 • FGD2 = 7 x-y supermodules alternating with 6 water layers

TPC

- Time Projection Chamber
- Amplification via MicroMegas modules (MM)
- MM modules arranged in a 6x2 matrix geometry
- Total MM 3X2X6x2 = 72

Outline

- T2K experiment
- Motivations

• MicroMegas alignment and results

- Water/Scintillator CCQE cross section ratio
- Results
- Conclusion

Alignment strategy

- Cosmic rays collected with magnetic field off
- Reconstruct straight track in each module separately

total correction $f_{\Delta} = trastation + rotation$

- Match tracks in the middle plane between adjacent MM modules and extract residuals Δy , $\Delta \phi$
- Horizontal tracks constraint translational misalignment (vertical of the second horizontal dz) and rotation dq

 $\chi^2 = \chi^2_{\Delta y} + \chi^2_{\Delta \phi} \qquad \chi^2_{\Delta} = \sum_{\alpha}^{n_{tracks}} \left(\frac{\Delta + f_{\Delta}}{\sigma_{\alpha}}\right)^2$

Correction extracted via a fit to the residuals

• Reconstruct straight track in each module separately
• Match tracks in the middle plane between adjacent MM modules
and extract residuals
$$\Delta y, \Delta \phi$$

• Horizontal tracks constraint translational misalignment (vertical dy,
horizontal dz) and rotation d ϕ
• Correction extracted via a fit to the residuals
 $\chi^2 = \chi^2_{\Delta y} + \chi^2_{\Delta \phi}$ $\chi^2_{\Delta} = \sum_{rtracks}^{n_{tracks}} \left(\frac{\Delta + f_{\Delta}}{\sigma_{\Delta}}\right)^2$
residual $\Delta = \Delta y, \Delta \phi$
total correction $f_{\Delta} = traslation + rotation$
• Total correction depends on dy, dz, d ϕ free parameters in the fit
 $f_{\Delta y}(y_{MM_i}, y_{MM_j}, z_{MM_i}, z_{MM_j}, \phi_{MM_i}, \phi_{MM_j}) = (y_{MM_i} - y_{MM_j}) - (z_{MM_i} - z_{MM_j}) tan(\phi_{MM_i})$

 $\Delta \phi = \phi_{\rm MMi} - \phi_{\rm MMj}$

 $f_{\Delta\phi}\left(\phi_{MM_{i}},\phi_{MM_{j}}\right) = \left(\phi_{MM_{i}}-\phi_{MM_{j}}\right)$

residual $\Delta = \Delta y, \ \Delta \phi$

• Laser monitor system gives few hundred microns in translations and few mrad for rotations

 $-\left(\phi_{MM_{i}}-\phi_{MM_{j}}\right)\left(\frac{d+L}{2}-y_{MM_{i}}tan\left(\phi_{MM_{i}}\right)\right)$

- The fit has to be very sensitive
- Generated MC test geometries to test the fit

MicroMegas alignment

MicroMegas ϕ alignment

MicroMegas y alignment

MicroMegas z alignment

Outline

- T2K experiment
- Motivation
- MicroMegas alignment and results
- Water/Scintillator CCQE cross section ratio
- Results
- Conclusion

Water/Scintillator ratio

$$R_{W/S} = \left[\frac{N_X f_x^{CC0\pi} f_x^w + N_Y f_y^{CC0\pi} f_y^w}{N_X f_x^{CC0\pi} f_x^s + N_Y f_y^{CC0\pi} f_y^s} \right] \left[\frac{\varepsilon_s}{\varepsilon_w} \frac{N_n^s}{N_n^w} \right]$$

 N_x , N_Y : the numbers of observed events in data after transfer to MC $f_x^{\ CC0\pi}$, $f_y^{\ CC0\pi}$: purities in x and y layers from MC

 $\epsilon_{\!\scriptscriptstyle w}$, $\epsilon_{\!\scriptscriptstyle s}$: efficiency \times acceptance for water and scintillator from MC

 $f_{x,y}^{}\ {}^{s,w}$: scintillator, water events fractions from MC for each x,y layer

 $N_n^{s,w}$: number of neutron targets in the Fiducial Volume for scintillator and water

Signal definition

- Standard T2K quality event (good spill, good detector)
- Detector acceptance and tag
 - 1. HNMT in FGD2 Fiducial Volume (FV)
 - 2. Tracks quality in TPĆ
 - 3. External veto cut on FGD2
 - 4. Muon PID in the TPC
 - 5. No pion in the final state

