α_s and the au hadronic width

Work in process (progress?) with:

Martin Beneke

All results are preliminary!

 $lpha_s$ and au hadronic width Matthias Jamin

Investigations of hadronic τ decays already contributed tremendously for fundamental QCD parameters like α_s , the strange mass and non-perturbative condensates.

Introduction

In particular: (Davier, Höcker, Zhang 2007)

 $\alpha_{s}(M_{\tau}) = 0.345 \pm 0.004_{\text{exp}} \pm 0.009_{\text{th}} \,,$

leading to

 $\alpha_s(M_Z) = 0.1215 \pm 0.0012$.

This should be compared to the recent average: (Bethke 2007) $\alpha_{s}(M_{Z}) = 0.1185 \pm 0.0010$,

displaying a 2.5σ difference.

 $lpha_s$ and au hadronic width Matthias Jamin

Hadronic au decay rate

Consider the physical quantity R_{τ} : (Braaten, Narison, Pich 1992)

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \text{hadrons } \nu_{\tau}(\gamma))}{\Gamma(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))} = 3.640 \pm 0.010 \,.$$

 R_{τ} is related to the QCD correlators $\Pi^{T,L}(z)$: $(z \equiv s/M_{\tau}^2)$

$$R_{\tau} = 12\pi \int_{0}^{1} dz (1-z)^{2} \left[(1+2z) \operatorname{Im}\Pi^{T}(z) + \operatorname{Im}\Pi^{L}(z) \right],$$

with the appropriate combinations

$$\Pi^{J}(z) = |V_{ud}|^{2} \left[\Pi^{V,J}_{ud} + \Pi^{A,J}_{ud} \right] + |V_{us}|^{2} \left[\Pi^{V,J}_{us} + \Pi^{A,J}_{us} \right]$$

 $lpha_s$ and au hadronic width Matthias Jamin

Additional information can be inferred from the moments

$$R_{\tau}^{kl} \equiv \int_{0}^{1} dz \, (1-z)^{k} z^{l} \, \frac{dR_{\tau}}{dz} = R_{\tau,V+A}^{kl} + R_{\tau,S}^{kl}$$

Theoretically, R_{τ}^{kl} can be expressed as:

$$R_{\tau}^{kl} = N_{c} S_{\text{EW}} \left\{ (|V_{ud}|^{2} + |V_{us}|^{2}) \left[1 + \delta^{kl(0)} \right] + \sum_{D \ge 2} \left[|V_{ud}|^{2} \delta_{ud}^{kl(D)} + |V_{us}|^{2} \delta_{us}^{kl(D)} \right] \right\}.$$

 $\delta_{ud}^{kl(D)}$ and $\delta_{us}^{kl(D)}$ are corrections in the Operator Product Expansion, the most important ones being $\sim m_s^2$ and $m_s \langle \bar{q}q \rangle$.

 $lpha_s$ and au hadronic width Matthias Jamin

For R_{τ} , it is advantageous to work with the Adler function D(s):

$$D(s) \equiv -s \frac{d}{ds} \Pi(s) = \frac{N_c}{12\pi^2} \sum_{n=0}^{\infty} a_{\mu}^n \sum_{k=1}^{n+1} k c_{n,k} L^{k-1}$$

where $a_{\mu} \equiv \alpha_s(\mu)/\pi$ and $L \equiv \ln(-s/\mu^2)$. The physical quantity D(s) satisfies a homogeneous RGE:

$$-\mu \frac{d}{d\mu} D(s) = \left[2\frac{\partial}{\partial L} + \beta(a)\frac{\partial}{\partial a}\right] D(s) = 0$$

As a consequence, only the coefficients $c_{n,1}$ are independent: $c_{0,1} = c_{11} = 1$, $c_{2,1} = 1.640$, $c_{3,1} = 6.371$, $c_{4,1} = 49.076$!!! (Baikov, Chetyrkin, Kühn 2007)

 $lpha_s$ and au hadronic width Matthias Jamin

Fixed order perturbation theory amounts to choice $\mu^2 = M_{\tau}^2$:

$$\delta_{\text{FO}}^{(0)} = \sum_{n=0}^{\infty} a^n (M_{\tau}^2) \sum_{k=1}^{n+1} k \, c_{n,k} J_{k-1}$$

A given perturbative order n depends on all coefficients $c_{m,1}$ with $m \le n$, and on the coefficients of the QCD β -function.

