Introduction The lepton-energy spectrum at Tree-level Radiative corrections

Testing the left-handedness of the $B \rightarrow C$ Transition

Robert Feger Theoretische Physik 1, Universität Siegen

in collaboration with Thomas Mannel and Benjamin Dassinger

EuroFlavour '07

Orsay, 14.11.2007

Robert Feger

Testing the left-handedness of the $B \longrightarrow C$ transition

OUTLINE

INTRODUCTION

- Testing the standard model
- Enhancement via higher dimensional operators
- New Ansatz

2 The lepton-energy spectrum at Tree-level

3 RADIATIVE CORRECTIONS

- Real corrections
- Virtual corrections

PROBLEM

HISTORY

- Experiments \rightarrow neutrinos have helicity -1 (left handed) and a small or no rest mass
- e standard model assumption : neutrinos are massless
 ⇒ helicity is a Lorentz invariant
- Neutrinos are only generated from the weak interaction
- Absence of righthanded neutrinos
 - \Rightarrow weak interaction couples only with left handed leptonic currents

QUARK-LEPTON UNIVERSALITY

The coupling to only lefthanded currents is assumed to be a fundamental, universal property of the weak interaction and transferred to weak quark decays.

PROBLEM

HISTORY

- Experiments \rightarrow neutrinos have helicity -1 (lefthanded) and a small or no rest mass
- e standard model assumption : neutrinos are massless
 ⇒ helicity is a Lorentz invariant
- Neutrinos are only generated from the weak interaction
- Absence of righthanded neutrinos
 - \Rightarrow weak interaction couples only with lefthanded leptonic currents

QUARK-LEPTON UNIVERSALITY

The coupling to only lefthanded currents is assumed to be a fundamental, universal property of the weak interaction and transferred to weak quark decays.

Testing the standard model Enhancement via higher dimensional operators New Ansatz

TESTING THE STANDARD MODEL

B FACTORIES BABAR AND BELLE

- High precision at the B factories BABAR and BELLE allows also a test of charged currents
- This test is known from the lepton sector as the "Michel parameter analysis".

Approach

- Extension of the standard model
- Calculation of the moments of the lepton energy spectrum and of the spectrum of the hadronic invariant mass of the inclusive decay *B* → X_c e⁻ ν
 *ē*_e
- Comparision with data from the B factories

Testing the standard model Enhancement via higher dimensional operators New Ansatz

TESTING THE STANDARD MODEL

B FACTORIES BABAR AND BELLE

- High precision at the B factories BABAR and BELLE allows also a test of charged currents
- This test is known from the lepton sector as the "Michel parameter analysis".

Approach

- Extension of the standard model
- Calculation of the moments of the lepton energy spectrum and of the spectrum of the hadronic invariant mass of the inclusive decay $\bar{B} \rightarrow X_c \, e^- \, \bar{\nu}_e$
- Comparision with data from the B factories

INTRODUCTION RGY SPECTRUM AT TREE-LEVEL Testing the standard model Enhancement via higher dimensional operators New Ansatz

EXTENSION OF THE STANDARD MODEL

ASSUMPTION

- There exists an **unknown**, parent theory at the scale Λ .
- The standard model is an effective theory of this superior theory.

Required properties of the enhanced theory

Reproduction of the standard model at low scales:

- $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ symmetry
- V-A interaction

INTRODUCTION -ENERGY SPECTRUM AT TREE-LEVEL Testing the standard model Enhancement via higher dimensional operators New Ansatz

EXTENSION OF THE STANDARD MODEL

Assumption

- There exists an **unknown**, parent theory at the scale Λ .
- The standard model is an effective theory of this superior theory.

Required properties of the enhanced theory

Reproduction of the standard model at low scales:

- $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ symmetry
- V-A interaction

INTRODUCTION N-ENERGY SPECTRUM AT TREE-LEVE **Testing the standard model** Enhancement via higher dimensional operators New Ansatz

EXTENSION OF THE STANDARD MODEL

Expansion of the parent theory

$$\mathcal{L} = \mathcal{L}_{4\mathrm{D}} + \frac{1}{\Lambda} \mathcal{L}_{5\mathrm{D}} + \frac{1}{\Lambda^2} \mathcal{L}_{6\mathrm{D}} + \dots$$
(1)

- $\mathcal{L}_{4D} = \mathcal{L}_{SM}$: lagrangian of the standard model
- \mathcal{L}_{5D} , \mathcal{L}_{6D} : lagrangian with dimension 5 and 6
- Λ : scale parameter of new physics

CONTRUCTION

- Expansion of the parent theory in standard model fields
 ⇒ minimal expansion (no SUSY etc.)
- Construction of higher dimensional operators by hand.

