ATLAS RESULTS WITH 13 TEV DATA

Séminaire LAL

Nicolas Morange May 10, 2016

A highly subjective selection of ATLAS results with 2015 data

Introduction

Standard Model

Higgs

SUSY is still not dead

Resonances Everywhere

The diphoton thing

Conclusions

INTRODUCTION

THE LHC AT 13 TEV

Results of 2 years of consolidation works

- All sectors trained to 6.5 TeV ⇒ 13 TeV collisions !
- 25 ns bunch spacing
- 2200 bunches per beam (design: 2800)
- Limitations: e-cloud effect ⇒ requires dedicated scrubbing runs
- 2015: beginning of intensity ramp-up
- 2016: β^{*} = 40 cm

THE ATLAS DETECTOR

N. Morange (LAL Orsay)

THE IBL: A NEW DETECTOR IN ATLAS

The Insertable B-Layer

- New pixel layer inserted in the existing tracker
- 3 cm from the beam axis
- Improve track IP resolutions at lower p_T
- Greatly help *b*-tagging in high pileup environments

A good start

- Very good data-taking efficiency and high data quality
- 3.2fb⁻¹ of data used by most analyses out of 3.9fb⁻¹ recorded
- 100pb⁻¹ at 50ns bunch spacing, the rest at 25ns
- Lower pile-up than 2012 for similar instantaneous lumi

ATLAS pp 25ns run: August-November 2015										
Inner Tracker			Calorin	neters	Muon Spectrometer				Magnets	
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
93.5	99.4	98.3	99.4	100	100	100	100	100	100	97.8

All Good for physics: 87.1% (3.2 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable beam in pp collisions with 25m bunch spacing at vis-13 TeV between August-November 2015, corresponding to an integrated luminosity of 3.7 fb⁻¹. The lower DQ efficiency in the Poel detector is due to the IBL being turned off for two runs, corresponding to 0.2 fb⁻¹. Analyses that don't rely on the IBL can use those runs and thus at 2.4 fb⁻¹ with a corresponding to DC, fb⁻¹. Analyses that don't rely on the IBL can use those runs and thus at 2.4 fb⁻¹ with a corresponding to DC, fb⁻¹.

THE MONEY PLOTS

- Huge boost in cross-sections for high mass states
- \Rightarrow Searches are focus of first year of data-taking

STANDARD MODEL

A recent 8 TeV result

- Detection of B₃(μμ) at rate compatible with SM one of the Run1 achievements
 Very sensitive probe for new states in loops
- ATLAS less optimized than LHCb or CMS
- BDT to separate signal from main background combinatorics of *B* and *C* hadron decays + partially reconstructed *B* decays
- Then fit invariant mass in BDT bins
- Results:
 - $BR(B_0 \rightarrow \mu\mu) < 4.2 \times 10^{-10}$ (stat dominated)
 - $BR(B_{\rm s}^0
 ightarrow \mu\mu) = 0.9^{+1.1}_{-0.8} \times 10^{-9}$ (stat dominated)
 - Compatibility with SM: 2.0 σ

Warming up: W and Z

Starting with the basics

- Standard candles
- Allow to check performances of electrons, muons, MET
- High cross-sections \rightarrow little data needed for first measurements

W and Z physics

Cross-section ratios

- Even with inclusive measurements, x-sec ratios powerful tools
- Partial cancellation of systematics
- Stil systs dominated: JES in MET, multijet bkg in W channels
- PDF discrimination with W/Z or W⁺/W⁻

WARMING UP: tt

Next step after W and Z

- Add jets and *b*-tagging to the game
- Measurements use single or dileptonic decays
- Very pure *eµ* channel leading the cross-section measurements
- Also perform unfolded measurements of tt+jets
 - ⇒ Valuable input on MC generators modelling for searches

COMPLEX PROCESSES: *ttW, ttZ*

Why early $t\overline{t} + V$ measurements ?

- Relatively rare processes: $\sigma \sim 0.6 \, {
 m pb}$
- Important backgrounds to tt
 t H, especially in multilepton channels
- Also backgrounds in SUSY multilepton searches
- Probe neutral current coupling of t quark

- Select events with 2 SS, 3, or 4 leptons
- Rely on control regions to normalize main backgrounds
- Results:
 - Stat-dominated by factor 2-3
 - $\sigma_{\rm ffZ} = 0.9 \pm 0.3 \, {\rm pb} \, ({\rm NLO:} \, 0.76 \pm 0.08)$
 - $\sigma_{t\bar{t}W} = 1.4 \pm 0.8 \, \mathrm{pb} \, (\mathrm{NLO:} \, 0.57 \pm 0.06)$

Higgs

Only $\gamma\gamma$ and 4ℓ channels ?

