

Study of a Direct Conversion of Wind Energy into Electricity

Elodie Verzeroli

PHD Directors: Serge Della Negra (IPNO) / Bernard Rasser (Orsay Group)

Table of Contents

- 1. State of the Art
- 2. Principle / How does it work?
- 3. Charged Particle Production
- 4. Prototype Design
- 5. Some Results and Perspectives

What is Wind Energy?

State of the Art | Principle | Particle Production | Prototype | Results and Perspectives

- The wind is a form of solar energy
- Irregular but with a strong potential
- Wind turbine converts wind energy into electricity

- What are the Wind turbine limits ?
 - ➤ Cut-out speed (usually 25 m/s)
 - ➢ Noise pollution
 - ➢ High cost + High maintenance

How to solve these issues ?

Current Wind Turbines

Wind turbine farm in Saint-Félix-Lauragais Haute Garonne (2011)

Offshore wind turbine farm in Denmark Siemens, 2013

Floating vertical axis wind turbine VERTIWIND Project

What about a Bladeless system ?

Electrical	
Energy	

What about a Bladeless system ?

How does this work?

ORSAY

How would it look like ?

State of the Art | **Principle** | Particle Production | Prototype | Results and Perspectives

Isolated system without a collector

How can you obtain charged particles ?

State of the Art | Principle | Particle Production | Prototype | Results and Perspectives

What do we need?

- Efficient creation of charged particles with suitable properties
- Liquid particles \rightarrow no need for recycling
- Production of a large number of particles at very low energy consumption

How can you obtain charged particles ?

State of the Art | Principle | Particle Production | Prototype | Results and Perspectives

What do we need?

- Efficient creation of charged particles with suitable properties
- Liquid particles \rightarrow no need for recycling
- Production of a large number of particles at very low energy consumption

EHDA (Electro-Hydro-Dynamic Atomization)

An EHDA example From DBV technologie

Charged droplets created at the apex From Cloupeau "Research on Wind Energy Conversion"

What are the limitations ?

State of the Art | Principle | Particle Production | Prototype | Results and Perspectives

- Reducing the ion mobility $\mu = f(q, d)$
- Controlling the particle size: monodisperse particles or a stable sized distribution
- For liquid particles \rightarrow the Rayleigh limit

 $q_{max} = 2\pi * \sqrt{2\gamma \varepsilon_0 * d^3}$

Instability of a droplet at the Rayleigh limit Denis Duft, and al.

- Evaporation of liquid during flight \rightarrow decrease of the particle size
- Collisions between charged and neutral particles in air ightarrow fragmentation / neutralization

Ensure better coupling between particles and the wind Multi-Injectors system

State of the Art | Principle | **Particle Production** | Prototype | Results and Perspectives

Charged particles emitted from a cone

Glass capillary with a metallic wire inside

11/05/2016

State of the Art | Principle | **Particle Production** | Prototype | Results and Perspectives

Charged particles emitted from a cone

Glass capillary with a metallic wire inside

11/05/2016

State of the Art | Principle | **Particle Production** | Prototype | Results and Perspectives

Charged particles emitted from a cone

Glass capillary with a metallic wire inside

11/05/2016

State of the Art | Principle | **Particle Production** | Prototype | Results and Perspectives

Charged particles emitted from a cone

Glass capillary with a metallic wire inside

State of the Art | Principle | Particle Production | **Prototype** | Results and Perspectives

11/05/2016

ORSAY

State of the Art | Principle | Particle Production | **Prototype** | Results and Perspectives

ORSAY

11/05/2016

State of the Art | Principle | Particle Production | **Prototype** | Results and Perspectives

Some Results: The EWICON Project

State of the Art | Principle | Particle Production | Prototype | Results and Perspectives

Outputs of the Electrostatic Wind Energy Converter project led at Delft University

Some Results: The EWICON Project

State of the Art | Principle | Particle Production | Prototype | Results and Perspectives

Outputs of the Electrostatic Wind Energy Converter project led at Delft University

Next Steps

State of the Art | Principle | Particle Production | Prototype | Results and Perspectives

To be improved	How ?
Increasing the wind conversion yield	Decreasing the ion mobility
Removing the interaction between the injector nozzles	Designing better shielding Studying extraction simulations

A new prototype is being designed to improve these points

Other possibilities

State of the Art | Principle | Particle Production | Prototype | Results and Perspectives

Van de Graaff Generator

Wind Energy Convertor

A new kind of Van de Graaff !

Pelletron Generator from NEC (ANDROMEDE Project)

11/05/2016

The Dream Team !

The Dream Team !

Recoverable Power

INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY

