### Advances in Applied Superconductivity leading Frontiers of particle accelerators and physics

Akira Yamamoto (KEK/CERN)

A Seminar at LAL, 21 Oct., 2016

### Acknowledgments

#### I would thank

 M. Benedikt, L. Bottura and H. ten Kate of CERN, for their presentations at ASC2016 (Denver) referred here.

 N. Ohuchi, K. Sasaki, M. Yoshida, T. Tomaru of KEK for their personal information,

to prepare for this presentation.

### Outline

Introduction
 Advances in particle accelerators
 Superconducting magnets and SRF

Advances in particle detectors
 Solenoid magnets in collider detectors
 A unique application for scientific ballooning

Recent advances in Japan

### Progress in Collider Accelerators Constructed and Operated



M. Benedikt

### High Energy Colliders under study



M. Benedikt

### Outline

Introduction
Advances in particle accelerators

Superconducting magnets and SRF

Advances in particle detectors

Solenoid magnets in collider detectors
A unique application for scientific ballooning

Recent advances in Japan

#### Progress in Particle (Hadron) Accelerators based on Superconducting Magnet Technology

| Location | Accelerator<br>(proton) | Energy<br>[TeV]  | B Field<br>[T] | Operation |  |
|----------|-------------------------|------------------|----------------|-----------|--|
| Fermilab | Tevatron                | 2 x 0.9          | 4.0            | 1983-2011 |  |
| DESY     | HERA                    | 0.82             | 4.68           | 1990-2007 |  |
| BNL      | RHIC                    | 2 x 0.1          | 3.46           | 2000 -    |  |
| CERN     | LHC                     | 2 x 7            | 8.36           | 2009 -    |  |
| CERN     | HL/HE-LHC,<br>FCC       | 2 x 14<br>2 x 50 | 16<br>16       | Study     |  |

#### Progress in Particle (Hadron) Accelerators based on Superconducting Magnet Technology



### Step 1: HL-LHC upgrade – ongoing



L. Rossi

### High Luminosity LHC project scope



M. Wison

### Superconductor performance at 4.2 K



- magnets usually work in boiling liquid helium, so the critical surface is often represented by a curve of current versus field at 4.2K
- niobium tin Nb<sub>3</sub>Sn has a much higher performance than NbTi
- <u>but</u> Nb<sub>3</sub>Sn is a brittle intermetallic compound with poor mechanical properties
- both the field and current density of both superconductors are way above the capability of conventional electromagnets

### **11T dipole in HL-LHC**

- Create space in the dispersion suppressor regions of LHC, to install additional collimators needed to cope with beam intensities larger than nominal
- Replace a standard Main Dipole by a pair of 11T Dipoles producing the same integrated field of 119 T·m at 11.85 kA



# MBH (11T) dipole









By courtesy of F. Savary (CERN)

# Reducing beam-size at IP with Large Aperture Quadrupoles



### LHC IR Quadruple with KEK-Fermilab Collaboration to be replaced



High-Min State

Outer Cylinder for LHe Ves



G. Ambrosio (FNAL), P. Ferracin (CERN)

### **MQXF** quadrupole









### FCC SC main magnet options and requirements



 LHC
 HE-LHC baseline
 FCC-hh baseline
 FCC-hh

 27 km, 8.33 T
 27 km, 16 T
 100 km, 16 T
 80 km, 20 T

 14 TeV (c.o.m.)
 26 TeV (c.o.m.)
 100 TeV (c.o.m.)
 100 TeV (c.o.m.)

 1300 tons NbTi
 2500 tons Nb<sub>3</sub>Sn
 10000 tons Nb<sub>3</sub>Sn
 2000 tons HTS

 8000 tons LTS
 8000 tons LTS
 8000 tons LTS



### Hadron collider parameters

| parameter                                                          |                 | FCC-hh     | HE-LHC* (HL) LHC |             |  |  |
|--------------------------------------------------------------------|-----------------|------------|------------------|-------------|--|--|
| collision energy cms [TeV]                                         |                 | 100        | >25              | 14          |  |  |
| dipole field [T]                                                   |                 | 16         | 16               | 8.3         |  |  |
| circumference [km]                                                 |                 | 100        | 27               | 27          |  |  |
| # IP                                                               | 2               | 2 main & 2 | 2 & 2            | 2 & 2       |  |  |
| beam current [A]                                                   | 0.5             |            | 1.12             | (1.12) 0.58 |  |  |
| bunch intensity [10 <sup>11</sup> ]                                | 1 1 (0.2)       |            | 2.2              | (2.2) 1.15  |  |  |
| bunch spacing [ns]                                                 | 25              | 25 (5)     | 25               | 25          |  |  |
| beta* [m]                                                          | 1.1             | 0.3        | 0.25             | (0.15) 0.55 |  |  |
| luminosity/IP [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 5               | 20 - 30    | >25              | (5) 1       |  |  |
| events/bunch crossing                                              | 170 <1020 (204) |            | 850              | (135) 27    |  |  |
| stored energy/beam [GJ]                                            |                 | 8.4        | 1.2              | (0.7) 0.36  |  |  |
| synchrotron rad. [W/m/beam]                                        |                 | 30         | 3.6              | (0.35) 0.18 |  |  |



M. Benedikt



#### Nb<sub>3</sub>Sn is one of the major cost & performance factors for

FCC-hh and must be given highest attention







1LOr3C-02, 2PL-01, 2LPo1A-10, 2LPo1D-02, 2LPo1D-03, 2LPo1D-05, 2LPo1D-07, 2LPo1D-08

#### **Down-selection of options end 2016 for more detailed design work**



**FCC – Future High Energy Collider** Michael Benedikt ASC 2016,Denver, 6 September 2016

# High field magnets – Neolithic













Record fields for SC magnets in "dipole" configuration

L. Bottura LHC Run-II provides results to define future HEP roadmap (European Strategy 2018) EuCARD<sup>2</sup> End of LHC **HL-LHC** demonstrates useful life Accelerator-grade large-scale use of Nb<sub>3</sub>Sn HTS 5 T demo High Luminosity LHC ATLAS 2015 2016 2019 2035 2017 2018 2030 2040 2020 2025 12 T accelerator 20 T magnet **16 T** magnet technology model(s) HILUM model(s) 16 T accelerator technology FCC CDR (EuroCirCol) propose FCC construction decision a new energy frontier accelerator





### **Overview of IR magnets**



4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets 16 SC correctors: a1, b1, a2, b4 4 SC leak field cancel magnets: b3, b4, b5, b6 1 compensation solenoid 4 SC main quadrupole magnets: 1 collared magnet, 3 yoked magnets 19 SC correctors: a1, b1, a2, a3, b3, b4 4 SC leak field cancel magnets: b3, b4, b5, b6 3 compensation solenoid

N. Ohuchi



# Production of magnets and cryostats





### **Overview of IR magnets**

#### Direct winding SC Corrector by BNL



a1 corrector winding for QC1LP @BNL

Correctors

N. Ohuchi

Collared QC2LE

Assembly of QC2LE and correctors

2016/06/14

SuperKEKB Review 2016



### Production of magnets and cryostats

Assembly of the QC1LP, QC2LP, QC1LE, correctors and QC1LP leak field cancel magnets (Front cold mass of QCSL)



### Outline

Introduction
Advances in particle accelerators

Superconducting magnets and SRF

Advances in particle detectors

Solenoid magnets in collider detectors
A unique application for scientific ballooning

Recent advances in Japan

### **Progress in lepton Colliders**

#### Great Steps with TRISTAN and LEP



# Progress in Particle (Lepton) Accelerators based on SRF Technology

| Location | Acc.    | Energy  | E<br>[MV/m] | Freq.<br>[GHz] | Operation    |  |
|----------|---------|---------|-------------|----------------|--------------|--|
| KEK      | TRISTAN | 2 x 30  | 5           | 0.5            | 1986-1995    |  |
| CERN     | LEP     | 2 x 105 | 5           | 0.5            | 1989-2000    |  |
| JLab     | CEBAF   | 6       | 7           | 1.3            | 1995~        |  |
| KEK      | KEKB    | 8       | 5           | 0.5            | 1999~2007    |  |
| DESY     | EXFEL*  | 14      | 24          | 1.3            | construction |  |
| Fermilab | PIP*    | 8       | ~20         | 1.3            | Plan         |  |
|          | ILC*    | 2 x 250 | 31.5        | 1.3            | Plan         |  |