- Higgs does not benefit that much from increased \sqrt{s}
- Except ttH
- Results from high resolution channels very stat dominated
- Other channels (WW, ττ, VHbb) are complicated and delicate analyses, and cannot be competive with 3.2fb⁻¹ of data

Analysis

- Selection of a pair of tight photons with $E_T/m_{\gamma\gamma} > 0.35(0.25)$ for leading (subleading) γ
- wrt Run1: isolation cuts made more robust at high pile-up
- Data-driven study of background composition
- Background fit using functional form

Analysis

- Selection of leptons with wide acceptance
- Pair of leptons compatible with *Z* ; second pair lower inv mass
- Main background ZZ from MC, checked in high masses
- Reducible backgrounds from fakes and havy flavours estimated with control regions

EARLY HIGGS RESULTS

Results

- Individual results obtained assuming m_H = 125.09 GeV
- Expressed in ficudial x-sec then total x-sec
- Total x-secs vs \sqrt{s} : the most funny plot of the year
- very large stat uncertainties

SUSY IS STILL NOT DEAD

A classic SUSY testbench

- Strong squark and gluino production
- Simple decay chains to neutralino (LSP)
 - ⇒ final states: jets + large MET ; large effective mass
- Interpretation: simplified models with other SUSY particles at very high masses

Requirement	Signal Region							
requirement	2jl	2jm	2jt	4jt	5j	6jm	6jt	
E_T^{miss} [GeV] >	200							
$p_T(j_1)$ [GeV] >	200	300		200				
$p_T(j_2)$ [GeV] >	200	50	200	100				
$p_{\rm T}(j_3)$ [GeV] >		-			100			
$p_{\rm T}(j_4)$ [GeV] >		-		100				
$p_T(j_5)$ [GeV] >	-				100			
$p_T(j_6)$ [GeV] >	-				100			
$\Delta \phi(\text{jet}_{1,2,(3)}, E_T^{\text{miss}})_{\min} >$	0.8	8 0.4 0.8 0.4						
$\Delta \phi(\text{jet}_{i>3}, E_T^{\text{miss}})_{\text{min}} >$		-		0.2				
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$ [GeV ^{1/2}] >	15 20			-				
Aplanarity >	-			0.04				
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	-		0.2		0.	25	0.2	
$m_{\rm eff}({\rm incl.})$ [GeV] >	1200	1600	2000	2200	1600	1600	2000	

Analysis strategy

- Simple and robust analysis: cut-and-count in signal (SR) and control regions (CR)
- SR are designed to maximize sensitivity for some benchmark signal samples
- CR used to do data estimates of all backgrounds, in regions close to SR

N. Morange (LAL Orsay)

0 LEPTON: RESULTS

Results

- Background uncertainties in range 10-30%
- When interpreting limits in SUSY plane, chose for each point the SR with best sensitivity
- Limits already exceed significantly the Run1 results

Z+jets+MET search

- Targets a different gluino decay chain
- Sparked some interest after ATLAS reported a 3σ excess in Run1

Analysis strategy

- 1 signal region: leptonic Z + ≥ 2 jets + MET> 225 GeV + HT> 600 GeV
- Otherwise same strategy as for 0 lepton: backgrounds estimated through CR, validated in other regions

Results

- 21 observed versus 10.3 ± 2.3 expected (2.2σ) symmetric in ee and µµ channels.
- not conclusive to confirm or disprove Run1 result
- (but on the other side of the LHC, CMS sees nothing)

STOP SEARCHES

Stop searches

- Naturalness in SUSY: stop is relatively light
- Several searches in different final states depending on assumed SUSY spectrum
- Here, final state with *t* pair + MET, in semileptonic decays

Analysis

- Basic selection: 1 good lepton, \geq 4 jets, \geq 1 b-jet
- Then define regions based on MET and other kinematics
- SR2 and SR3 quite boosted: use large-R jet kinematics for additional discrimination
- Limits exceeding Run1 results

Unconventional signatures

- Long-lived high mass particles
- e.g split SUSY: R-hadron containing a gluino, with ~ 1 ns lifetime
- β < 1, high dE/dx in pixel detector
 - ⇒ Look for isolated and high-pT track with high dE/dx
 - IBL helps to reduce tails: -50% above 1.8 MeV cm² g⁻¹
 - Trigger on MET