$CC0\pi$ sample

Vertex position

Vertex position

✤ Muon's 1st hit

Critical is the capacity of dividing water and scintillators interactions

Background from carbon

Vertex = 1^{st} hit in active layer \rightarrow Layer x enhanced with water (~60%) + ~30% C \rightarrow C and O cross-section need to be measured together

Migration between layers

Low energetic backward particles aligned with forward μ could be reconstructed as a single μ track with vertex in previous layer

Hybrid FGD1 control sample

True vertex layer 💥 Reco vertex layer 💥

Results Hybrid FGD1

Integrated

 $\begin{aligned} \mathsf{R}_{\mathsf{FW/S}} \ (\mathsf{DATA}) &= 0.995 \pm 0.021 \ (\sim\!2.1\% \ \mathsf{stat.}) \pm 0.021 \ (\sim\!2.1\% \ \mathsf{bkw.}) \pm 0.009 \ (\sim\!0.9\% \ \mathsf{syst.}) \\ \mathsf{R}_{\mathsf{FW/S}} \ (\mathsf{MC}) &= 0.993 \pm 0.021 \ (\sim\!2.1\% \ \mathsf{stat.}) \pm 0.021 \ (\sim\!2.1\% \ \mathsf{bkw.}) \pm 0.009 \ (\sim\!0.9\% \ \mathsf{syst.}) \end{aligned}$

Outline

- T2K experiment
- Motivation
- MicroMegas alignment and results
- Water/Scintillator cross section ratio
- Results
- Conclusion

Total error FGD2

Analysis still blind in FGD2

(~2.3% stat.)(~0.9% det.)(~0.9% theo.)(~1.7% bkw.)

Total uncertainty on the integrated value $\sim 3\%$

Results FGD2

Analysis still blind in FGD2

Momentum

Direction

Integrated MC

 $\begin{aligned} R_{w/s} (\text{NEUT}) &= 0.996 \pm 0.023 (\sim 2.3\% \text{ stat.}) \pm 0.009 (\sim 0.9\% \text{ det.}) \pm 0.009 (\sim 0.9\% \text{ theo.}) \pm 0.017 (\sim 1.7\% \text{ bkw.}) \\ R_{w/s} (\text{GENIE}) &= 0.994 \pm 0.023 (\sim 2.3\% \text{ stat.}) \pm 0.012 (\sim 1.2\% \text{ det.}) \pm 0.016 (\sim 1.6\% \text{ bkw.}) \end{aligned}$

Conclusion

- **T2K** a world leading experiment about neutrino oscillation, new results will come: **stay tuned!**
- MM alignment to improve momentum resolution and **reduce systematics**
- Minuit fit shows a very good precision in the corrections extraction

- Water/Scintillator **CCQE-like** cross section ratio
- Results vs kinematics dominated by statistics
- Integrated results dominated by **systematics**

```
 \begin{array}{ll} {\sf R}_{{\sf w}/{\sf s}} \, ({\sf NEUT}) &= 0.996 \pm 0.023 (\sim\!\!2.3\% \; {\sf stat.}) \pm 0.009 (\sim\!\!0.9\% \; {\sf det.}) \\ &\pm 0.009 (\sim\!0.9\% \; {\sf theo.}) \pm 0.017 (\sim\!1.7\% \; {\sf bkw.}) \end{array}
```

- Data control sample needed to constraint backward track systematic
- Analysis blind -> FGD1 control sample gives successful closure test at 1% level

Beam line

- π , K production at target measured by NA61 experiment at CERN (see Matej talk)
- Beam direction stability < 1 mrad
- ν and $\overline{\nu}$ mode changing horn current
- Off-axis beam allows a narrow peak in ${\rm E_v}$ to maximize oscillation probability and reduce high energy background

DATA taking Run1-6

Stable operation at \sim 345kW achieved! Integrated POT up to 1st June 2015:

- Neutrino mode: 7.0x10²⁰ POT
- Antineutrino mode: 4.0x10²⁰ POT

T2K goal is 78x10²⁰ POT

Analysis strategy

Strategy I

- · Cosmic rays collected with magnetic field off
- Reconstruct straight track in each module separately
- Match tracks in the middle plane between adjacent MM modules and extract residuals $\Delta y,\,\Delta\phi$
- Horizontal tracks constraint translational misalignment (vertical dy, horizontal dz) and rotation $d\phi$

