"1/2 vs. 3/2" puzzle in $\overline{B} \to X_c l \bar{\nu}$

Benoît Blossier

DESY Zeuthen

EuroFlavour '07, Orsay, 14 - 16 November 2007

- Motivations
- Corroborated features
- Issues
- Outlook

[I. Bigi, B. B., A. Le Yaouanc, L. Oliver, A. Oyanguren, O. Pène, J.C. Raynal, P. Roudeau, arXiv:0708.1621]

Motivations

_ ρ+iη /

C = (0,0)

1-ρ-iη

B=(1.0)

Without constraint: $\delta V_{ij} < 5\%$, $\delta V_{ij} > 5\%$, $\delta V_{cb} \sim 1.5\%$ $|\epsilon_K| = \bar{\eta} A^2 \hat{B}_K [1.11(5) A^2 (1 - \bar{\rho}) + 0.31(5)], \quad V_{cb} \sim \lambda^2 A$

 $\delta \epsilon_K < 1\%, \quad \delta \hat{B}_K \sim 10\%, \quad \delta \bar{\eta}(V_{cb}) \sim 6\%$

 $|V_{cb}|(\bar{B} \to D^* l \bar{\nu}) = (37.7 \pm 0.3 \pm 1.2 \pm 1.2^{1.2}_{1.4}) \times 10^{-3}$ [BABAR, '07] $|V_{cb}|(\text{incl.}) = (41.7 \pm 0.7) \times 10^{-3}$ [PDG, '06]

It is relevant to better figure out the QCD nonperturbative dynamics which enters in all processes involving bounded quarks \implies their SM contribution can be more easily distinguished from the contribution coming from a new physics.

What is the composition of the hadronic final state X_c in $\bar{B} \to X_c l \bar{\nu}$?

$$BR(\bar{B}_d \to X_c l^- \bar{\nu}) = (10.33 \pm 0.28)\%$$
$$BR(\bar{B}_u \to X_c l^- \bar{\nu}) = (10.99 \pm 0.28)\%$$

		Mass (MeV)	Width (MeV)	J^P	j_l^P
$S: D^{(*)}$	D^{\pm}	1869±0.5	-	0-	<u>1</u> -
	$D^{*\pm}$	2010±0.2	96±25	1-	$\overline{2}$
$P: D^{**}$	D_0^*	2352 ± 50	261 ± 50	0^{+}	<u>1</u> +
	D_1^*	$2427{\pm}~26{\pm}25$	$384^{+107}_{-75} \pm 74$	1^{+}	$\overline{2}$
	D_1	2422.3 ± 1.3	20.4 ± 1.7	1^{+}	3 +
	D_2^*	2461.1 ± 1.6	43 ± 4	2^{+}	2

 $D^{**} \rightarrow D^{(*)}\pi$ is the main decay channel: parity and orbital momentum conservations \implies the decay occurs with the pion in a *S* wave or in a *D* wave

 $D_{0,1}^* \to D^{(*)}\pi$: S wave $D_2^* \to D^{(*)}\pi$: D wave $D_1 \to D^*\pi$: S and D wave are *a priori* allowed; however the S wave is forbidden by HQS

Corroborated features

Theory: – OPE and HQE \implies Bjorken, Uraltsev, Voloshin and moments sum rules

– Quark models that are covariant in the $m_Q \rightarrow \infty$ limit example: models à *la* Bakamijan-Thomas

- Lattice QCD

Experiment: B factories, LEP, Tevatron

States	% of $\Gamma(\bar{B} \to X_c l \bar{\nu})$
D, D^*	75 %
D(3/2)	\sim 10 %

[BABAR, '07] [HFAG, '07] [ALEPH, '97] [DELPHI, '06] [D0, '05] [V. Morénas *et al*, '97] BT models

 D, D^* and D(3/2) do not saturate the total width; ~ 15 % is composed of an unknown part D_X .

