"1/2 vs. 3/2" puzzle in $\bar{B} \rightarrow X_{c} l \bar{\nu}$

Benoît Blossier
DESY Zeuthen

EuroFlavour '07, Orsay, 14-16 November 2007

- Motivations
- Corroborated features
- Issues
- Outlook

Motivations

$$
\delta \epsilon_{K}<1 \%, \quad \delta \hat{B}_{K} \sim 10 \%, \quad \delta \bar{\eta}\left(V_{c b}\right) \sim 6 \%
$$

$$
\left|V_{c b}\right|\left(\bar{B} \rightarrow D^{*} l \bar{\nu}\right)=\left(37.7 \pm 0.3 \pm 1.2 \pm_{1.4}^{1.2}\right) \times 10^{-3}\left[\text { BABAR, }{ }^{\prime} 07\right]
$$

$$
\left|V_{c b}\right|(\text { incl. })=(41.7 \pm 0.7) \times 10^{-3}\left[\text { PDG, }{ }^{\prime} 06\right]
$$

It is relevant to better figure out the QCD nonperturbative dynamics which enters in all processes involving bounded quarks \Longrightarrow their SM contribution can be more easily distinguished from the contribution coming from a new physics.

What is the composition of the hadronic final state X_{c} in $\bar{B} \rightarrow X_{c} l \bar{\nu} \boldsymbol{?}$

$$
\begin{aligned}
\operatorname{BR}\left(\bar{B}_{d} \rightarrow X_{c} l^{-} \bar{\nu}\right) & =(10.33 \pm 0.28) \% \\
\operatorname{BR}\left(\bar{B}_{u} \rightarrow X_{c} l^{-} \bar{\nu}\right) & =(10.99 \pm 0.28) \%
\end{aligned}
$$

		Mass (MeV)	Width (MeV)	J^{P}	j_{l}^{P}
$S: D^{(*)}$	$D^{ \pm}$	1869 ± 0.5	-	0^{-}	$\frac{1}{2}^{-}$
	$D^{* \pm}$	2010 ± 0.2	96 ± 25	1^{-}	
	D_{0}^{*}	2352 ± 50	261 ± 50	0^{+}	$\frac{1}{2}^{+}$
	D_{1}^{*}	$2427 \pm 26 \pm 25$	$384_{-75}^{+107} \pm 74$	1^{+}	
	D_{1}	2422.3 ± 1.3	20.4 ± 1.7	1^{+}	$\frac{3}{2}^{+}$
	D_{2}^{*}	2461.1 ± 1.6	43 ± 4	2^{+}	

$D^{* *} \rightarrow D^{(*)} \pi$ is the main decay channel: parity and orbital momentum conservations \Longrightarrow the decay occurs with the pion in a S wave or in a D wave
$D_{0,1}^{*} \rightarrow D^{(*)} \pi$: S wave $\quad D_{2}^{*} \rightarrow D^{(*)} \pi$: D wave
$D_{1} \rightarrow D^{*} \pi: S$ and D wave are a priori allowed; however the S wave is forbidden by HQS

Corroborated features

Theory: - OPE and HQE \Longrightarrow Bjorken, Uraltsev, Voloshin and moments sum rules

- Quark models that are covariant in the $m_{Q} \rightarrow \infty$ limit example: models à la Bakamijan-Thomas
- Lattice QCD

Experiment: B factories, LEP, Tevatron

States	$\%$ of $\Gamma\left(\bar{B} \rightarrow X_{c} l \bar{\nu}\right)$
D, D^{*}	75%
$D(3 / 2)$	$\sim 10 \%$

```
[BABAR, '07]
[HFAG, '07]
[ALEPH, '97]
[DELPHI, '06]
[DO, '05]
[V. Morénas et al, '97] BT models
```

D, D^{*} and $D(3 / 2)$ do not saturate the total width; $\sim 15 \%$ is composed of an unknown part D_{X}.

$B^{*}-B$ splitting: $\mu_{G}^{2}(1 \mathrm{GeV})=0.35(3) \mathrm{GeV}^{2}$	[O. Buchmüller, H, Flächer, '05]
$\mu_{\pi}^{2}(\mu)>\mu_{G}^{2}(\mu)$	[Belle, '06]
$\left.\mu_{\pi}^{2}(1 \mathrm{GeV})\right\|_{\mathrm{ref}}=0.45 \mathrm{GeV}^{2}$	[BABAR, 07]
[I. Bigi et al, '95] OPE	