Strategy II

• Rotations and translations could be corrected separately running the minuit fit in two steps:

First step:

a) Rotation corrections extraction $\chi^2 = \chi^2_{\Delta \phi} + \chi^2_{\Delta \phi}$

Second step:

- a) Translational corrections extraction, Once rotational ones are applied
- b) Put together translational and rotational corrections and apply to the sample

 $\chi^2 = \chi^2_{\Delta y} + \chi^2_{\Delta \phi}$

MC test geometry

- Few hundred microns in y and z direction and few mrad for rotation from laser monitor system (survey)
- Minuit fit has to be very sensitive
- Survey like geometry generation to test the fit

DATA Run2-4

Global Run2	run number	sub-run
	00006606	0000-0038
Track ~ 33k	00006646	0000-0017
	00007714	0000-0102
Global Bun3	run number	sub_run
Global Italio	00008215	0000-0111
	00008306	0000-0097
Track ~ 37k	00008465	0000-0071
	00008520	0000-0040
	00008765	0000-0016
	00008783	0000 0044

Global Run4	run number	sub-run
	00009730	0000-0017
	00009731	0000-0025
Track ~ 18k	00009732	0000-0005
HUGK LOK	00009738	0000-0002
	00009739	0000-0038
	00009748	0000-0038

Cuts

 $10^{-5} < \chi^2 / ndf < 0.5$ 20 < #hits < 50

|φ|<1. rad |Δφ|<0.015 rad |Δy|<2.5 mm

Before/After Alignment

Narrow misalignment distributions after corrections

TPC1 EP0	NoMMAlign Δ z	MMAlign Δz	NoMMAlign Δ y	MMAlign Δ y	NoMMAlign $\Delta \phi$	MMAlign $\Delta \phi$
MM0	0.108851 ± 0.028290	0.013258 ± 0.025922	0.471934 ± 0.018374	0.033625 ± 0.016748	0.001197 ± 0.000053	0.000047 ± 0.000053
MM1	0.401032 ± 0.030078	-0.005274 ± 0.027099	0.545960 ± 0.018301	0.006058 ± 0.016448	0.001112 ± 0.000056	-0.000042 ± 0.000056
$\mathbf{MM2}$	0.547888 ± 0.030224	0.042317 ± 0.027193	0.242179 ± 0.016668	-0.002953 ± 0.014986	0.000924 ± 0.000058	-0.000014 ± 0.000059
MM3	0.316078 ± 0.030495	0.001781 ± 0.027695	0.302285 ± 0.017420	-0.005421 ± 0.015790	0.001383 ± 0.000067	0.000019 ± 0.000068
MM4	0.479952 ± 0.030484	0.019580 ± 0.027308	0.064669 ± 0.019617	-0.008037 ± 0.017809	-0.000164 ± 0.000074	0.000004 ± 0.000075
$\mathbf{MM5}$	0.210816 ± 0.028250	-0.011415 ± 0.024955	0.095145 ± 0.020878	-0.018755 ± 0.018585	0.000485 ± 0.000078	0.000064 ± 0.000079
TPC1 EP1	NoMMAlign Δ z	MMAlign Δz	NoMMAlign Δ y	MMAlign Δ y	NoMMAlign $\Delta \phi$	MMA lign $\Delta \phi$
TPC1 EP1 MM0	NoMMAlign Δ z -0.342023 \pm 0.026703	$\begin{array}{c} {\rm MMAlign} \ \Delta \ z \\ \text{-}0.031210 \ \pm \ 0.023957 \end{array}$	NoMMAlign Δ y 0.177166 \pm 0.018812	$\begin{array}{c} {\rm MMAlign} \ \Delta \ {\rm y} \\ 0.005355 \ \pm \ 0.017203 \end{array}$	NoMMAlign $\Delta \phi$ -0.001636 \pm 0.000071	$\frac{\text{MMA lign } \Delta \ \phi}{\text{-}0.000044 \pm 0.000071}$
TPC1 EP1 MM0 MM1	NoMMAlign Δ z -0.342023 \pm 0.026703 -0.244080 \pm 0.027923	$\begin{array}{l} {\rm MMA lign} \ \Delta \ z \\ \text{-}0.031210 \ \pm \ 0.023957 \\ \text{-}0.004994 \ \pm \ 0.025799 \end{array}$	$\begin{array}{l} {\rm NoMMA lign} \ \Delta \ {\rm y} \\ 0.177166 \ \pm \ 0.018812 \\ 0.267061 \ \pm \ 0.018586 \end{array}$	$\begin{array}{l} {\rm MMAlign} \ \Delta \ {\rm y} \\ 0.005355 \pm 0.017203 \\ -0.009839 \pm 0.017001 \end{array}$	NoMMAlign $\Delta \phi$ -0.001636 \pm 0.000071 -0.001149 \pm 0.000069	$\begin{array}{c} {\rm MMA lign} \ \Delta \ \phi \\ \text{-0.000044} \ \pm \ 0.000071 \\ \text{-0.000044} \ \pm \ 0.000070 \end{array}$