INTRODUCTION ON-ENERGY SPECTRUM AT TREE-LEVEL **Testing the standard model** Enhancement via higher dimensional operators New Ansatz

EXTENSION OF THE STANDARD MODEL

EXPANSION OF THE PARENT THEORY

$$\mathcal{L} = \mathcal{L}_{4\mathrm{D}} + \frac{1}{\Lambda} \mathcal{L}_{5\mathrm{D}} + \frac{1}{\Lambda^2} \mathcal{L}_{6\mathrm{D}} + \dots$$
(1)

- $\mathcal{L}_{4D} = \mathcal{L}_{SM}$: lagrangian of the standard model
- \mathcal{L}_{5D} , \mathcal{L}_{6D} : lagrangian with dimension 5 and 6
- Λ : scale parameter of new physics

CONTRUCTION

- Expansion of the parent theory in standard model fields
 ⇒ minimal expansion (no SUSY etc.)
- Construction of higher dimensional operators by hand.

INTRODUCTION NERGY SPECTRUM AT TREE-LEVEL 'esting the standard model **Inhancement via higher dimensional operators** Jew Ansatz

CONSTITUENTS AND TRANSITION BEHAVIOR

QUARK FIELDS

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \quad \begin{pmatrix} c_L \\ s_L \end{pmatrix}, \quad \begin{pmatrix} t_L \\ b_L \end{pmatrix}$$
(2)
$$q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix}, \quad \begin{pmatrix} c_R \\ s_R \end{pmatrix}, \quad \begin{pmatrix} t_R \\ b_R \end{pmatrix}$$
(3)

HIGGS FIELD

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_0 - i\chi_0 & \sqrt{2}\phi_+ \\ -\sqrt{2}\phi_- & \phi_0 + i\chi_0 \end{pmatrix}$$
(4)

 $SU(2)_L \otimes SU(2)_R$ symmetry

Testing the standard model Enhancement via higher dimensional operators New Ansatz

CONSTRUCTION OF THE NEW OPERATORS

LIMITATIONS

- $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$ symmetry \Rightarrow no dimension 5 operators possible
- Neglect of all operators $\mathcal{O}(1/\Lambda^3)$

STRUCTURE OF THE LAGRANGIAN

$$L = L_{\rm SM} + \frac{1}{\Lambda^2} \sum_{i} (O_{\rm LL}^{(i)} + O_{\rm LR}^{(i)} + O_{\rm RR}^{(i)})$$

- Interaction of left and right handed particles
- New operators are of dimension 6

(5)

INTRODUCTION

HE LEPTON-ENERGY SPECTRUM AT TREE-LEVEL RADIATIVE CORRECTIONS Testing the standard model Enhancement via higher dimensional operators New Ansatz

LIST OF INDEPENDENT OPERATORS

LL OPERATORS

$$L^{\mu} = H (iD^{\mu}H)^{\dagger} + (iD^{\mu}H) H^{\dagger}$$
$$L^{\mu}_{3} = H\tau_{3} (iD^{\mu}H)^{\dagger} + (iD^{\mu}H) \tau_{3}H^{\dagger}$$

RR OPERATORS

$$O_{RR}^{(1)} = \bar{q}_A \not R F_{AB}^{(1)} q_B$$

$$O_{RR}^{(2)} = \bar{q}_A \{\tau_3, \not R\} F_{AB}^{(2)} q_B$$

$$O_{RR}^{(3)} = i \bar{q}_A [\tau_3, \not R] F_{AB}^{(3)} q_B$$

$$O_{RR}^{(4)} = \bar{q}_A \tau_3 \not R \tau_3 F_{AB}^{(4)} q_B$$

 $R^{\mu} = H^{\dagger} \left(i D^{\mu} H \right) + \left(i D^{\mu} H \right)^{\dagger} H$