$B^* - B$ splitting: $\mu_G^2(1 \text{GeV}) = 0.35(3) \text{GeV}^2$	[O. Buchmüller, H, Flächer, '05]
$\mu_\pi^2(\mu) > \mu_G^2(\mu)$	[Belle, '06] [BABAB 07]
$\mu_{\pi}^2 (1 \text{GeV}) _{\text{ref}} = 0.45 \text{GeV}^2$	[I. Bigi <i>et al</i> , '95] OPE

OPE treatment is successful for subclasses of inclusive transitions

Generalisation of the IW function $\xi(w)$

 $\Gamma(\bar{B} \to D_{1/2[3/2]}^{(n)} l\bar{\nu}) \propto |\tau_{1/2[3/2]}^{(n)} (w_n)|^2$ $\sum_n \left[\tau_{3/2}^{(n)}(1)\right]^2 - \sum_n \left[\tau_{1/2}^{(n)}(1)\right]^2 = \frac{1}{4}$ $\tau_{3/2}^0(1) > \tau_{1/2}^0(1)$

 $\tau_{1/2}^0(1) \in [0.20, 0.40], \, \tau_{3/2}^0(1) \in [0.55, 0.70]$

Suppression of D(1/2) with respect to D(3/2) due to kinematics

[V. Morénas *et al*, '97] BT models
[A. K. Leibovich *et al*, '98]
[D. Ebert *et al*, '98] Relativistic model
[N. Uraltsev, '01] Uraltsev sum rule
[D. Bećirević *et al*, '05] Lattice

Factorisation in the Class I $\bar{B} \rightarrow D^{**}\pi$: from an analysis by Belle it is expected that $\tau^0_{3/2} > \tau^0_{1/2}$ as well

[Belle, '04]

D(3/2) is expected to dominate D(1/2) in $\bar{B} \to X_c l \bar{\nu}$.

Issues

DELPHI found a larger component of broad states than of the narrow states. Interpretation as D_0^* and D_1^* ? \implies Clear conflict with theory, '1/2' vs. '3/2' puzzle [V. Morénas et al, '01], [N. Uraltsev, '04]

Up to now the experimental verdict about $\bar{B} \to [D/D^*\pi]_{broad} l\bar{\nu}$ is not clear.

No obvious theoretical candidates for those broad states if the mass distribution is centered below 2.5 GeV.

An important check of the theory is $\langle M(D_X) \rangle$: depending on BR $(\bar{B} \to D^* l \bar{\nu})$ it varies from 2.4 and 2.7.

The extension of BT models to finite quark masses just started: predictions concerning the relative weight of $\tau_{1/2}^0$ and $\tau_{3/2}^0$ could change by including those corrections.

Some "exotic" possibilities similar to the nucleons Roper resonance could be investigated.

The study of the spectrum of radial and orbital excitations of the D meson on the lattice must be pursued.

Nice results concerning $\bar{B} \rightarrow D/D^* l\bar{\nu}$ are already available.

The extension to D^{**} seems to be the next step, beyond the exploratory study performed before, in order to conclude about the relative weight of $\tau_{1/2}^0$ and $\tau_{3/2}^0$. [A. Green *et al*, '03] [J. Foley *et al*, '07]

```
[G. M. de Divitiis et al, '07]
[J. Laiho, '07]
[S. Simula, '07]
```

```
[D. Bećirević et al, '05]
```

Outlook

- The composition of the final state X_c in $\overline{B} \to X_c l \overline{\nu}$ has received some attention since 10 years.
- Theoretically, it is expected that the states D, D^* and the 4 P wave states D^{**} do not saturate the total width. Moreover, covariant quark models and sum rules extracted from the OPE in the $m_Q \to \infty$ limit lead to $\left[\Gamma(\bar{B} \to D(\frac{1}{2}) l\bar{\nu}) < \Gamma(\bar{B} \to D(\frac{3}{2}) l\bar{\nu})\right]^{\text{TH}}$.
- Experimentally, it was found at LEP that the total width is saturated by D, D^*, D^{**} and the measured branching ratios read $[\Gamma(\bar{B} \to D(\frac{1}{2}) l\bar{\nu}) > \Gamma(\bar{B} \to D(\frac{3}{2}) l\bar{\nu})]^{\text{EXP}}$.
- However there are strong theoretical assumptions that the broad states observed in the $\bar{B} \rightarrow D^{**} l \bar{\nu}$ mass distribution are not the P wave states.
- An important experimental effort is demanded, in particular to have a better knowledge of the quantum numbers of those broad states.
- The answer will have an impact on the theoretical control over QCD nonperturbative dynamics of the heavy-light systems.
- On the theoretical side, taking account of $1/m_Q$ corrections is crucial, either in the analytical treatement of QCD (OPE, quark models) or in its numerical one (lattice).