Generalisation of the IW function $\xi(w)$
$\Gamma\left(\bar{B} \rightarrow D_{1 / 2[3 / 2]}^{(n)} l \bar{\nu}\right) \propto\left|\tau_{1 / 2[3 / 2]}^{(n)}\left(w_{n}\right)\right|^{2}$
$\sum_{n}\left[\tau_{3 / 2}^{(n)}(1)\right]^{2}-\sum_{n}\left[\tau_{1 / 2}^{(n)}(1)\right]^{2}=\frac{1}{4}$
$\tau_{3 / 2}^{0}(1)>\tau_{1 / 2}^{0}(1)$
$\tau_{1 / 2}^{0}(1) \in[0.20,0.40], \tau_{3 / 2}^{0}(1) \in[0.55,0.70]$
Suppression of $D(1 / 2)$ with respect to $D(3 / 2)$ due to kinematics

Factorisation in the Class I $\bar{B} \rightarrow D^{* *} \pi$: from an analysis by Belle it is expected that $\tau_{3 / 2}^{0}>\tau_{1 / 2}^{0}$ as well
[V. Morénas et al, '97] BT models
[A. K. Leibovich et al, '98]
[D. Ebert et al, '98] Relativistic model
[N. Uraltsev, '01] Uraltsev sum rule
[D. Bećirević et al, '05] Lattice

Issues

DELPHI found a larger component of broad states than of the narrow states. Interpretation as D_{0}^{*} and $D_{1}^{*} ? ? \Longrightarrow$ Clear conflict with theory, '1/2' vs. '3/2' puzzle [V. Morénas et al, '01], [N . Uraltsev, '04]
[DELPHI, '06]

[CDF, '05]

[BABAR: '06]

Up to now the experimental verdict about $\bar{B} \rightarrow\left[D / D^{*} \pi\right]_{\text {broad }} l \bar{\nu}$ is not clear.
No obvious theoretical candidates for those broad states if the mass distribution is centered below 2.5 GeV .

An important check of the theory is $\left\langle M\left(D_{X}\right)\right\rangle$: depending on $\mathrm{BR}\left(\bar{B} \rightarrow D^{*} l \bar{\nu}\right)$ it varies from 2.4 and 2.7.

The extension of BT models to finite quark masses just started: predictions concerning the relative weight of $\tau_{1 / 2}^{0}$ and $\tau_{3 / 2}^{0}$ could change by including those corrections.

Some "exotic" possibilities similar to the nucleons Roper resonance could be investigated.

The study of the spectrum of radial and orbital excitations of the D meson on the lattice must be pursued.

Nice results concerning $\bar{B} \rightarrow D / D^{*} l \bar{\nu}$ are already available.
The extension to $D^{* *}$ seems to be the next step, beyond the exploratory study performed before, in order to conclude about the relative weight of $\tau_{1 / 2}^{0}$ and $\tau_{3 / 2}^{0}$.
[A. Green et al, '03]
[J. Foley et al, '07]
[G. M. de Divitiis et al, '07]
[J. Laiho, '07]
[S. Simula, '07]
[D. Bećirević et al, '05]

Outlook

- The composition of the final state X_{c} in $\bar{B} \rightarrow X_{c} l \bar{\nu}$ has received some attention since 10 years.
- Theoretically, it is expected that the states D, D^{*} and the 4 P wave states $D^{* *}$ do not saturate the total width. Moreover, covariant quark models and sum rules extracted from the OPE in the $m_{Q} \rightarrow \infty$ limit lead to $\left[\Gamma\left(\bar{B} \rightarrow D\left(\frac{1}{2}\right) l \bar{\nu}\right)<\Gamma\left(\bar{B} \rightarrow D\left(\frac{3}{2}\right) l \bar{\nu}\right)\right]^{\mathrm{TH}}$
- Experimentally, it was found at LEP that the total width is saturated by $D, D^{*}, D^{* *}$ and the measured branching ratios read $\left[\Gamma\left(\bar{B} \rightarrow D\left(\frac{1}{2}\right) l \bar{\nu}\right)>\Gamma\left(\bar{B} \rightarrow D\left(\frac{3}{2}\right) l \bar{\nu}\right)\right]^{\text {EXP }}$.
- However there are strong theoretical assumptions that the broad states observed in the $\bar{B} \rightarrow D^{* *} l \bar{\nu}$ mass distribution are not the P wave states.
- An important experimental effort is demanded, in particular to have a better knowledge of the quantum numbers of those broad states.
- The answer will have an impact on the theoretical control over QCD nonperturbative dynamics of the heavy-light systems.
- On the theoretical side, taking account of $1 / m_{Q}$ corrections is crucial, either in the analytical treatement of QCD (OPE, quark models) or in its numerical one (lattice).