LR OPERATORS

$$\begin{split} O_{LR}^{(1)} &= \bar{Q}_A \, H H^{\dagger} H \widehat{K}_{AB}^{(1)} \, q_B + \text{h.c.} \\ O_{LR}^{(2)} &= \bar{Q}_A \, \left(\sigma_{\mu\nu} B^{\mu\nu} \right) H \widehat{K}_{AB}^{(2)} \, q_B + \text{h.c.} \\ O_{LR}^{(3)} &= \bar{Q}_A \, \left(\sigma_{\mu\nu} W^{\mu\nu} \right) H \widehat{K}_{AB}^{(3)} \, q_B + \text{h.c.} \\ O_{LR}^{(4)} &= \bar{Q}_A \, \left(i D_{\mu} H \right) i D^{\mu} \widehat{K}_{AB}^{(4)} \, q_B + \text{h.c.} \end{split}$$

$$\widehat{K}_{AB}^{(i)} = K_{AB}^{(i)} + \tau_3 K_{AB}^{(i)\prime}$$

The terms with τ_3 take care about the explicit breaking of the $SU(2)_L \otimes SU(2)_R$ symmetry down to the observed $SU(2)_L \otimes U(1)_Y$ symmetry.

Testing the standard model Enhancement via higher dimensional operators New Ansatz

FURTHER PROCEEDING

Further proceeding

- Perform the spontaneous symmetry breaking
- Application to the decay $\bar{B} \to X_c e^- \bar{\nu}_e$ \Rightarrow many of the operators drop out
- Integrating out the W boson \Rightarrow Fermi coupling
- Using the unaltered lefthanded leptonic current assuming massless leptons

EFFECTIVE HAMILTONIAN

$$\mathcal{H}_{\text{eff}} = \frac{4G_{\text{F}}V_{cb}}{\sqrt{2}}J_{q,\mu}J_{l}^{\mu} \qquad J_{l}^{\mu} = \bar{e}\,\gamma^{\mu}P_{-}\,\nu_{e} \tag{6}$$

Testing the standard model Enhancement via higher dimensional operators New Ansatz

ANSATZ FOR THE QUARK CURRENT STRUCTURE

Ansatz

The most general form of the current contains all possible dirac structures:

$$J_{h,\mu} = c_L \bar{c} \gamma_\mu P_L b + c_R \bar{c} \gamma_\mu P_R b$$

$$+ g_L \bar{c} \frac{iD_\mu}{m_b} P_L b + g_R \bar{c} \frac{iD_\mu}{m_b} P_R b$$

$$+ d_L \frac{i\partial^\nu}{m_b} (\bar{c} \, i\sigma_{\mu\nu} P_L b) + d_R \frac{i\partial^\nu}{m_b} (\bar{c} \, i\sigma_{\mu\nu} P_R b),$$
with $P_L = \left(\frac{1-\gamma^5}{2}\right)$ and $P_R = \left(\frac{1+\gamma^5}{2}\right).$

$$(7)$$

STANDARD MODEL

In the standard model:

$$J_{q,\mu} = \bar{c} \, \gamma_{\mu} \left(\frac{1-\gamma^5}{2}\right) b, = \bar{c} \, \gamma_{\mu} P_L \, b$$

so $c_L = 1$ and $c_R = g_L = g_R = d_L = d_R = 0$.

Introduction The lepton-energy spectrum at Tree-level Radiative corrections Testing the standard model Enhancement via higher dimensional operators New Ansatz

ANSATZ FOR THE QUARK CURRENT STRUCTURE

Ansatz

The most general form of the current contains all possible dirac structures:

$$J_{h,\mu} = c_L \bar{c} \gamma_\mu P_L b + c_R \bar{c} \gamma_\mu P_R b$$

$$+ g_L \bar{c} \frac{iD_\mu}{m_b} P_L b + g_R \bar{c} \frac{iD_\mu}{m_b} P_R b$$

$$+ d_L \frac{i\partial^\nu}{m_b} (\bar{c} i\sigma_{\mu\nu} P_L b) + d_R \frac{i\partial^\nu}{m_b} (\bar{c} i\sigma_{\mu\nu} P_R b),$$
with $P_L = \left(\frac{1-\gamma^5}{2}\right)$ and $P_R = \left(\frac{1+\gamma^5}{2}\right).$

$$(7)$$

ORDER OF MAGNITUDE OF THE PARAMETERS

$$c_L \propto 1;$$
 $c_R \propto rac{v^2}{\Lambda^2};$
 $d_{R/L} \propto rac{v m_b}{\Lambda^2};$ $g_{R/L} \propto rac{v m_b}{\Lambda^2};$

