

Alice Somaini PhD director: Sylvain David Supervisor : Xavier Doligez

May 9-11, 2016

Plan

- I. Reactor simulations:
- Tools and issues
- > Simplified reactor model
- II. Neutron axial leakage study:
- > Methodology
- > Results

III. Conclusions and perspectives

The simplified reactor model

The simplified reactor model

May 9-11, 2016

The simplified reactor model

The simplified reactor model

Assembly simulation

Simplified model approximations:

- Simplified geometry
- Power control instrumentations approximately represented
- Neutron leakage neglected

Assembly simulation

Simplified model approximations:

- Simplified geometry
- Power control instrumentations approximately represented
- Neutron leakage neglected

Inter-assembly gap, no spatial geometry division

May 9-11, 2016

PHENIICS Doctoral School Days

Assembly simulation

Simplified model approximations:

Simplified geometry

Control rods, boron concentration

- Power control instrumentations approximately represented
- Neutron leakage neglected

Inter-assembly gap, no spatial geometry division

May 9-11, 2016

PHENIICS Doctoral School Days

Assembly simulation

Simplified model approximations:

Simplified geometry

Control rods, boron concentration

- Power control instrumentations approximately represented
- Neutron leakage neglected

Inter-assembly gap, no spatial geometry division

Homogeneous leakage models

May 9-11, 2016

Assembly simulation

Simplified model approximations:

Simplified geometry

Control rods, boron concentration

- Power control instrumentations approximately represented
- Neutron leakage neglected

Axial leakage

Inter-assembly gap, no spatial geometry division

Homogeneous leakage models

Axial leakage study: methodology

4 configurations of a PWR lattice:

- $\varepsilon_{U-235} = 3.5\%$
- 450 ppm of boron

Axial leakage study: methodology

4 configurations of a PWR lattice:

- $\varepsilon_{U-235} = 3.5\%$
- 450 ppm of boron

Axial leakage study: methodology

4 configurations of a PWR lattice:

• $\varepsilon_{U-235} = 3.5\%$

Inventories: biases compared to the cube configuration

$$\Delta\% = \frac{\left(N_x^i - N_x^{cube}\right)}{N_x^{cube}} \%$$

Isotope	Refl	Open	Mod-Refl
U8	0.001	-0.03	-0.004
U5	0.02	8.76	3.87
Pu39	-0.01	-0.14	-0.74
Pu40	-0.07	-1.44	-0.82
Pu41	-0.02	-1.78	-1.33

May 9-11, 2016

Inventories: biases compared to the cube configuration

$$\Delta\% = \frac{\left(N_x^i - N_x^{cube}\right)}{N_x^{cube}} \%$$

lsotope	Refl	Open	Mod-Refl
U8	0.001	-0.03	-0.004
U5	0.02	8.76	3.87
Pu39	-0.01	-0.14	-0.74
Pu40	-0.07	-1.44	-0.82
Pu41	-0.02	-1.78	-1.33

May 9-11, 2016

Estimation of the end of the cycle

May 9-11, 2016

Estimation of the end of the cycle

Fission cross section @EOC

May 9-11, 2016

Fission cross section @EOC

Open assembly: neutron axial leakage Moderated-reflected assembly: presence of moderator and reflector

May 9-11, 2016

• Reactor simulations are needed to evaluate different strategies

- Reactor simulations are needed to evaluate different strategies
- They are based on a simplified model

- Reactor simulations are needed to evaluate different strategies
- They are based on a <u>simplified model</u>
- The assembly model leads to some biases: study of neutron axial leakage

4 configurations, one of reference and three of real size PWR assembly, reflected, open and moderated-reflected; 80 independent simulations

- Reactor simulations are needed to evaluate different strategies
- They are based on a <u>simplified model</u>
- The assembly model leads to some biases: study of neutron axial leakage

4 configurations, one of reference and three of real size PWR assembly,

reflected, open and moderated-reflected; 80 independent simulations

Axial leakage impact on isotope inventories (more than 8% for U235)

Error in the Burn-up estimation (end of the cycle)

Modification of cross sections: impact on neutron spectrum

- Reactor simulations are needed to evaluate different strategies
- They are based on a <u>simplified model</u>
- The assembly model leads to some biases: study of neutron axial leakage

4 configurations, one of reference and three of real size PWR assembly, reflected, open and moderated-reflected; 80 independent simulations

Axial leakage impact on isotope inventories (more than 8% for U235)

Error in the Burn-up estimation (end of the cycle)

- Modification of cross sections: impact on neutron spectrum
- Study of <u>neutron radial leakage</u>: problem related to the neighborhood

- Reactor simulations are needed to evaluate different strategies
- They are based on a <u>simplified model</u>
- The assembly model leads to some biases: study of neutron axial leakage

4 configurations, one of reference and three of real size PWR assembly, reflected, open and moderated-reflected; 80 independent simulations

Axial leakage impact on isotope inventories (more than 8% for U235)

Error in the Burn-up estimation (end of the cycle)

- Modification of cross sections: impact on neutron spectrum
- Study of <u>neutron radial leakage</u>: problem related to the neighborhood

Thank you for your attention