TPC1 EP1 MM0 MM1 MM2	$\begin{array}{l} \text{NoMMAlign } \Delta \ z \\ \text{-}0.342023 \pm 0.026703 \\ \text{-}0.244080 \pm 0.027923 \\ \text{-}0.405215 \pm 0.029646 \end{array}$	$\begin{array}{c} {\rm MMAlign}\;\Delta \;z\\ \text{-}0.031210\;\pm\;0.023957\\ \text{-}0.004994\;\pm\;0.025799\\ 0.000280\;\pm\;0.026630 \end{array}$	$\begin{array}{l} \text{NoMMAlign } \Delta \text{ y} \\ 0.177166 \pm 0.018812 \\ 0.267061 \pm 0.018586 \\ 0.128533 \pm 0.017096 \end{array}$	$\begin{array}{l} {\rm MMAlign}\;\Delta\;{\rm y}\\ 0.005355\pm 0.017203\\ \text{-}0.009839\pm 0.017001\\ 0.000886\pm 0.015358 \end{array}$	$ \begin{array}{l} \text{NoMMAlign } \Delta \ \phi \\ \text{-0.001636} \pm 0.000071 \\ \text{-0.001149} \pm 0.000069 \\ \text{-0.001424} \pm 0.000064 \end{array} $	$\begin{array}{c} \text{MMAlign } \Delta \ \phi \\ -0.000044 \ \pm \ 0.000071 \\ -0.000044 \ \pm \ 0.000070 \\ -0.000077 \ \pm \ 0.000065 \end{array}$
TPC1 EP1 MM0 MM1 MM2 MM3	$\begin{array}{l} \text{NoMMAlign } \Delta \ z \\ -0.342023 \pm 0.026703 \\ -0.244080 \pm 0.027923 \\ -0.405215 \pm 0.029646 \\ -0.449940 \pm 0.028758 \end{array}$	$\begin{array}{c} {\rm MMAlign}\;\Delta \;z\\ -0.031210\;\pm\;0.023957\\ -0.004994\;\pm\;0.025799\\ 0.000280\;\pm\;0.026630\\ -0.019226\;\pm\;0.025903 \end{array}$	$\begin{array}{l} \text{NoMMAlign } \Delta \text{ y} \\ 0.177166 \pm 0.018812 \\ 0.267061 \pm 0.018586 \\ 0.128533 \pm 0.017096 \\ -0.059783 \pm 0.016741 \end{array}$	$\begin{array}{l} {\rm MMAlign}\;\Delta\;{\rm y}\\ 0.005355\pm0.017203\\ \text{-}0.009839\pm0.017001\\ 0.000886\pm0.015358\\ \text{-}0.012044\pm0.015113 \end{array}$	$\begin{array}{l} \text{NoMMAlign } \Delta \ \phi \\ \text{-0.001636} \pm 0.000071 \\ \text{-0.001149} \pm 0.000069 \\ \text{-0.001424} \pm 0.000064 \\ \text{-0.001085} \pm 0.000062 \end{array}$	$\begin{array}{c} {\rm MMAlign}\;\Delta\;\phi\\ -0.000044\;\pm\;0.000071\\ -0.000044\;\pm\;0.000070\\ -0.000077\;\pm\;0.000065\\ -0.000052\;\pm\;0.000063 \end{array}$
TPC1 EP1 MM0 MM1 MM2 MM3 MM4	$\begin{array}{r} \text{NoMMAlign } \Delta \ z \\ -0.342023 \pm 0.026703 \\ -0.244080 \pm 0.027923 \\ -0.405215 \pm 0.029646 \\ -0.449940 \pm 0.028758 \\ -0.213977 \pm 0.030862 \end{array}$	$\begin{array}{c} {\rm MMAlign}\;\Delta z\\ \text{-}0.031210 \pm 0.023957\\ \text{-}0.004994 \pm 0.025799\\ 0.000280 \pm 0.026630\\ \text{-}0.019226 \pm 0.025903\\ \text{-}0.023390 \pm 0.026935 \end{array}$	$\begin{array}{l} \text{NoMMAlign } \Delta \ \text{y} \\ 0.177166 \pm 0.018812 \\ 0.267061 \pm 0.018586 \\ 0.128533 \pm 0.017096 \\ -0.059783 \pm 0.016741 \\ -0.032553 \pm 0.019126 \end{array}$	$\begin{array}{c} {\rm MMAlign}\;\Delta\;{\rm y}\\ 0.005355\pm0.017203\\ \text{-}0.009839\pm0.017001\\ 0.000886\pm0.015358\\ \text{-}0.012044\pm0.015113\\ \text{-}0.003539\pm0.016991 \end{array}$	$\begin{array}{l} \text{NoMMAlign } \Delta \ \phi \\ -0.001636 \pm 0.000071 \\ -0.001149 \pm 0.000069 \\ -0.001424 \pm 0.000064 \\ -0.001085 \pm 0.000062 \\ -0.000070 \pm 0.000061 \end{array}$	$\begin{array}{c} {\rm MMAlign}\;\Delta\;\phi\\ -0.000044\;\pm\;0.000071\\ -0.000044\;\pm\;0.000070\\ -0.000077\;\pm\;0.000065\\ -0.000052\;\pm\;0.000063\\ -0.000008\;\pm\;0.000062 \end{array}$