ATLAS SUSY Searches* - 95% CL Lower Limits Status: March 2016

ATLAS SUSY Searches* - 95% CL Lo						ver Limits	ATL	AS Preliminary	
0.	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$ fr	dt[fb ⁻¹]	Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRACMSSM} \\ \bar{q}\bar{v}_{1}^{2} & -q\bar{s}_{1}^{2} \\ \bar{q}\bar{v}_{2}^{2} & -q\bar{s}_{1}^{2} \\ \bar{q}\bar{v}_{2}^{2} & -q\bar{s}_{1}^{2} \\ \bar{s}_{2}^{2} & -q\bar{s}_{2}^{2} \\ \bar{s}_{2}^{2} & -q\bar{s}_{2}^$	$3-3 \epsilon, \mu/1-2 \tau$ 0 mono-jot $2 \epsilon, \mu$ (off-Z) 0 $1 \epsilon, \mu$ $2 \epsilon, \mu$ 0 $1-2 \tau + 0-1 \ell$ 2γ γ $2 \epsilon, \mu$ (Z) 0	2-10 jets/3 / 2-6 jets 2 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets 0-2 jets 2 jets 2 jets mono-jet	Yes 2 Yes 2	0.3 4 3.2 4 0.3 4 0.3 4 0.3 4 0.3 8 0.3 8 0.	90 GeV 810 GeV 920 GeV ²¹ _{mote} 600 GeV	1.85 TeV 1.6 TeV 1.6 TeV 1.8 TeV 1.4 TeV 1.4 TeV 1.34 TeV 1.34 TeV 1.37 TeV 1.3 TeV	$\begin{split} & H^{(1)}_{0,1}(m(\xi)) & = (M_{1}^{-1} \otimes m, \xi) + (M_{2}^{-1} \otimes m, \xi) + (M_{2}^{-1} \otimes m, \xi) \\ & = (M_{1}^{-1} \otimes m, \xi) + (M_{2}^{-1} \otimes m, \xi) + (M_{2}^{-1$	1507.0525 ATLAS-CONF-2015.062 To-synwr 1503.03290 ATLAS-CONF-2015.076 ATLAS-CONF-2015.076 1507.0525 1607.0514 1607.0603 1507.05483 1507.05483 1507.05483 1507.05483 1507.05483
3 nd gen. § med.	$\begin{array}{c} \hat{g}\hat{g}, \hat{g} \rightarrow b \tilde{b} \tilde{k}_{1}^{0} \\ \hat{g}\hat{g}, \hat{g} \rightarrow t \tilde{k}_{1}^{0} \\ \hat{g}\hat{g}, \hat{g} \rightarrow b \tilde{k}^{1} \end{array}$	0 0-1 e, µ 0-1 e, µ	3 b 3 b 3 b	Yes Yes 2 Yes 2	3.3 8 3.3 8 0.1 8		1.78 TeV 1.76 TeV 1.37 TeV	n(\tilde{k}_{1}^{0})<800 GeV n(\tilde{k}_{1}^{0})=0 GeV n(\tilde{k}_{1}^{0})<300 GeV	ATLAS-CONF-2015-067 To appear 1407.0800
3 rd gen. squarks direct production	$ \begin{array}{l} b_1b_1, \ b_1 \rightarrow b \tilde{t}_1^{D} \\ b_1b_1, \ b_1 \rightarrow b \tilde{t}_1^{D} \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow b \tilde{t}_1^{D} \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow b \tilde{t}_1^{D} \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow c \tilde{t}_1^{D} \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow c \tilde{t}_1^{D} \\ \tilde{t}_1 \tilde{t}_1, \ \tilde{t}_1 \rightarrow c \tilde{t}_1^{D} \\ \tilde{t}_2 \tilde{t}_1, \tilde{t}_2 \rightarrow \tilde{t}_1^{D} \\ \tilde{t}_2 \tilde{t}_1, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{array} $	0 2 e, μ (SS) 1-2 e, μ 0-2 e, μ 0 π 2 e, μ (Z) 3 e, μ (Z) 1 e, μ	2 b 0-3 b 1-2 b 0-2 jets/1-2 b 0-2 jets/1-2 b 1 b 1 b 1 b 6 jets + 2 b	Yes Yes 4.7/2 Yes 4.7/2 Yes 2 gYes 2 Yes 2 Yes 2 Yes 2 Yes 2	3.2 b_1 3.2 b_1 0.3 \bar{l}_1 0.3 \bar{l}_1 0.3 \bar{l}_1 0.3 \bar{l}_1 0.3 \bar{l}_2 0.3 \bar{l}_2 0.3 \bar{l}_2	640 GeV 325-540 GeV 17/170 GeV 200-300 GeV 90-245 GeV 150-600 GeV 200-400 GeV 200-400 GeV	GeV	$\begin{split} n \{\hat{r}_{1}^{0} <100 \text{ GeV } m \{\hat{r}_{1}^{0} =m\{\hat{r}_{1}^{0}\}+100 \text{ GeV } m\{\hat{r}_{1}^{0} =80 \text{ GeV } m\{\hat{r}_{1}^{0}\}+100 \text{ GeV } m\{\hat{r}_{1}^{0} =55 \text{ GeV } m\{\hat{r}_{1}^{0}\rangle-10 \text{ GeV } 150 \text{ m}\{\hat{r}_{1}^{0}\rangle+55 \text{ GeV } 150 \text{ m}\{\hat{r}_{1}^{0}\rangle>150 \text{ GeV } m\{\hat{r}_{1}^{0}\rangle>150 \text{ GeV } m\{\hat{r}_{1}^{0}\rangle>200 \text{ GeV } m\{\hat{r}_{1}^{0}\rangle=200 \text{ GeV } m\{\hat{r}_{1}^{0}\rangle=200 \text{ GeV } m\{\hat{r}_{1}^{0}\rangle=200 \text{ GeV } \end{split}$	ATLAS-CONF-2015-005 1602.08058 1209.2102,1407.0583 060516, ATLAS-CONF-2016-00 1407.0508 1403.5222 1403.5222 1506.08516
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \tilde{\ell}_{R}\tilde{\ell}_{R}^{0} \\ \tilde{\ell}_{L}^{*}\tilde{\chi}_{L}^{*}, \tilde{\ell}_{L}^{*} \rightarrow \tilde{\ell}_{V}(\ell) \\ \tilde{\ell}_{L}^{*}\tilde{\chi}_{L}^{*}\tilde{\chi}_{L}^{*} \rightarrow \tilde{\ell}_{V}(\tau) \\ \tilde{\ell}_{L}^{*}\tilde{\ell}_{R}^{*} \rightarrow \tilde{\ell}_{L}^{*}\tilde{\ell}_{R}^{*} \rightarrow \tilde{\ell}_{L}^{*}\tilde{\ell}_{R}^{*} \\ \tilde{\ell}_{L}^{*}\tilde{\ell}_{R}^{*} \rightarrow W\tilde{\ell}_{L}^{*}\tilde{\ell}_{R}^{*} \rightarrow W\tilde{\ell}_{L}^{*}\tilde{\ell}_{R}^{*} \\ \tilde{\ell}_{L}^{*}\tilde{\ell}_{R}^{*} \rightarrow W\tilde{\ell}_{L}^{*}\tilde{\ell}_{R}^{*} \rightarrow \tilde{\ell}_{R}\tilde{\ell} \\ \tilde{\ell}_{L}^{*}\tilde{\ell}_{R}^{*} \rightarrow \tilde{\ell}_{L}^{*} \\ \tilde{\ell}_{L}^{*}\tilde{\ell}_{L}^{*} \rightarrow \tilde{\ell}_{L} \\ \tilde{\ell}_{L}^{*} \rightarrow \tilde{\ell}_{L} \\ \tilde{\ell}_{L}^{*} \rightarrow \tilde{\ell}_{L}^{*} \rightarrow \tilde{\ell}_{L} \\ \tilde{\ell}_{L}^{*} \rightarrow \tilde{\ell}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \cdot 3 \ e, \mu \\ 2 \cdot 3 \ e, \mu \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes 2 Yes 2 Yes 2 Yes 2 Yes 2 Yes 2 Yes 2 Yes 2 Yes 2 Yes 2	0.3 7 0.3 8 0.3 8 0.3 8 0.3 8 0.3 8 0.3 8 0.3 8 0.3 8	96-33 GeV 190-375 GeV 355 GeV 715 GeV 715 GeV 715 GeV 715 GeV 655 GeV 115-570 GeV	m(\tilde{k}_{1}^{0})=m	$\begin{split} n(\tilde{t}_{1}^{2}) &= 0 \text{GeV} \\ n(\tilde{t}_{1}^{2}) &= 0 \text{GeV} (m(\tilde{t}_{1}^{2}) = 0, 5(m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ n(\tilde{t}_{1}^{2}) &= 0 \text{GeV} (m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ \tilde{t}_{2}^{2}, m(\tilde{t}_{1}^{2}) = 0, m(\tilde{t}_{1}^{2}) + m(\tilde{t}_{1}^{2})) \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) - n(\tilde{t}_{1}^{2}) - 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) - 0, m(\tilde{t}_{1}^{2}) - 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) - 0, m(\tilde{t}_{1}^{2}) - 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) - 0, m(\tilde{t}_{1}^{2}) - 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) - 0, m(\tilde{t}_{1}^{2}) - 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) - 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) - 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) - 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) + 0, signst a decoupled \\ n(\tilde{t}_{1}^{2}) = n(\tilde{t}_{1}^{2}) + 0, m(\tilde{t}_{1}^{2}) +$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5068 1507.05493