#### **SRF** Technology



#### **European XFEL SRF being Completed**

1000

500

#### **Progress:**

2013: Construction started
2015: SRF cav. (100%) completed
CM (70%) progressed
Further Plan:
2016: E- XFEL acc. completion
2016/E: E-XFEL beam to start

Acc. : ~ 1/10 scale to ILC-ML SRF system: ~ 1/20 scale to ILC-SRF

3000 XFEL site 1.3 GHz / 23.6 MV/m 800+4 SRF acc. Cavities 100+3 Cryo-Modules (CM)





### **E-XFEL: SRF Cavity Performance (as received)**



# 47 of 420 cavities of RI cavity production exceed 40 MV/m





### Fermilab: CM2 reached <31.5 MV/m >

#### CERN Courier December 2014

#### ACCELERATORS ILC-type cryomodule makes the grade

For the first time, the gradient specification of the International Linear Collider (ILC)

design study of 31.5 MV/m has been achieved on average across an entire ILC-type cryomodule made of ILC-grade cavities. A team at Fermilab reached the milestone in early October. The cryomodule, called CM2, was developed to advance superconducting radio-frequency technology and infrastructure at laboratories in the Americas been nearly a decade in the making, from

region, and was assembled and installed at Fermilab after initial vertical testing of the cavities at Jefferson Lab. The milestone an achievement for scientists at Fermilab. Jefferson Lab, and their domestic and international partners in superconducting radio-frequency (SRF) technologies - has





Cryomodule test at Fermilab reached < **31**, **5** > MV/m, exceeding ILC specification



Y. Yamamoto, E. Kako, H. Hayano

#### KEK-STF: Cavity/CM Performance, and RF and Beam Test Preparation

| SRF cavity Gradient (MV/m) before/after CM Assembly |                 |    |    |      |    |       |      |    |                 |    |    |    |
|-----------------------------------------------------|-----------------|----|----|------|----|-------|------|----|-----------------|----|----|----|
| Module                                              | CM1a            |    |    | CM1b |    |       | CM2a |    |                 |    |    |    |
| Cav. #                                              | 1               | 2  | 3  | 4    | 5  | 6     | 7    | 8  | 9               | 10 | 11 | 12 |
| V. Test<br>(CW)                                     | 37              | 36 | 38 | 36   | 37 | 35    | 39   | 36 | 12              | 36 | 32 | 32 |
| in CM<br>(pulse)                                    | 39              | 37 | 35 | 36   | 26 | 16    | 26   | 32 | 18              | 34 | 33 | 32 |
|                                                     | Gradient stable |    |    |      |    | egrad | ed   |    | Gradient stable |    |    |    |
|                                                     |                 |    |    |      |    |       |      |    |                 |    |    |    |

\*<G> : 30 MV /m (12 Cav.) , 35 MV/m (best 8)



FY14: CM1+CM2a (8+4) assembly
FY15: Cavity individually tested in CM
RF power system in preparation
FY16: 8-cavity string to be RF tested
FY17: Beam Acceleration expected
(to reach > 250 MeV)






### **ILC Acc. Design Overview (TDR)**





#### Nano-beam Technology:

**KEK-ATF2**: FF **beam size (v)** of 41 nm at 1.3 GeV (to go 37nm as a primary goal) FF beam position stability of 67 nm (limited by monitor resolution)

#### SRF Technology :

SRF cavity grad. in TDR: reached G-max = 37 MV/m and an Yield of 94 % at > 28 MV/m Beam acceleration: DESY-FLASH and KEK-STF realized 9 mA, and 1 ms