TPC2 EP0	NoMMAlign Δ z	MMAlign Δz	NoMMAlign Δ y	MMAlign Δ y	NoMMAlign $\Delta \phi$	MMAlign $\Delta \phi$
MM0	-0.213742 ± 0.049601	0.058309 ± 0.043866	0.069002 ± 0.027548	-0.005827 ± 0.024703	-0.000779 ± 0.000096	-0.000045 ± 0.000097
MM1	0.090344 ± 0.016270	-0.023209 ± 0.014632	0.495794 ± 0.011548	0.015968 ± 0.010403	0.000915 ± 0.000042	0.000026 ± 0.000043
MM2	0.388374 ± 0.014382	0.016060 ± 0.013136	0.551791 ± 0.011019	0.026125 ± 0.009986	0.002965 ± 0.000040	0.000173 ± 0.000041
MM3	0.158108 ± 0.014737	0.041912 ± 0.013365	0.630022 ± 0.011338	0.005742 ± 0.010238	0.002037 ± 0.000041	0.000127 ± 0.000042
MM4	-0.154447 ± 0.016657	-0.000655 ± 0.015052	0.809814 ± 0.012028	0.034705 ± 0.010883	0.001004 ± 0.000045	0.000041 ± 0.000045
MM5	0.455568 ± 0.049552	0.114960 ± 0.045038	0.646293 ± 0.031072	0.087457 ± 0.028057	0.001741 ± 0.000119	0.000190 ± 0.000120
TPC2 EP1	NoMMAlign Δ z	MMA lign Δz	NoMMAlign Δ y	MMAlign Δ y	NoMMAlign $\Delta \phi$	MMAlign $\Delta \phi$
TPC2 EP1 MM0	NoMMAlign Δ z 0.037891 \pm 0.044514	$\frac{\text{MMA lign } \Delta z}{-0.121204 \pm 0.039750}$	NoMMAlign Δ y 0.635492 \pm 0.028215	MMAlign Δ y 0.055316 \pm 0.015136	NoMMAlign $\Delta \phi$ -0.001277 ± 0.000108	$\begin{array}{c} {\rm MMAlign} \ \Delta \ \phi \\ \text{-0.000141} \pm \ 0.000065 \end{array}$
TPC2 EP1 MM0 MM1	NoMMAlign Δ z 0.037891 \pm 0.044514 -0.315297 \pm 0.015802	$\begin{array}{l} {\rm MMA lign} \ \Delta \ z \\ {\rm -0.121204} \pm 0.039750 \\ {\rm -0.016037} \pm 0.013794 \end{array}$	$ \begin{array}{l} {\rm NoMMA lign} \ \Delta \ {\rm y} \\ 0.635492 \ \pm \ 0.028215 \\ 1.029977 \ \pm \ 0.011912 \end{array} $	$\begin{array}{l} {\rm MMAlign}\;\Delta\;{\rm y}\\ 0.055316\;\pm\;0.015136\\ 0.034237\;\pm\;0.005781 \end{array}$	NoMMAlign $\Delta \phi$ -0.001277 ± 0.000108 -0.001464 ± 0.000045	$\begin{array}{c} \text{MMAlign } \Delta \ \phi \\ \text{-0.000141} \pm 0.000065 \\ \text{-0.000122} \pm 0.000025 \end{array}$
TPC2 EP1 MM0 MM1 MM2	NoMMAlign Δ z 0.037891 \pm 0.044514 -0.315297 \pm 0.015802 -0.476553 \pm 0.013745	$\begin{array}{l} {\rm MMA lign \ \Delta \ z} \\ -0.121204 \pm 0.039750 \\ -0.016037 \pm 0.013794 \\ -0.039681 \pm 0.011864 \end{array}$	$\begin{array}{l} {\rm NoMMA lign} \ \Delta \ {\rm y} \\ 0.635492 \ \pm \ 0.028215 \\ 1.029977 \ \pm \ 0.011912 \\ 0.671667 \ \pm \ 0.010973 \end{array}$	$\begin{array}{l} \text{MMAlign } \Delta \ \text{y} \\ 0.055316 \pm 0.015136 \\ 0.034237 \pm 0.005781 \\ 0.032891 \pm 0.008311 \end{array}$	NoMMAlign $\Delta \phi$ -0.001277 \pm 0.000108 -0.001464 \pm 0.000045 -0.000524 \pm 0.000041	$\begin{array}{c} \text{MMAlign } \Delta \ \phi \\ \text{-0.000141} \pm \ 0.000065 \\ \text{-0.000122} \pm \ 0.000025 \\ \text{-0.000023} \pm \ 0.000035 \end{array}$