Long-lived particles	Direct $\hat{k}_1^+ \hat{k}_1^-$ prod., long-lived \hat{k}_1^+ Direct $\hat{k}_1^+ \hat{k}_1^-$ prod., long-lived \hat{k}_1^+ Stable, stopped \hat{g} R-hadron GMSB, stable \hat{g} R-hadron GMSB, $\hat{k}_1^+ \rightarrow \hat{c}_1^-, \hat{\mu}_1^- \rightarrow \hat{c}_1^-, \hat{\mu}_1^+ \rightarrow \hat{c}_1^-, \hat{\mu}_1^- \rightarrow \hat{c}_1^-, \hat{\mu}_1^-, \hat$	Disapp. trk dE/dx trk 0 dE/dx trk ;,µ) 1:2 µ 2 y displ. cc/cµ/µ displ. vtx + je	1 jet - - - - - - - - - - - - - - - - - - -	Yes 2 Yes 1 Yes 2 - 1 Yes 2 - 1 Yes 2 - 2 - 2	0.3 $\frac{1}{8}$ 8.4 $\frac{1}{8}$ 3.2 $\frac{1}{8}$ 9.1 $\frac{1}{8}$ 0.3 $\frac{1}{8}$ 0.3 $\frac{1}{8}$	270 GeV 495 GeV 850 GeV 850 GeV 850 GeV 100 100 100 100 100 100 100 100 100 10	1.54 TeV	$\begin{split} n(\tilde{r}_1^2) &= n(\tilde{r}_1^2) &= 160 \ MeV, \ r(\tilde{r}_1^2) &= 0.2 \ ns \\ m(\tilde{r}_1^2) &= n(\tilde{r}_1^2) &= 100 \ MeV, \ r(\tilde{r}_1^2) &= 100 \ s \\ m(\tilde{r}_1^2) &= 100 \ GeV, \ r>10 \ ns \\ m(\tilde{r}_1^2) &= 100 \ GeV, \ r>10 \ ns \\ l(r) &= n(r) \ GeV, \ r>10 \ ns \\ l(r) &= n(r) \ GeV, \ r>10 \ ns \\ l(r) &= n(r) \ GeV, \ r>10 \ ns \\ l(r) &= n(r) \ GeV, \ r>10 \ ns \\ l(r) &= n(r) \ GeV, \ r>10 \ ns \\ l(r) &= n(r) \ GeV, \ r>10 \ ns \\ l(r) &= n(r) \ GeV, \ r>10 \ ns \\ l(r) &= n(r) \ GeV, \ r>10 \ ns \\ l(r) &= n(r) \ f(r) $	1310.3675 1506.05332 1310.8584 To appear 1411.8795 1409.8542 1504.05102 1504.05162
RPV	$ \begin{split} LFV & pp \rightarrow \tilde{v}_r + X, \tilde{v}_r \rightarrow e\mu/et/\mu\tau \\ Biinear & FPV & CMSSM \\ \tilde{x}_1^* \tilde{x}_1^*, \tilde{x}_1^* \rightarrow W_1^* \tilde{x}_2^* \rightarrow ev_{\tilde{v}_r}, ep \tilde{v}_r \\ \tilde{x}_1^* \tilde{x}_1^*, \tilde{x}_1^* \rightarrow W_1^* \tilde{x}_1^* \rightarrow ev_{\tilde{v}_r}, ep \tilde{v}_r \\ \tilde{x}_2^* \tilde{x}_2 \rightarrow qqq \\ \tilde{x}_2^* \tilde{x}_2 \rightarrow qqq \\ \tilde{x}_2^* \tilde{x}_2 \rightarrow qq\ell_1^* \tilde{x}_1^0 \rightarrow qqq \\ \tilde{x}_2^* \tilde{x}_2 \rightarrow qq\ell_1^* \tilde{x}_1^0 \rightarrow qqq \\ \tilde{x}_3^* \tilde{x}_2 \rightarrow q\ell_1^* \tilde{x}_1 \rightarrow bs \\ \tilde{v}_1 \tilde{v}_1, \tilde{v}_1 \rightarrow bs \\ \tilde{v}_1 \tilde{v}_1, \tilde{v}_1 \rightarrow bd \end{split}$	$e\mu, e\tau, \mu\tau$ $2 c, \mu$ (SS) $4 c, \mu$ $3 e, \mu + \tau$ 0 $2 c, \mu$ (SS) 0 $2 c, \mu$	- 0-3 b - 5-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	- 2 Yes 2 Yes 2 Yes 2 Yes 2 - 2 Yes 2 - 2 Yes 2 - 2 2 - 2	0.3 × 0.3 ×	2 450 GeV 450 GeV 917 GeV 950 GeV 880 GeV 04.1 o TeV 0.4.1 o TeV	1.7 TeV 1.45 TeV	$\begin{split} t_{111}^{i} &= 0.11, \lambda_{1221133233} = 0.07\\ m_{111}^{i} &= m_{111}^{i} \lambda_{1221133} = 0.07\\ m_{111}^{i} &= 0.25m_{111}^{i} \lambda_{1211} = 0\\ m_{111}^{i} &= 0$	1503.04430 1404.2500 1405.5086 1502.05686 1502.05686 1502.05686 1404.2500 1601.07453 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_1^0$	0	2 c	Yes 2	0.3 <mark>č</mark>	510 GeV		ກ(ຊິ ⁰)<200 GeV	1501.01325
*On sta	ly a selection of the availab ites or phenomena is show	le mass limi n	ts on new		10-		1	Mass scale [TeV]	-