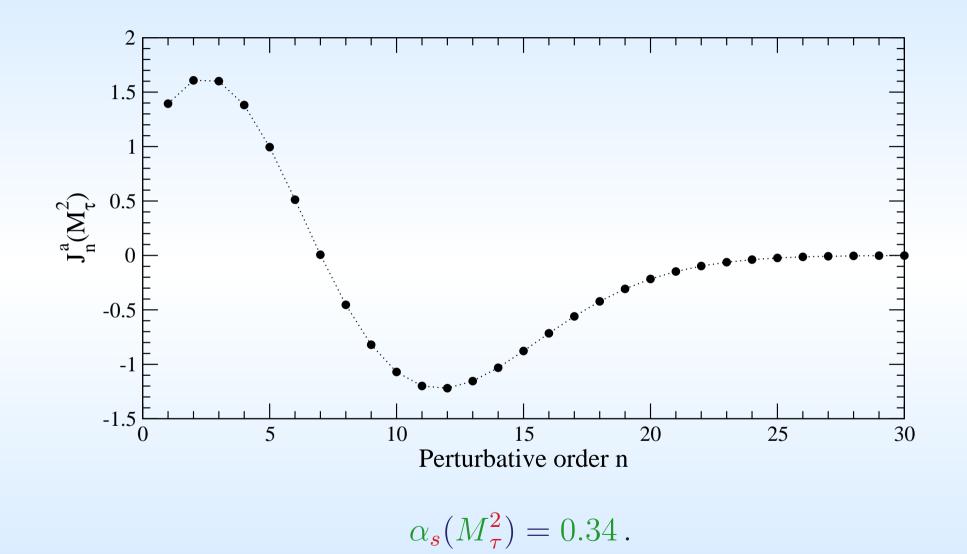
Contour improved perturbation theory employs $\mu^2 = -M_{\tau}^2 x$: (Pivovarov; Le Diberder, Pich 1992)

$$\delta_{\text{CI}}^{(0)} = \sum_{n=0}^{\infty} c_{n,1} J_n^a(M_{\tau}^2)$$
 with

$$J_n^a(M_{\tau}^2) = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1-x)^3 (1+x) a^n (-M_{\tau}^2 x)$$

 $lpha_s$ and au hadronic width Matthias Jamin

Contour integrals



 $lpha_s$ and au hadronic width Matthias Jamin

EuroFlavour'07, Orsay

7

Numerical analysis

Employing $\alpha_s(M_{\tau}^2) = 0.34$, the numerical analysis results in: a^1 a^2 a^3 a^4 a^5 $\delta_{\mathbf{FO}}^{(0)} = 0.108 + 0.061 + 0.033 + 0.017(+0.009) = 0.220(0.229)$ $\delta_{\mathbf{CI}}^{(0)} = 0.148 + 0.030 + 0.012 + 0.009(+0.004) = 0.198(0.202)$ Contour improved PT appears to be better convergent. The difference between both approaches amounts to 0.022! From the uniform convergence of $\delta_{FO}^{(0)}$, and the assumption that the series is not yet asymptotic, one may also infer $c_{5,1} = 283 \pm 283$,

leading to a difference of $\delta_{\rm FO}^{(0)} - \delta_{\rm CI}^{(0)} = 0.027$.

 $lpha_s$ and au hadronic width Matthias Jamin

To further investigate the difference between CI and FOPT, we propose to model the Borel-transformed Adler function.

$$4\pi^2 D(s) \equiv 1 + R(s) \equiv 1 + \sum_{n=0}^{\infty} r_n \alpha_s(s)^{n+1}$$
,

where $r_n = c_{n+1,1}/\pi^{n+1}$. The Borel-transform reads:

$$\tilde{R}(\alpha) = \int_{0}^{\infty} dt \, \mathrm{e}^{-t/\alpha} B[R](t); \quad B[R](t) = \sum_{n=0}^{\infty} r_n \, \frac{t^n}{n!}$$

Our main model will be a "Padé-type" approximant, which is inspired by the large- β_0 approximation.