TPC2 EP1 MM0 MM1 MM2 MM3	$\begin{array}{l} {\rm NoMMAlign}\;\Delta \;z\\ 0.037891\;\pm\;0.044514\\ \text{-}0.315297\;\pm\;0.015802\\ \text{-}0.476553\;\pm\;0.013745\\ \text{-}0.073700\;\pm\;0.014041 \end{array}$	$\begin{array}{l} \text{MMA lign } \Delta \ z \\ \text{-}0.121204 \pm 0.039750 \\ \text{-}0.016037 \pm 0.013794 \\ \text{-}0.039681 \pm 0.011864 \\ 0.002017 \pm 0.011697 \end{array}$	$\begin{array}{l} \text{NoMMA lign } \Delta \text{ y} \\ 0.635492 \pm 0.028215 \\ 1.029977 \pm 0.011912 \\ 0.671667 \pm 0.010973 \\ 0.461854 \pm 0.011306 \end{array}$	$\begin{array}{c} {\rm MMAlign}\;\Delta\;{\rm y}\\ 0.055316\;\pm\;0.015136\\ 0.034237\;\pm\;0.005781\\ 0.032891\;\pm\;0.008311\\ 0.007611\;\pm\;0.006411 \end{array}$	NoMMAlign $\Delta \phi$ -0.001277 \pm 0.000108 -0.001464 \pm 0.000045 -0.000524 \pm 0.000041 0.000024 \pm 0.000042	$\begin{array}{c} {\rm MMAlign}\;\Delta\;\phi\\ \text{-0.000141}\pm 0.000065\\ \text{-0.000122}\pm 0.000025\\ \text{-0.000023}\pm 0.000035\\ 0.000018\pm 0.000027\end{array}$
TPC2 EP1 MM0 MM1 MM2 MM3 MM4	$\begin{array}{l} {\rm NoMMAlign}\;\Delta \;z\\ 0.037891\;\pm\;0.044514\\ \text{-}0.315297\;\pm\;0.015802\\ \text{-}0.476553\;\pm\;0.013745\\ \text{-}0.073700\;\pm\;0.014041\\ \text{-}0.247972\;\pm\;0.015987 \end{array}$	$\begin{array}{c} {\rm MMA lign} \ \Delta \ z \\ -0.121204 \pm 0.039750 \\ -0.016037 \pm 0.013794 \\ -0.039681 \pm 0.011864 \\ 0.002017 \pm 0.011697 \\ 0.001915 \pm 0.013625 \end{array}$	$\begin{array}{l} \text{NoMMA lign } \Delta \text{ y} \\ 0.635492 \pm 0.028215 \\ 1.029977 \pm 0.011912 \\ 0.671667 \pm 0.010973 \\ 0.461854 \pm 0.011306 \\ 0.818187 \pm 0.012021 \end{array}$	$\begin{array}{c} {\rm MMAlign}\;\Delta\;{\rm y}\\ 0.055316\;\pm\;0.015136\\ 0.034237\;\pm\;0.005781\\ 0.032891\;\pm\;0.008311\\ 0.007611\;\pm\;0.006411\\ 0.025973\;\pm\;0.006624 \end{array}$	$\begin{array}{l} \text{NoMMAlign } \Delta \ \phi \\ -0.001277 \pm 0.000108 \\ -0.001464 \pm 0.000045 \\ -0.000524 \pm 0.000041 \\ 0.000024 \pm 0.000042 \\ -0.001100 \pm 0.000045 \end{array}$	$\begin{array}{c} {\rm MMAlign}\;\Delta\;\phi\\ -0.000141\;\pm\;0.000065\\ -0.000122\;\pm\;0.000025\\ -0.000023\;\pm\;0.000035\\ 0.000018\;\pm\;0.000027\\ -0.000054\;\pm\;0.000028 \end{array}$

