

www.cea.fr

Optimization analysis of Pressurized Water Reactors in the framework of renewable energies deployment in the french energy mix

<u>Muniglia Mathieu</u>¹, Le Pallec Jean-Charles¹, Do Jean-Michel¹, Grard Hubert¹, Verel Sébastien², David Sylvain³

> ¹CEA Saclay ²Université du littoral Côte d'Opale ³IPN Orsay

PHENIICS Days, LAL – May 9-11, 2016

Introduction

Large scale deployment of **intermittent renewable energies** in France

Highly fluctuating production rate (up to 3 times the average)

Increase of the power variations as well in frequency as in amplitude

- Challenge : Optimize the nuclear power plant (NPP) toward **better manageability** (meeting the safety constraints), so they can cope with huge power variations
- Methodology :
 - Develop a multi-physics 3D model of the NPP in the APOLLO3® code
 - **Optimization** of the control systems using meta-heuristics methods
- The model :
 - Input : power transient
 - Output : boron concentration, temperature, axial offset (AO), linear power Problems :
 - **robustness** / **precision** of the model (wide range of configurations)
 - calculation **time** (thousands calculations for one optimization process)

PWR 1300 in a nutshell

Representation of a reactor core

PWR 1300 (electrical power : 1300MWe, thermal power : 3800MWth)

193 assemblies (120 UO2, 73 UO2+GdO3)

Dimensions : diameter = 3m, height = 4,5m

PWR 1300 in a nutshell

PWR 1300 in a nutshell

R

G1

N1

R

N2

PWR 1300 (electrical power : 1300MWe, thermal power : 3800MWth)

193 assemblies (120 UO2, 73 UO2+GdO3)

Dimensions : diameter = 3m, height = 4,5m

Each control rod is made of **24 pins** which are inserted in some fuel assemblies

Temperature regulation (R) : 9 "black" rods (B4C in the half top, AIC in the half bottom)

- Power shimming :
 - 4 "gray" rods G1 (AIC and stainless steel)
 - 8 "gray" rods G2
 - 8 "black" rods N1
 - 8 "black" rods N2

N1

G2

R

Core			
Neutronics	Thermalhydraulics	Fuel	Boron management
Geometry : 3D Type : quasi-static Solver 3D : Diffusion Number of groups : 2	Geometry : multi1D Calculation : enthalpy balance Type : stationary	Geometry : multi1D Calculation : thermics Type : stationary	Operator model
Primary – Secondary heat exchanges			
Steam generator model			

load-follow type transient (6/18 : **day/night** consumption)

Lower plateau at 30%PN and power variation of 5%PN/min = more penalizing

We compare our model to the 0D Model described in [1]:

- Point kinetics
- Better description of the secondary loop
- **Simulator** approach
- Compared to data from NPP in operation

henable to ensure a good behavior of our model

Power transient Core management

$$AO = (P_t - P_b) / (P_t + P_b)$$
$$\Delta I = Pr * AO$$

Control the state of the core **during operation**

PAGE 12 / 16

Power transient Core management

$$AO = (P_t - P_b) / (P_t + P_b)$$
$$\Delta I = Pr * AO$$

Control the state of the core **during operation**

Avoided **drift** on the plateau operator effect (axial offset control)

PAGE 13 / 16

Optimization methodology :

1) with the **actual mix**

2) after massive deployment of intermittent energies

- Parameters of the **control rods** are targeted (speed program, overlap, insertion sequence, etc.)
- Work in progress :
 - Compute good criteria (control diagram characterization / PCI)
 - Research and develop efficient evolutionary algorithms

Satisfactory 3D model as regard to :

- The 0D Model
- Its performance (operator behavior, calculation time)

Remaining work on the model : reduce the **calculation time** (cross sections)

Perspectives : launch the **optimization process**

Cea

Thank you for your attention ! Any questions ?

Département de Modélisation des Systèmes et Structure

Laboratoire de Protection, d'Études et de Conception (LPEC)

Service d'Étude des Réacteurs et de Mathématiques Appliquées (SERMA)

commercial RCS Paris B 775 685 019

Établissement public à caractère industriel et

T. +33 (0)1 69 08 35 07