(8)

OUTLINE

Introduction

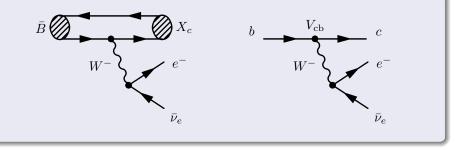
- Testing the standard model
- Enhancement via higher dimensional operators
- New Ansatz

2 The lepton-energy spectrum at Tree-level

- Radiative corrections
 - Real corrections
 - Virtual corrections

CALCULATION OF THE LEPTON-ENERGY SPECTRUM

MESON DECAY AND PARTON-LEVEL



COEFFICIENT DECOMPOSITION OF THE LEPTON-ENERGY SPECTRUM

The electron's energy spectrum as a sum of single contributions:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}y} = \sum_{i} i \frac{\mathrm{d}\Gamma^{(i)}}{\mathrm{d}y} \quad \text{mit} \quad y = \frac{2E_l}{m_b} \quad \text{und}$$

$$i = c_L c_L, \ c_L c_R, \ c_L d_L, \ c_L d_R, \ c_L g_L, \ c_L g_R \qquad (9)$$

RESULTS AT TREE-LEVEL

$c_L c_L$ CONTRIBUTION

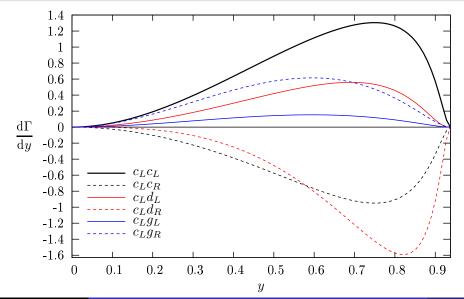
This contribution contains the standard model lepton-energy spectrum:

$$\frac{\mathrm{d}\Gamma^{c_L c_L}}{\mathrm{d}y} = \frac{G_{\mathrm{F}}^2 |V_{cb}|^2 m_b^5}{192\pi^3} \left[2y^2 (3-2y) - 6y^2 \rho - \frac{6y^2 \rho^2}{(1-y)^2} + \frac{2y^2 (3-y) \rho^3}{(1-y)^3} \right]$$

NEW CONTRIBUTIONS

$$\begin{split} \frac{\mathrm{d}\Gamma^{c_L c_R}}{\mathrm{d}y} &= -\frac{G_{\mathrm{F}}^2 |V_{cb}|^2 m_b^5}{192 \, \pi^3} \sqrt{\rho} \left[12y^2 - \frac{24y^2 \rho}{1-y} + \frac{12y^2 \rho^2}{(1-y)^2} \right].\\ \frac{\mathrm{d}\Gamma^{c_L d_R}}{\mathrm{d}y} &= -\frac{G_{\mathrm{F}}^2 |V_{cb}|^2 m_b^5}{192 \pi^3} \left[4y^3 - \frac{12y^3 \rho^2}{(1-y)^2} + \frac{8y^3 \rho^3}{(1-y)^3} \right]\\ \frac{\mathrm{d}\Gamma^{c_L d_L}}{\mathrm{d}y} &= -\frac{G_{\mathrm{F}}^2 |V_{cb}|^2 m_b^5}{192 \pi^3} \sqrt{\rho} \left[\frac{4y^2 (3-y)(y-1+\rho)^3}{(1-y)^3} \right]\\ \frac{\mathrm{d}\Gamma^{c_L g_L}}{\mathrm{d}y} &= \frac{G_{\mathrm{F}}^2 |V_{cb}|^2 m_b^5}{192 \pi^3} \sqrt{\rho} \left[\frac{6y^2 (y-1+\rho)^2}{1-y} \right] = \sqrt{\rho} \, \frac{\mathrm{d}\Gamma^{c_L g_R}}{\mathrm{d}y} \end{split}$$

LEPTON-ENERGY SPECTRUM



OUTLINE

Introduction

- Testing the standard model
- Enhancement via higher dimensional operators
- New Ansatz

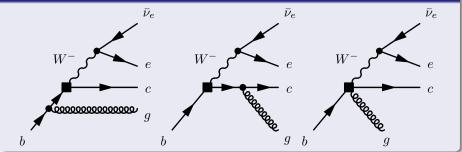
The lepton-energy spectrum at Tree-level