TPC3 EP0	NoMMAlign Δ z	MMAlign Δz	NoMMAlign Δ y	MMAlign Δ y	NoMMAlign $\Delta \phi$	MMAlign $\Delta \phi$
MM0	0.046701 ± 0.034330	-0.009194 ± 0.031032	0.631050 ± 0.022440	0.024914 ± 0.020403	0.001532 ± 0.000083	0.000028 ± 0.000083
MM1	0.062381 ± 0.027536	0.016352 ± 0.025056	0.685843 ± 0.017622	0.040823 ± 0.015901	0.001092 ± 0.000066	0.000052 ± 0.000067
$\mathbf{MM2}$	-0.236283 ± 0.025157	-0.048363 ± 0.022655	0.401804 ± 0.015300	0.030880 ± 0.013843	0.000783 ± 0.000058	0.000029 ± 0.000059
MM3	0.171373 ± 0.025557	-0.011475 ± 0.023135	0.550933 ± 0.015141	0.026979 ± 0.013669	0.000796 ± 0.000052	0.000056 ± 0.000053
$\mathbf{MM4}$	0.111380 ± 0.029336	0.032260 ± 0.026613	0.575856 ± 0.017078	0.038456 ± 0.015408	0.000654 ± 0.000050	0.000038 ± 0.000051
MM5	-0.033039 ± 0.031528	0.084718 ± 0.027800	0.451536 ± 0.019901	-0.015796 ± 0.017658	-0.000539 ± 0.000054	-0.000053 ± 0.000054
TPC3 EP1	NoMMAlign Δ z	MMAlign Δz	NoMMAlign Δ y	MMAlign Δ y	NoMMAlign $\Delta \phi$	MMAlign $\Delta \phi$
MM0	0.005043 ± 0.032974	-0.008223 ± 0.029772	0.251739 ± 0.021743	0.022991 ± 0.019495	-0.001106 ± 0.000061	-0.000020 ± 0.000062
MM1	-0.358676 ± 0.027346	0.040629 ± 0.024748	0.012976 ± 0.016813	0.009350 ± 0.015285	-0.001771 ± 0.000056	-0.000049 ± 0.000056
$\mathbf{MM2}$	-0.231898 ± 0.023562	-0.016213 ± 0.021267	-0.086447 ± 0.014855	0.010104 ± 0.013498	-0.000520 ± 0.000055	0.000017 ± 0.000056
MM3	0.112635 ± 0.023953	0.009396 ± 0.021526	0.529915 ± 0.015362	0.023620 ± 0.013875	-0.001641 ± 0.000059	-0.000035 ± 0.000059
MM4	0.443388 ± 0.027404	0.034965 ± 0.025312	0.490555 ± 0.017327	0.020379 ± 0.015847	-0.000916 ± 0.000063	-0.000055 ± 0.000064
MM5	-0.007251 ± 0.033780	-0.018268 ± 0.031476	0.372092 ± 0.020586	0.045809 ± 0.019005	0.000917 ± 0.000074	0.000069 ± 0.000074