**European XFEL**: Cavity production at RI/EZ, 100% (800+4) completed, <G> = ~ 30 MV/m.

- Cryomodule (CM) assembly, 100% (100+3) completed, <G> =~28 MV/m.
- » {last CM, delivered from CEA-Saclay to DESY on 29 July, 2016}
  Fermilab: CM reached the ILC gradient specification: G ≥ 31.5MV/m

**KEK-STF2**: The best 8-cavity string for beam acceleration:  $G \ge 31.5 \text{ MV/m}$ .

#### ADI: Accelerator Design and Integration

**LCC-ILC:** working for further robust and cost-effective design and R&D

## KEK-ILC Action Plan Issued, Jan. 2016

https://www.kek.jp/en/NewsRoom/Release/20160106140000/

#### Topics



KEK issues action plan for the International Linear Collider

|           | Pre-Preparation Stage                                                                       | Main Preparation Stage                                                                        |    |    |                |
|-----------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----|----|----------------|
|           | present (we are here)                                                                       | P1                                                                                            | P2 | P3 | P4             |
| ADI       | Establish main parameters                                                                   | Verify parameters w/ simulations                                                              |    |    |                |
| SRF       | Beam acc. with SRF cavity string,<br>Cost Reduction R&D (proposed)                          | Demonstrate mass-production technology,<br>stability, hub-lab functioning, and global sharing |    |    |                |
| Nano-beam | Achieve the ILC beam-size goal                                                              | Demonstrate the nanobeam size and stabilize the beam position                                 |    |    |                |
| e+        | Demonstrate technological feasibility                                                       | Demonstrate both the undulator and e-driven e+ sources                                        |    |    | ven e+         |
| CFS       | Pre-survey and basic design Geology survey, engineering design, specification, and drawings |                                                                                               |    |    | ification, and |



**ILC Progress and Prospect** 

# A plan for ILC Cost-Reduction R&D in Japan and US focusing on SRF Technology, in 2~3 years

#### Based on recent advances in technologies;

- Nb material preparation
  - w/ optimum RRR and clean surface
- SRF cavity fabrication for high-Q and high-G
  - -w/ a new baking recipe provided by Fermilab
- Power input coupler fabrication
  - w/ new (low SEE) ceramic without coating
- Cavity chemical process
  - w/ vertical EP and new chemical (non HF) solution
- Others









# Outline

Introduction
Advances in particle accelerators

Superconducting magnets and SRF

Advances in particle detectors

Solenoid magnets in collider detectors
A unique application for scientific ballooning

Recent advances in Japan

# Solenoidal Magnetic Field expected in Particle Detectors

Dream

Only magnetic field

Momentum Resolution dp/p ~ {B • R<sup>2</sup>}<sup>-1</sup>

 Reality
 Coil and structure
 Wall thickness (material): t ~ (R/σ<sub>h</sub>) • B<sup>2</sup>/2µ<sub>0</sub>