ANNOUNCED EVEN EARLIER THAN HIGGS-HUNTING

SUSY: THE NEW HOPE

QUANTUM MECHANICS AND QFT STILL HOLD
 THE ORBITAL COLLIDER STILL SEES NOTHING
THREE CENTURIES OF TRIUMPH FOR SUSY AND STRINGS!

The seasonal trends Extremely-weeny constrained SUSY NSFWMSSM FF3C10ACBA9-MSSM MSSM retrograde Anthropic landscaping and trimming it down The problem of condensed matter: They still don't get it Strings - The Perpetual Revolution Number of free parameters: P or NP complete?

The perpetual conference

5 Jan - 5 Mar: Chamonix 15 Mar - 30 June: Hainan Island 1 July - 15 Sep: Wailea, Maui 15 Sep - 20 Nov: Jumeirah 1 21 Nov - 24 Dec: Hainan Island Invited seminar How to ensure your model remains predictability-free

Forum

Is choice moral? "Every time you choose a path of action, a multiverse is killed"

Special topic If the universe is not supersymmetric is it necessarily existing?

Sponsored by: The Milner-Zuckerberg Institution

RESONANCES EVERYWHERE

DIJETS

Dijet search

- Most basic search at a hadron collider
- Strong production and large BR
- Can probe very high mass resonances
- Simple analysis: dijet events
- Can also use angular variables
- Can also use *b*-jets
- Dijet resolution ~ 1% at high mass. Jet energy scale known to 1–3%

DIJETS: RESULTS

 $m_{jj} = 6.9 \text{ TeV}, p_T(j) = 3.2 \text{ TeV}$

Model-independent limit, \geq 1 b-tag

Results

- Fit background with simple functional form
- Extract limit on various scenarios (QBH, excited quarks, contact interactions)
- Also model-independent limits

HIGH PT LEPTONS

Analysis

- Similar simple searches with leptons (e and μ)
- Z' and W' signatures: dilepton or lepton+MET
- Specific difficulty: control of very high $p_{\rm T}$ leptons
- Contrary to J/Ψ or Z resonances, better sensitivity achieved in the electron channel

+ Data

Z/γ* Top Quarks

Z, (3 TeV)

 $\Lambda_{11} = 20 \text{ TeV}$

Dimuon Invariant Mass (GeV)

Diboson

Large-R jets

- Decay products of massive particle are within $\Delta R = 2M/p_{\mathrm{T}}$
- At high boost, hadronic decays of W, Z or top not resolved using Anti-kt R = 0.4 jets
- Reconstruct decays in 1 large jet (Anti-kt R = 1.0)
- \Rightarrow "boson-tagging" or "top-tagging" crucial in many searches

KEY INGREDIENTS

Trimming

- Aim: get rid of pile-up and soft QCD components
- How: find subjets with kt algorithm (R=0.2) ; remove if they carry <5% of jet $p_{
 m T}$
- Achieve: much improved mass resolution

Substructure

- Aim: discrimination between QCD, V-boson (2-prong) or tt (3-prong) jets
- How: many discriminant variables, typically using declustering techniques or energy correlations
- Achieve: additional discrimination on top of mass window

tt resonances

Analysis

- Semileptonic decays: BR~ 35%, low background
- Leptonic side: easy trigger (lepton $p_{\rm T} > 25\,{\rm GeV}$), close-by jet
- Hadronic side: large jet compatible with top (subjettiness + mass)
- b-tagging
- Main backgrounds estimated using data-driven techniques

Benchmark model: topcolour-assisted-technicolour

WW/WZ/ZZ searches

- Some interest due to excess in all-hadronic channel in Run1
- (not seen in semi-leptonic channels)
- Models: generic Heavy Vector Triplets, or RS graviton
- ZZ and WW can also be results of heavy scalar decay
- High mass resonances: 2 boosted hadronic decays, or semileptonic

All hadronic analysis

- Overwhelming background: multijet
- 2 large-R jets
- boson tagging: mass + energy correlation + track multiplicity (50% efficiency)
- Kinematics: good p_{T} balance, small rapidity difference
- Fit of invariant mass using analytical form

ALL HADRONIC RESULTS

38/54

Semileptonic analyses

- Use $Z \to \ell \ell$, $W \to \ell \nu$, $Z \to \nu \nu$ with high-pt leptons and large MET requirements
- Boson-tagged high-pt fat jet
- Main backgrounds: W+jets, Z+jets, tī
- Control regions defined by inverting jet mass cuts, or playing with *b*-tagging
- Results from shape fits

Vh **RESONANCES**

One step further

- Replace W or Z with $H \rightarrow b\bar{b}$
- Models: HVT or simple 2HDM A \rightarrow Zh
- Forget about substructure: *b*-tagging of small R track jets matched to large-R jet
- Search A in 200 GeV 2 TeV range: handle both resolved and merged $h \rightarrow b\bar{b}$ decays

Track jet tagging performance

Analysis

- Select Z with pair of e, μ, or MET
- Add pair of b-tagged jets (low p_T(Z)), or large-R jet with matched b-tagged track jets (high p_T(Z))
- Specific corrections to improve *b*-jet energy resolution
- Then cut on m_{bb}
- Backgrounds: *tī*, *Z*+hf, *W*+hf

AZh ANALYSIS

Analysis cont'd

- Control of backgrounds normalizations and shapes:
 - Make use of 1-tag vs 2-tag regions to control flavour composition
 - Higgs mass sidebands
 - 0 and 2 lepton fitted together
- Then fit m_{Zh}

AZh **RESULTS**

Results

- High resolution *llbb* leads at low masses
- High BR $\nu\nu bb$ leads at high masses
- Resolved / merged signal regions turnover point $\sim 1\,{\rm TeV}$
- Interpretation in 2HDM plane $(\tan \beta, \cos(\beta \alpha))$
- Better than Run1 results for masses ≥ 700 GeV

