Optimization analysis of Pressurized Water Reactors in the framework of renewable energies deployment in the french energy mix

Muniglia Mathieu1, Le Pallec Jean-Charles1, Do Jean-Michel1, Grard Hubert1, Verel Sébastien2, David Sylvain3

1CEA Saclay
2Université du littoral Côte d'Opale
3IPN Orsay
Large scale deployment of **intermittent renewable energies** in France

Highly fluctuating production rate (up to 3 times the average)

Increase of the power variations as well in frequency as in amplitude
Introduction

Challenge: Optimize the nuclear power plant (NPP) toward **better manageability** (meeting the safety constraints), so they can cope with huge power variations.

Methodology:
- Develop a **multi-physics 3D model** of the NPP in the APOLLO3® code
- **Optimization** of the control systems using meta-heuristics methods

The model:
- Input: power transient
- Output: boron concentration, temperature, axial offset (AO), linear power

Problems:
- **robustness / precision** of the model (wide range of configurations)
- calculation **time** (thousands calculations for one optimization process)
PWR 1300 in a nutshell

- **PWR 1300** (electrical power: 1300MWe, thermal power: 3800MWth)
- **193** assemblies (120 UO₂, 73 UO₂+GdO₃)
- Dimensions: diameter = 3m, height = 4.5m

Representation of a reactor core
PWR 1300 in a nutshell

PWR 1300 (electrical power: 1300 MWe, thermal power: 3800 MWth)

193 assemblies (120 UO2, 73 UO2+GdO3)

Dimensions: diameter = 3 m, height = 4.5 m

Each control rod is made of 24 pins which are inserted in some fuel assemblies
PWR 1300 in a nutshell

- **PWR 1300** (electrical power : 1300MWe, thermal power : 3800MWth)
- **193** assemblies (120 UO2, 73 UO2+GdO3)
- Dimensions : diameter = 3m, height = 4,5m

Representation of a reactor core

- Each control rod is made of **24 pins** which are inserted in some fuel assemblies
- **Temperature regulation** (R) : 9 “black” rods (B4C in the half top, AIC in the half bottom)
- **Power shimming** :
 - 4 “gray” rods G1 (AIC and stainless steel)
 - 8 “gray” rods G2
 - 8 “black” rods N1
 - 8 “black” rods N2
Design of the multi-physics model

<table>
<thead>
<tr>
<th>Core</th>
<th>Neutronics</th>
<th>Thermalhydraulics</th>
<th>Fuel</th>
<th>Boron management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geometry : 3D
 Type : quasi-static
 Solver 3D : Diffusion
 Number of groups : 2</td>
<td>Geometry : multi1D
 Calculation : enthalpy balance
 Type : stationary</td>
<td>Geometry : multi1D
 Calculation : thermics
 Type : stationary</td>
<td>Operator model</td>
</tr>
<tr>
<td>Primary – Secondary heat exchanges</td>
<td>Steam generator model</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power transient

Definition of the power transient

- **load-follow** type transient (6/18 : *day/night* consumption)

- Lower plateau at 30%PN and power variation of 5%PN/min = **more penalizing**

![Diagram](image-url)
We compare our model to the 0D Model described in [1]:

- **Point kinetics**
- Better description of the **secondary loop**
- **Simulator** approach
- Compared to data from **NPP in operation**

enable to ensure a good behavior of our model

Power transient
Comparison of the models

Thermal power evolution

Shape of the 0D Model well reproduced
Thermal power evolution

Shape of the 0D Model well reproduced

5\%PN difference on the lower plateau ↘ why?

Comparison of the models
\[AO = \frac{(P_t - P_b)}{(P_t + P_b)} \]

\[\Delta I = Pr \times AO \]

Control the state of the core during operation.
Power transient

Core management

Control diagram

AO = (P_t - P_b) / (P_t + P_b)

ΔI = Pr * AO

- Control the state of the core during operation
- Avoided drift on the plateau
- Operator effect (axial offset control)
Optimization methodology:
1) with the **actual mix**
2) after **massive deployment** of intermittent energies

Parameters of the **control rods** are targeted (speed program, overlap, insertion sequence, etc.)

Work in progress:
- Compute **good criteria** (control diagram characterization / PCI)
- Research and develop efficient **evolutionary algorithms**
Conclusions

- **Satisfactory** 3D model as regard to:
 - The 0D Model
 - Its performance (operator behavior, calculation time)

- Remaining work on the model: reduce the **calculation time** (cross sections)

- Perspectives: launch the **optimization process**
Thank you for your attention!

Any questions?

Relative power

Time

Commissariat à l’énergie atomique et aux énergies alternatives
Centre de Saclay
91191 Gif-sur-Yvette Cedex
T. +33 (0)1 69 08 35 07
Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Direction de l’Énergie Nucléaire
Direction déléguée aux Activités Nucléaires de Saclay
Département de Modélisation des Systèmes et Structures
Service d'Étude des Réacteurs et de Mathématiques Appliquées (SERMA)
Laboratoire de Protection, d'Études et de Conception (LPEC)