http://atlas.web.cem.ch/Atlas/public/EVTDISPLAY/events.html



# **History of Detector Solenoids**

| Experiment  | Laboratory   | <i>R</i> (m) | B (T) | I (kA) | $X(X_0)$ | $E/M~(\rm kJ/kg)$ | E (MJ) | Year |
|-------------|--------------|--------------|-------|--------|----------|-------------------|--------|------|
| PLUTO       | DESY         | 0.75         | 2.2   | 1.3    | 4.0      | 2.3               | 4.1    | 1972 |
| ISR point 1 | CERN         | 0.85         | 1.5   | 2      | 1.1      | 1.8               | 3.0    | 1977 |
| CELLO       | Saclay/DESY  | 0.85         | 1.5   | 3      | 0.6      | 5.0               | 7.0    | 1978 |
| PEP4/TPC    | LBL/SLAC     | 1.1          | 1.5   | 2.27   | 0.83     | 7.6               | 11     | 1983 |
| CDF         | KEK/FNAL     | 1.5          | 1.6   | 5      | 0.84     | 5.4               | 30     | 1984 |
| TOPAZ       | KEK          | 1.45         | 1.2   | 3.65   | 0.70     | 4.3               | 19     | 1984 |
| VENUS       | KEK          | 1.75         | 0.75  | 4      | 0.52     | 2.8               | 11.7   | 1985 |
| AMY         | KEK          | 1.2          | 3     | 5      | N/A      | N/A               | 40     | 1985 |
| CLEO-II     | Cornell      | 1.55         | 1.5   | 3.3    | 2.5      | 3.7               | 25     | 1988 |
| ALEPH       | Saclay/CERN  | 2.75         | 1.5   | 5      | 2.0      | 5.5               | 136    | 1987 |
| DELPHI      | RAL/CERN     | 2.8          | 1.2   | 5      | 1.7      | 4.2               | 110    | 1988 |
| ZEUS        | INFN/DESY    | 1.5          | 1.8   | 5      | 0.9      | 5.2               | 10.5   | 1988 |
| H1          | RAL/DESY     | 2.8          | 1.2   | 5      | 1.8      | 4.8               | 120    | 1990 |
| BESS        | KEK          | 0.5          | 1.2   | 0.38   | 0.2      | 6.6               | 0.25   | 1990 |
| WASA        | KEK/Uppsala  | 0.25         | 1.3   | 0.9    | 0.18     | 6                 | 0.12   | 1996 |
| BABAR       | INFN/SLAC    | 1.5          | 1.5   | 6.83   | 0.5      | N/A               | 27     | 1997 |
| D0          | FNAL         | 0.6          | 2.0   | 4.85   | 0.9      | 3.7               | 5.6    | 1998 |
| BELLE       | KEK          | 1.8          | 1.5   | 4.16   | N/A      | 5.3               | 37     | 1998 |
| ATLAS-CS    | KEK/CERN     | 1.25         | 2.0   | 7.8    | 0.66     | 7.1               | 38     | 2001 |
| BESS-polar  | KEK          | 0.45         | 1.0   | 0.48   | 0.156    | 9.2               | 0.34   | 2005 |
| CMS         | CMS/CERN     | 3.0          | 4.0   | 19.5   | N/A      | 12                | 2600   | 2007 |
| BESIII      | IHEP (China) | 1.45         | 1.0   | 5      | N/A      | 2.6               | 9.5    | 2008 |
| CMD-3       | BINP         | 0.35         | 1.5   | 1      | 0.085    | 8.2               | 0.31   | 2009 |







# Technical Progress in Particle Detector Solenoid



### Issues and technical development in Thin Solenoid Magnets

#### • Thickness: $t \propto RB^2/(E/M) \propto RB^2(\gamma/\sigma)$

- High E/M (stored energy / coil-mass)
- **Light** (low Z,  $\gamma$ ) stabilizer (Cu  $\rightarrow$  Al)
  - Al provide long radiation length (Xo): (Cu) = 14 mm  $\rightarrow$  (Al) = 89 mm
  - AI provide high stability → high MQE (to be discussed in the next talk)
- <u>High</u> mechanical strength to be improved
  - High-strength AI stabilizer or reinforcement required
  - $\rightarrow$  Micro-alloying (AI + Si, Zn, Mg, Ni, ...) + Cold-work hardening
  - → Reinforcement using hybrid configuration
- Quench safety: thermo-mechanical stability
  - Fast quench propagation and uniform energy absorption
    - Pure-Al strip contributing fast thermal propagation
    - $\rightarrow$  Minimizing thermal stress/strain, above 80 K



# ►/M Ratio: Stored Energy to Coil Mass → Temperature Rise after Quench (all energy dump)



Enthalpy  $H = E/M = Integral \{C_p\} dT$ 

20 kJ/kg → ~100 K 10 kJ/kg → ~80 K 5 kJ/kg → ~65 K

-------

Corresponding to: Temperature rise after homogeneous stored energy absorption Al-stabilized Conductor Technology reached with LHC-ATLAS and – CMS