	Model	ℓ, γ	Jets†	Erriss	∫£ dt[ft) Limit		Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{\text{PK}} + g/q \\ \text{ADD onen-resonant } \ell\ell \\ \text{ADD OBH} - \ell q \\ \text{ADD OBH} \\ \text{ADD OBH finding } \\ \text{ADD BH finding } \\ \text{RSI } G_{\text{RK}} \rightarrow \ell \ell \\ \text{Buk } \text{RS} G_{\text{rK}} \leftarrow WW \rightarrow qq\ell \nu \\ \text{Buk } \text{RS} G_{\text{rK}} \rightarrow \ell t \\ \text{Buk } \text{RS} g_{\text{rK}} \rightarrow t t \\ \text{2UED} (\text{RP} \\ \end{array}$	$\begin{array}{c} - \\ 2 \ e, \mu \\ 1 \ e, \mu \\ - \\ \geq 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \gamma \\ 1 \ e, \mu \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\geq 1j$ - 1j 2j $\geq 2j$ $\geq 3j$ - - - - - - - - - - - - -	Yes - - - Yes j Yes Yes	3.2 20.3 20.3 3.6 3.2 3.6 20.3 20.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	State 4.5 T Million State 4.7 T Million State 3.7 Million State 3.7 Million State 3.7 Million State 2.4 Million	$ \begin{array}{l} \sigma=2 \\ \sigma=3 \ H.Z \\ \sigma=6 \\ \sigma=6 \\ \sigma=6 \\ \sigma=7 \\ \sigma=0, M_{\rm D}=3 \ {\rm TeV}, \ {\rm rot} \ {\rm BH} \\ s, M_{\rm R}=0.1 \\ s, M_{\rm R}=0.1 \\ s, M_{\rm R}=1.0 \\ s, M_{\rm R}=1.0 \\ s, M_{\rm R}=1.0 \\ {\rm BH}=0.025 \\ {\rm BH}=0.025 \\ {\rm Ter}(1.1), {\rm BH}(s^{11.1}) \rightarrow ct]=1 \end{array} $	Pre&minery 14072410 13112005 151201530 ATLAS-CONF-2015-02 1405.4123 1594.05511 ATLAS-CONF-2015-07 ATLAS-CONF-2015-07 1956.07918 ATLAS-CONF-2015-07
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Lepicphobic } Z' \to bb \\ \text{SSM } W' \to \ell\tau \\ \text{HVT } W' \to WZ \to q q \nu \text{ model } A \\ \text{HVT } W' \to WZ \to q q q \text{ model } A \\ \text{HVT } W' \to WZ \to q q q \text{ model } B \\ \text{HVT } Y' \to WW' \to \ell \nu b \text{ model } B \\ \text{LRSM } W_K' \to t b \end{array}$	2 e, µ 2 r - 1 e, µ 0 e, µ - 1 e, µ 0 e, µ 1 e, µ 0 e, µ	- 2b - 1J 2J 1-2b, 1-0j 1-2b, 1-0j 2b, 0-1j 2b, 0-1j 21b, 1J	- Yes Yes Yes Yes Yes	3.2 19.5 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 20.3 20.3	27 mm 3.3.1 fb/l 7 mm 2.92 Tb/l 27 mm 1.3.1 fb/l 97 mm 1.3.1 fb/l 97 mm 1.3.2 fb/l 97 mm 1.3.2 fb/l 97 mm 1.3.2 fb/l 97 mm 1.3.2 fb/l 97 mm 1.32 fb/l	$g_{V} = 1$ $g_{V} = 1$ $g_{V} = 3$ $g_{V} = 3$	ATLAS-CONF-2015-00 1592.07177 Preliminary ATLAS-CONF-2015-00 ATLAS-CONF-2015-00 ATLAS-CONF-2015-00 ATLAS-CONF-2015-00 ATLAS-CONF-2015-00 1410.8-0096
0	Cl qqqq Cl qqql Cl swit	- 2 e, μ 2 e, μ (SS)	2j 	- Yes	3.6 3.2 20.3	A A 4.3 TeV	17.5 TeV $\eta_{\ell L} = -1$ 23.1 TeV $\eta_{\ell L} = -1$ $ C_{\ell \ell} = 1$	1512.01530 ATLAS-CONF-2015-07 1504.04605
M	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) ZZ _{XX} EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	ma 1.0 TeV ma 650 GeV M, 550 GeV	$\begin{array}{l} g_{2}{=}0.25,g_{1}{=}1.0,m\{\chi\}<140~{\rm GeV}\\ g_{2}{=}0.25,g_{2}{=}1.0,m\{\chi\}<10~{\rm GeV}\\ m\{\chi\}<150~{\rm GeV} \end{array}$	Preliminary Preliminary ATLAS-CONF-2015-06
ğ	Scalar LQ 1 st gen Scalar LQ 2 rd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	- Yes	3.2 3.2 20.3	LO mass 1.07 TeV LO mass 1.03 TeV LO mass 640 GeV	$\beta = 1$ $\beta = 1$ $\beta = 0$	Preliminary Preliminary 1508.04735
quarks	$\begin{array}{l} VLQ \ TT \to Ht + X \\ VLQ \ YY \to Wb + X \\ VLQ \ BB \to Hb + X \\ VLQ \ BB \to Hb + X \\ VLQ \ BB \to Zb + X \\ VLQ \ QO \to Wq Wq \\ T_{5/3} \to Wt \end{array}$	$\begin{array}{c} 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 2 / \geq 3 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} \geq 2 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2 \ / \geq 1 \ b \\ \geq 2 \ / \geq 1 \ b \\ \geq 4 \ j \\ \geq 1 \ b, \geq 5 \ j \end{array}$	Yes Yes Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3	T mass 455 GeV Y mass 770 GeV B mass 735 GeV B mass 735 GeV Q mass 755 GeV Q mass 690 GeV A Mode 690 GeV	T in (T.B) doublet Y in (B,Y) doublet loospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 1503.05425
fermions	Excited quark $q^* \rightarrow q \gamma$ Excited quark $q^* \rightarrow q g$ Excited quark $b^* \rightarrow b g$ Excited quark $b^* \rightarrow Wr$ Excited lepton t^* Excited lepton ν^*	1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1j 2j 1b,1j 1b,20j -	- - Yes -	3.2 3.6 3.2 20.3 20.3 20.3	1° reso 4.4 TeV 1° reso 5.2 TeV 1° reso 2.1 TeV 1° reso 1.5 TeV 1° reso 3.0 TeV 1° reso 3.0 TeV	only u^* and q^* , $\Lambda = m(q^*)$ only u^* and q^* , $\Lambda = m(q^*)$ $f_g = f_c = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.00910 1512.01530 Preliminary 1510.02064 1411.2921 1411.2921
Other	LSTC $a\gamma \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e, μ (SS) 3 e, μ, τ 1 e, μ - -	2j - 1 b -	Yes - - Yes - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	900 GeV 2.0 TeV HIT maps 5.0 TeV HIT maps 5.0 TeV GRO GEV 2.0 TeV HIT maps 5.0 GeV GRO GEV 5.0 GeV HIT maps 5.0 GeV	$\label{eq:response} \begin{array}{l} \mbox{style} \end{tabular} \end$	1407.8150 1506.06020 1412.0237 1411.2521 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J). THE DIPHOTON THING