3 RADIATIVE CORRECTIONS

- Real corrections
- Virtual corrections

REAL CORRECTIONS

Feynman diagrams



QUARK-QUARK-GLUON-BOSON VERTEX IN THE SCALAR CONTRIBUTION

The covariant derivative $D_{\mu} = \partial_{\mu} + ig_3 A^a_{\mu} \lambda_a/2$ in the scalar contribution to the current

$$g_L \bar{c} \, \frac{iD_\mu}{m_b} P_- b + g_R \, \bar{c} \, \frac{iD_\mu}{m_b} P_+ b,$$

generates a Quark-quark-gluon-boson vertex (diagram on the right-hand side)

REAL CORRECTIONS

CALCULATION OF THE MOMENTS

LEPTONIC MOMENTS

$$L_{n} = \frac{1}{\Gamma_{0}} \int_{E_{\text{cut}}} dE_{\ell} E_{\ell}^{n} \frac{d\Gamma}{dE_{\ell}} \quad \text{with} \quad \Gamma_{0} = \frac{G_{\text{F}}^{2} |V_{cb}|^{2} m_{b}^{5}}{192\pi^{3}} \left[1 - 8\rho - 12\rho^{2} \ln \rho + 8\rho^{3} - \rho^{4} \right]$$

HADRONIC MOMENTS

$$H_{ij} = \frac{1}{\Gamma_0} \int_{E_{\rm cut}} \mathrm{d}E_\ell \int \mathrm{d}E_{\rm had} \,\mathrm{d}M_{\rm had}^2 (M_{\rm had}^2 - m_c^2)^i E_{\rm had}^j \,\frac{\mathrm{d}^3\Gamma}{\mathrm{d}E_\ell \,\mathrm{d}E_{\rm had} \mathrm{d}M_{\rm had}^2}$$

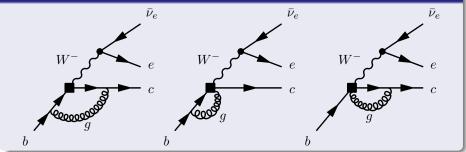
α_s/π coefficients of the hadronic moments

i	j	c_l^2	$c_l c_r$	$c_l d_l$	$c_l d_r$	$c_l g_l$	$c_l g_r$
1	0	0.09009	-0.03629	0.01697	-0.05009	0.01286	0.06051
1	1	0.04700	-0.01782	0.00789	-0.02426	0.00679	0.03264
1	2	0.02509	-0.00903	0.00377	-0.01205	0.00364	0.01794
2	0	0.00911	-0.00330	0.00117	-0.00418	0.00121	0.00660
2	1	0.00534	-0.00188	0.00062	-0.00229	0.00071	0.00396
3	0	0.00181	-0.00063	0.00018	-0.00070	0.00023	0.00138

Real corrections Virtual corrections

VIRTUAL CORRECTIONS

FEYNMAN DIAGRAMS



Special properties

- Quark-quark-gluon-boson vertex in the scalar part of the current generates two new diagrams (right).
- The results with virtual corrections are only calculated for $c_L c_L$ and $c_L c_R$, because the others have an anomalous dimension

INTRODUCTION The lepton-energy spectrum at Tree-level Radiative corrections

Real corrections Virtual corrections

VIRTUAL CORRECTIONS

 α_s/π coefficients of the leptonic moments (left) and hadronic moments for $i=0~(\rm right)$

n	c_l^2	$c_l c_r$	i	j	c_l^2	$c_l c_r$
0	-1.778	2.198	0	0	-1.778	2.198
1	-0.551	0.666	0	1	-0.719	0.867
2	-0.188	0.222	0	2	-0.292	0.349
3	-0.068	0.079	0	3	-0.118	0.143

Special properties

- Quark-quark-gluon-boson vertex in the scalar part of the current generates two new diagrams (right).
- The results with virtual corrections are only calculated for $c_L c_L$ and $c_L c_R$, because the others have an anomalous dimension

SUMMARY AND OUTLOOK

CONCLUSION

- The effects of the new couplings on the moments can be sizable.
- Example for a parent theory: Multi-Higgs model with charged Higgs
- The calculation of the non-perturbative corrections is straight forward, but the perturbative QCD-effects give the main contributions.

Outlook

- Calculation of the anomalous dimensions is almost finished and to be published soon
- Combined fit of all parameters, including quark masses and HQE-parameters