Reinforcement of Al

with keeping low resistivity

#### **Uniform reinforcement**

- Micro-alloying and cold work
- ATLAS-CS

#### Hybrid reinforcement

- Welding Al-Alloy with pure-Al
- CMS







# Micro-alloying with pure-Al with ATLAS-CS and BESS

| Additve metal                    | Α   | Dens.                | Solubility    | resistivity contribution (in solution / crystal.) |  |  |  |
|----------------------------------|-----|----------------------|---------------|---------------------------------------------------|--|--|--|
|                                  |     | [g/cm <sup>3</sup> ] | [w-%]         | [10 <sup>-12</sup> Ωm/wppm]                       |  |  |  |
| <u>Solid soluti</u>              | on: |                      |               |                                                   |  |  |  |
| Si                               | 28  | 2.6                  | 1.65          | 0.7 0.088                                         |  |  |  |
| Zn                               | 65  | 7.1                  | 83 @ 400C     | 0.10 0.023                                        |  |  |  |
| Crystallization / Precipitation: |     |                      |               |                                                   |  |  |  |
| Ni                               | 59  | 8.8                  | 0.05 @640C    | 0.81 0.061                                        |  |  |  |
|                                  |     |                      | <0.006 @<500C |                                                   |  |  |  |

Ni: Best reinforcement with keeping Low resistivity.

## Al-stabilizer strengthened with Micro-alloying and precipitation



# **E/M: Progress and Future**



### Progress in Thickness of Solenoid Coil Wall in terms of Radiation Length [X]



### Progress of Al-Stabilizer Superconductor in Colliding-Detector Magnets



### Development to further optimize "Strength" and "RRR" for future Detectors

### CMS structure and ATLAS-CS alloy may be combined

BHRNHMMM

|              | Rein-<br>force | Feature             | AI Y.S.<br>(MPa) | Full cond.<br>Y.S. | Full cond.<br>RRR |
|--------------|----------------|---------------------|------------------|--------------------|-------------------|
| ATLAS-<br>CS | Uniform        | Ni-0.1% Al          | 110 MPa          | 146 MPa            | 590               |
| CMS          | Hybrid         | Pure-Al & A6082-T6  | 26 / 428         | 258                | (1400)            |
| Future       | Hybrid         | Ni-AI &<br>A6082-T6 | 110 / 428        | 300                | 400               |
| Future       | Hybrid         | Ni-Al &<br>A7020-T6 | 110 / 677        | 400                | 400               |

# Future Prospects for Collider Detector Solenoids

#### Magnet Parameters

- Field: 4 ~ 6 Tesla
- Diameter: 4 ~ 8 m
- E/M: 10 ~ 12 (< 15) kJ/kg</p>



ILC: SiD



ILD



FCC (Courtesy, H. ten Kate)

#### Reinforcement

- Target:
  - Y.S.(0.2%) = 400 MPa RRR = 400
- Issue: quench safety
  - Energy Extraction
  - Uniform E. Absorption
    - Fast Q. propagation,
    - Quench back



# Outline

Introduction
Advances in particle accelerators

Superconducting magnets and SRF

Advances in particle detectors

Solenoid magnets in collider detectors
A unique application for scientific ballooning

Recent advances in Japan

# **Scientific Objectives**

# Cosmic-ray Antiparticles provide important information on ...

Elementary particle phenomena in the early universe

Matter/Antimatter symmetry, SUSY darkmatter, Primordial Black hole, etc.

Fundamental data of Cosmic-ray

Production, propagation **Solar modulation** Interaction in the atmosphere

#### Fluxes are extremely small

No positive signals before late 1970's.





### A Thin Solenoid for Cosmicray Observation in Antarctica





#### **BESS-Polar Thin Solenoid**

B: 0.8 (~ 1.05) T D: 0.9 m L : 1.3 m t: 3.4 mm X-coil: 0.06 Xo X-total: 0.1 Xo E/M : 7 (10) kJ/kg LHe life: 25 days (~ 550 l)



#### Scientific Ballooning of BESS Detector at Antarctica - for Cosmic-Ray Observation -



### End of BESS-Polar II Flight



# Outline

Introduction
Advances in particle accelerators

Superconducting magnets and SRF

Advances in particle detectors

Solenoid magnets in collider detectors
A unique application for scientific ballooning