Can I hit the journalist as well ?

Tout est aujourd'hui possible ! Car en novembre, alors qu'il était lancé à pleine puissance, le LHC a détecté un signal anormal... dont tout indique qu'il s'agit d'une nouvelle particule. Sauf que cette "particule X" ne cadre en rien avec tout ce qu'on sait de la matière ! Avant d'être détectée, nul ne soupçonnait son existence.

THE ANALYSIS

Starting point

- It all started like any other resonance searches
- Well, 2 actually: optimal selections depend on what you look for

Spin-0 search

- Targets extended scalar sector, like 2HDM
- Pair of tight, well isolated photons
- E_τ(γ) > 0.4(0.3)m_{γγ} for leading (subleading) γ
- Background fit with functional form

Spin-2 search

- Targets Randall-Sundrum graviton
- Pair of tight, well isolated photons
- *E_T*(γ) > 55 GeV
- Use NLO diphoton MC for background
 - Do not use functional form at very high masses
 - Sensitive to broad non-resonant signals

p0

- Perform 2D p0 scan
- Largest deviation from bkg-only hypothesis:
 - Near 750 GeV
 - Width = 45 GeV (6%)
- Local significance: 3.9 σ
- Global significance: 2.0σ

Limits

- Limits on fiducial cross-section
- Function of mass
- For different widths

p0

- Perform 2D p0 scan
- Largest deviation from bkg-only hypothesis:
 - Near 750 GeV
 - $\kappa/M_{Pl} = 0.2$ (6% width)
- Local significance: 3.6 σ
- Global significance: 1.8σ

Limits

- Limits on fiducial cross-section
- Function of mass
- For different widths

Снескя

Compatibility with 8 TeV results

- 1.9σ deviation from B-only hypothesis in spin-0 search at 750 GeV ; nothing in spin-2 search
- Under gg production hypo: 1.2σ compatibility for spin-0, 2.7 σ compatibility for spin-2

Other checks

- Data-driven estimation of background composition
- Object and event properties around 750 GeV vs sidebands

ANOMALIES

8 th talks out of 28!

Understandable: Little BSM experimental data, for too many theorists

CONCLUSIONS

Productive data-taking at 13 TeV

- Many results, covering wide physics reach
- Measurements of basic SM processes
- Re-start of Higgs measurements at 13 TeV But of course this year was devoted mostly to searches
- Important SUSY channels
- The big resonances hunt

And then there is this excess...

• Whether we believe in it or not, it will attract lots of attention until the summer

It's now time for 2016 data !

Links

All the results shown today and many more can be found under

- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/December2015-13TeV
- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Winter2016-13TeV

Uncertainty	spin-2 search	spin-0 search	
Background	± 7% to ± 35%	spurious signal	p0 and limit
(mass dependent)		$20 - 0.04$ events for $\Gamma/M=6\%$	
Signal mass resolution	(+	p0 and limit	
(mass dependent)	C.	20/10 - (_40) 10	
Signal photon identification		±(3-2)%	limit
(mass dependent)			
Signal photon isolation	±(3-1)%	±(4-1)%	limit
(mass dependent)			
Signal production process	N/A	±(3-6)%	limit
		depending on Γ	
Trigger efficiency		±0.6%	limit
Luminosity		±5.0%	limit

DIPHOTON KINEMATICS