Signal definition

- Standard T2K quality event (good spill, good detector)
- Detector acceptance and tag
 - 1. HNMT in FGD2 Fiducial Volume (FV)
 - 2. Tracks quality in TPC
 - 3. External veto cut on FGD2

4. Muon PID

$$L_{MIP} = \frac{L_{\mu} + L_{\pi}}{1 - L_p} > 0.8 \qquad L_{\mu} > 0.05$$

5. No pion in the final state

• Charged current single pion production ($CC1\pi$)

Backgrounds: • Neutral current single pion production (NC1 π)

- Deep inelastic scattering (DIS)
- Out of fiducial volume interaction (OOFV)

Backward systematic

Strategy

- In backward tracks first hit position and fitted tracks are offset
- Migrated and not migrated events have a different 1st hit distribution Normali

 $f_{MC}(X)^{\text{non migrated}} + \beta \times f_{MC}(X)^{\text{migrated}}$

 $\beta_4 = 0.1068 \pm 0.0222(20.8\%)$

- reweight backward events
- + 20% from fit on CC-inclusive data
- ± 100% extreme hypothesis

NEUT

0

0.08

0.06

0.04

0.02

-10000-8000 -6000 -4000 -2000 0 2000 4000 6000 8000 10000

0.06

0.05

0.04

0.03 0.02

0.01

Forward

Backward

±20%: ~0.7 % ±100%: ~3.5 %

Amount of backward tracks is basically unknown, it need to constraint it from control sample in data.

Integral

Gap

10000-8000 -6000 -4000 -2000 0 2000 4000 6000 8000 10000

(PosHit², -PosFit²_{1et})+(PosHit², -PosFit²_{2ed})

0.04

matched scint scint Matched water to X laver

Forward scint to scint

Backward scint to scini Forward water to scint

Backward water to scint

Fitted function

- Data

Fit

FGD1

FGD1 control sample

True vertex layer 🗰 Reco vertex layer 🗰

Ratio x-layer/y-layer

$CC0\pi$ Hybrid FGD1 sample

Backward systematics

Momentum

Direction

Hack the FGD1 brings similar results as in FGD2 on backward systematics.

Results Hybrid FGD1

 $\begin{aligned} &\mathsf{R}_{\mathsf{FW/S}} \ (\mathsf{DATA}) = 0.995 \pm 0.021 \ (\sim 2.1\% \ \mathsf{stat.}) \pm 0.021 \ (\sim 2.1\% \ \mathsf{bkw.}) \pm 0.009 \ (\sim 0.9\% \ \mathsf{syst.}) \\ &\mathsf{R}_{\mathsf{FW/S}} \ (\mathsf{MC}) \ = 0.993 \pm 0.021 \ (\sim 2.1\% \ \mathsf{stat.}) \pm 0.021 \ (\sim 2.1\% \ \mathsf{bkw.}) \pm 0.009 \ (\sim 0.9\% \ \mathsf{syst.}) \end{aligned}$

Detector systematics

		ECD9(CENIE) [07]	II
	FGD2(NEUT) [%]	FGD2(GENIE) [%]	Hypria FGDI(NEUT) [%]
BFiled	0.003	0.007	0.002
MomResolution	0.082	0.103	0.264
MomScale	0.008	0.005	0.005
TPCPID	0.453	0.514	0.496
TPCClusterEff	$> 10^{-6}$	$> 10^{-6}$	$> 10^{-6}$
TPCTrackEff	0.121	0.140	0.134
TPCFGDMatchEff	0.029	0.020	0.028
ChargeID	0.351	0.408	0.302
Michelelectron	0.002	0.003	0.003
OOFV	0.258	0.394	0.384
PileUp	0.004	0.003	0.006
πSI	0.109	0.179	0.187
FGDMass	Estimate	d from the number of neu	tron in the FV
all syst	0.88	1.22	0.94
Integrated		[∞] ^{1.4}	
	-		Det.
NEUT: ~2.3 % s	stat.		Det. + Stat.
~0.9% s	/st.		т
GENIE: ~2.3%	stat.		
~1.2% s	yst.		
Systematic error:	order of percent in		
each bin and less t	han 1% integrated	0.0	
		0.7 2000	4000 6000 8000 10000 P _{II} (MeV/c)

Theoretical systematics (I)

- Taken into account theoretical parameters in BANFF 2015
- Splitted parameters for C and O
- Reweighted sample to estimate the systematics

Reference sample: NEUT Fake dataset: reweighted NEUT

- 14 variation for each parameter around the nominal value and within its validity range
- Response functions
- Extraction of ratio systematics via 10k throws

Response functions

Theoretical systematics (II)

- 10k throws with proper correlation btw parameters
- Evaluation of R(W/S,Throw) from the response functions

Purity FGD1/FGD2

