Towards (anti)hydrogen production

Amélia Leite

 ${\rm SPP}/{\rm Irfu},$ Cea ${\rm Saclay}$

OUTLINE

- ► Motivation for GBAR
- ▶ GBAR in 3 steps
- ▶ How do we produce (anti)hydrogen?
- ▶ Positron production and accumulation
- Positronium
- ► Proton source
- ► Conclusion

MOTIVATION

Weak Equivalence Principle is a cornerstone of relativity \downarrow Never been tested with Antimatter \downarrow Absence of primordial antimatter in the observable Universe \rightarrow Different behaviour of antimatter under gravity? \downarrow **GBAR:** Gravitational Behaviour of Antihydrogen at Rest \downarrow \bar{g} measurement

GBAR: GRAVITATIONAL **B**EHAVIOUR OF **A**NTIHYDROGEN AT **R**EST

4

Measure the acceleration of \overline{H} in free fall

$$\Delta z = \frac{1}{2} \frac{m_g}{m_i} g(\Delta t)^2 + v_{0,z} \Delta t$$

 m_g gravitational mass of \overline{H} m_i inertial mass of \overline{H} Δt free fall time Δz free fall height g gravitational acceleration $v_{0,z}$ initial vertical velocity

GBAR: GRAVITATIONAL **B**EHAVIOUR OF **A**NTIHYDROGEN AT **R**EST

Measure the acceleration of \overline{H} in free fall

$$\Delta z = \frac{1}{2} \frac{m_g}{m_i} g(\Delta t)^2 + v_{0,z} \Delta t$$

 m_g gravitational mass of $\overline{\mathbb{H}}$ m_i inertial mass of $\overline{\mathbb{H}}$ Δt free fall time

 Δz free fall height

 $oldsymbol{g}$ gravitational acceleration

 $v_{0,z}$ initial vertical velocity

Original idea:

Use \bar{H}^+ ions to achieve μK temperature (0.1 m/s) by sympathetic cooling $\rightarrow e^+$ photodetachment $\rightarrow \bar{H}$ free fall

GBAR in 3 steps

 $\overline{7}$

GBAR in 3 steps

GBAR @ SACLAY

$$\bar{p} + Ps \rightarrow \bar{H} + e^- @Cern$$

$$\bar{H} + Ps \rightarrow \bar{H}^+ + e^- @Cern$$

POSITRON ACCUMULATION

Buffer gas trap

Charged particles can be stored in a Penning trap ad eternum (if your trap is good enough!)

Yet the e⁺ need to loose enough energy \rightarrow use a buffer gas for inelastic collisions: $e_{8-11eV}^+ + N_2 \rightarrow e^+ + N_2^*$

POSITRON ACCUMULATION

Buffer gas trap

Charged particles can be stored in a Penning trap ad eternum (if your trap is good enough!)

Yet the e⁺ need to loose enough energy \rightarrow use a buffer gas for inelastic collisions: $e_{8-11eV}^+ + N_2 \rightarrow e^+ + N_2^*$

Penning-Malmberg trap

Store e^+ bunches and form a plasma with $10^{10}~\mathrm{e}^+$

Two stage trap with a third stage accumulator Efficiency $\sim 20\%$ to 30%

We are slowly building the trap from scratch...

Now it looks better but it's not ready yet!

Penning-Malmberg trap

PENNING-MALMBERG TRAP

27 annular electrodes: electrostatic field \rightarrow longitudinal confinement

Penning-Malmberg trap

ACCUMULATION TECHNIQUE

 e^+ injection $\rightarrow e^+$ confinement + stacking $\rightarrow e^+$ ejection

ACCUMULATION TECHNIQUE

 e^+ injection $\rightarrow e^+$ confinement + stacking $\rightarrow e^+$ ejection

POSITRONIUM PRODUCTION

PROTON SOURCE

Quadrupole

REACTION SCHEME

- Setup assembly in progress
- ▶ Commission during summer
- ► Stay tuned for hydrogen production next fall!

Thank you!

QUESTIONS?

EXTRA SLIDES

GBAR vs AEGIS

$$extbf{GOAL: } rac{\Delta \mathbf{g}}{\mathbf{g}} \leq 1\%$$

 $\begin{array}{l} \mbox{GBAR: cooled $\bar{\rm H}^+$} \rightarrow {\rm slow \bar{H}} \\ \mbox{L} = 0.1 \, {\rm m ~and} \; v_{\bar{H}} \; = 0.5 \, {\rm m/s} \Rightarrow 20 \, {\rm cm} \\ \mbox{($T_{\bar{H}}$} \sim 10 \, \mu K \sim 7 neV) \end{array}$

AEGIS:
$$\overline{H}$$
 beam
 $L = 1 \text{ m}$ and $v_{\overline{H}} = 500 \text{ m/s} \Rightarrow 20 \,\mu\text{m}$
 $(T_{\overline{H}} \sim 100 \,mK \sim 7 \,\mu eV)$

$$H$$

$$L$$

$$h = v_z^0 t + \frac{1}{2m_i} gt^2 = v_z^0 \left(\frac{L}{v_h}\right) + \frac{1}{2} \frac{m_g}{m_i} g\left(\frac{L}{v_h}\right)^2$$

Equivalence principle

"The trajectory of a point mass in a gravitational field depends only on its initial position and velocity, and is independent of its composition and structure."

POSITRONIUM PRODUCTION

Mesoporous film

- pure silica (SiO_2) with nanometer size pores
- ► emits orho-positronium (~10 meV) upon implantation of e⁺ (~keV)
- ▶ high ($\sim 30\%$) efficiency

POSITRONIUM PRODUCTION

Mesoporous film

- pure silica (SiO_2) with nanometer size pores
- ► emits orho-positronium (~10 meV) upon implantation of e⁺ (~keV)
- ▶ high ($\sim 30\%$) efficiency

Ps cloud density:

@Cea: 10^{10} Ps/cm^3 @Cern: 10^{12} Ps/cm^3

Positronium production & spectroscopy

Spectroscopy

Detection of the fluorescence light: 3D to 2P transition \rightarrow infra-red photon at 1312nm 2P to 1S transition \rightarrow UV photon at 243nm

Positronium production & spectroscopy

Spectroscopy

Detection of the fluorescence light: 3D to 2P transition \rightarrow infra-red photon at 1312nm 2P to 1S transition \rightarrow UV photon at 243nm

Detectors:

 $\begin{array}{l} {\rm Annihilation} \rightarrow {\rm scintillators} \ {\rm Fluorescence} \rightarrow {\rm optical} \ {\rm fibers} \\ + \ {\rm photomultipliers} \end{array}$

HYDROGEN DETECTION

Background sources

- ▶ Gamma radiaton from e⁺ and Ps annihilation
- ► MCP noise
- ▶ Charged particles separated by TOF

CROSS SECTION MEASUREMENTS

Only one previous study on $p + Ps \rightarrow H + e^+$ for p energies 11.3, 13.3 and 15.8 keV with a total of **211 events**

Merrison et al, Phys. Rev. Letters 78,2728 (1997)