Recent advances in Japan

### J-PARC Facility (KEK/JAEA)

THE REAL PROPERTY AND

Neutrino beam to Kamioka

Material and Life Science Facility

1

Rapid Cycle Synchrotron Energy : 3 GeV Repetition : 25 Hz Design Power : 1 MW

Nuclear and Particle Physics Exp. Hall

#### Main Ring

Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1 MW

LINAC

400 MeV

### Primary Proton Beam Line for JPARC Neutrino Experiments



## Superconducting Combined Function Magnets



# **COMET Experiment**

- J-PARC E21
- 8GeVx7µA
- stopping  $\mu^- \rightarrow$  Muonic atom

$$B(\mu^{-}N \to e^{-}N) = \frac{\Gamma(\mu N \to eN)}{\Gamma(\mu N \to \nu N')}$$

Detect monoenergetic electrons from  $\mu$ -e conversion

$$\rightarrow$$
 10<sup>11</sup>  $\mu$ -/sec

 $\mu \rightarrow e \text{ conversion}$  $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$ 

 $\mu^- \rightarrow e^- \nu \nu$ 

 $\mu^{-} + (A, Z) \rightarrow \nu_{\mu} + (A, Z - 1)$ 



# Solenoid Magnet Extension in Phase II



Phase I Setup (Proton Beam 3.2 kW) Muon Transport by a 90 degree bend Solenoid CDC detector in a spectrometer solenoid

Phase II Setup (Proton Beam 56 kW) Muon Transport by a 180 degree bending solenoid and a 180 degree bending spectrometer magnet to detect the signal





#### Nuclear Heating : >100W Key ISSUe<sup>Peak dose rate in AI : ~1MGy</sup> Neutron fluence : >10<sup>21</sup> n/m<sup>2</sup>

- Radiation tolerance of magnet materials
- Organic material
  - Strength
  - Out gas
- Metal
  - Electrical conduction
  - Thermal conduction
- Radioactivation of He



### Muon g-2

- Muon g-2, the experiment and the Standard Model prediction, directly test and challenge our understanding of 3 of the 4 known forces.
- The muon g-2 is a fundamental constant of nature, and should be measured as precisely as possible.
- There is presently a 3 sigma difference between the Standard Model prediction and the most precise experimental result, from BNL.

$$\delta a_{\mu} \equiv a_{\mu}(\exp) - a_{\mu}(\mathrm{SM}) = \begin{cases} (24.6 \pm 8.0) \times 10^{-10}, & (3.1 \ \sigma)_{\text{(2011)}}^{\text{HLMNT}} \\ (27.2 \pm 8.0) \times 10^{-10}, & (3.4 \ \sigma)_{\text{(2012)}}^{\text{DHMZ}} \end{cases}$$

 This suggests, particularly if this difference is confirmed by future experiments and further progress on the Standard Model, physics beyond the Standard Model.

$$a_{\mu} = a_{\mu}(QED) + a_{\mu}(had) + a_{\mu}(weak) + \frac{a_{\mu}(BSM)}{a_{\mu}(BSM)}$$

 There is one experiment being prepared at Fermilab, which will use the same 14 meter diameter storage ring, largely the same technique, and with largely the same experimenters, to remeasure g-2.

### muon g-2/EDM measurements





### BNL & FNAL Experimental Technique



#### **BNL E821 Superconducting Magnet**




# **Cryogenic Mirror**

#### Underground

Features in





### **KAGRA Cryogenics**







Thermal radiation reduction by cryogenic 'black

## Very soft thermal conductor

Size effect dominates conductivity of 6N AI thin wire at low temp.



Estimated thermal conductivity of 6N Al w/ Φ0.15mm is about 17,000, which is about 1.5 times larger than that of 5N Al.



#### Estimated RRR

|    | Bulk    | Ф1.0mm  | Ф0.15mm |
|----|---------|---------|---------|
| 6N | ~22,000 | ~14,000 | ~4,000  |
| 5N | ~6,000  | ~5,000  | ~2,700  |
| 4N | ~390    | ~390    | -       |