 $lpha_s$ and au hadronic width Matthias Jamin

Padé model

$$B[R](u) = e^{-Cu} \left\{ d_1^{\text{UV}} \left[\frac{1}{(1+u)^2} + \frac{5}{6} \frac{1}{(1+u)} \right] + \frac{d_2^{\text{UV}}}{(2+u)} + \frac{d_1^{\text{IR}}}{(2-u)} + \frac{d_2^{\text{IR}}}{(3-u)} + \frac{d_3^{\text{IR}}}{(4-u)} \right\},$$

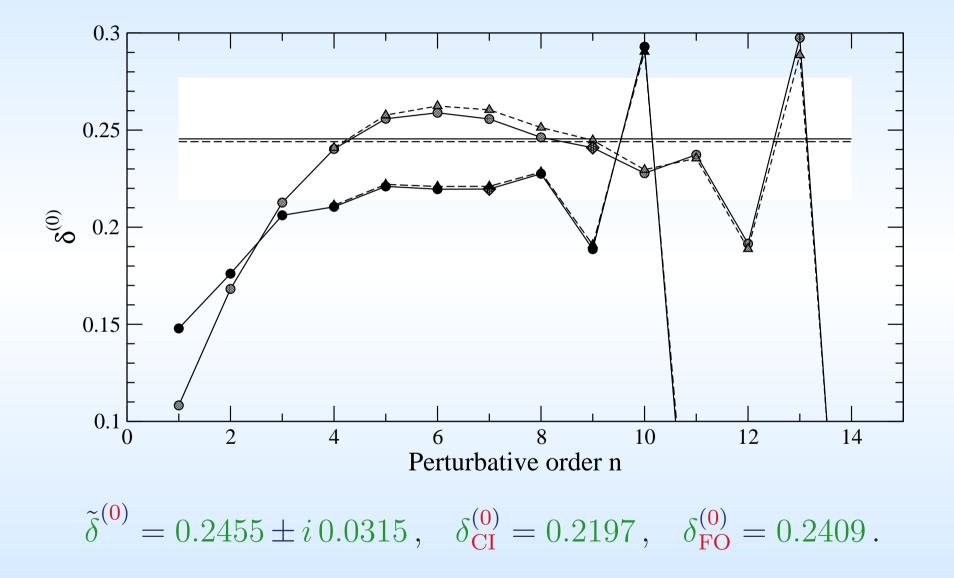
where $u = \beta_0 t$.

The model incorporates the renormalon pole structure as found in the large- β_0 approximation. (Beneke 1993; Broadhurst 1993)

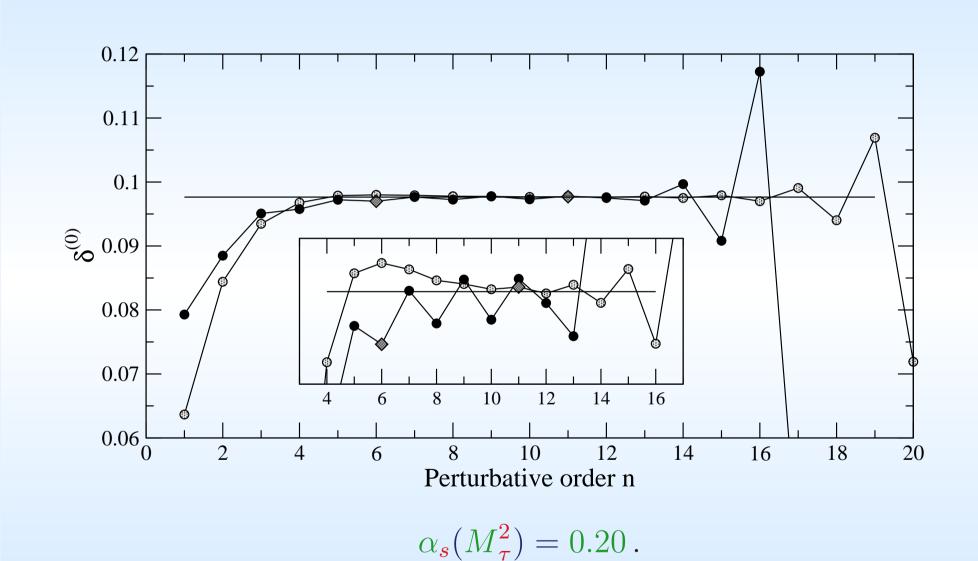
C is a scheme-dependent constant. (C = -5/3 in large- β_0 .)

With a definite prescription of how to treat the poles, also the Borel-resummation can be defined. (Principal Value Prescr.)

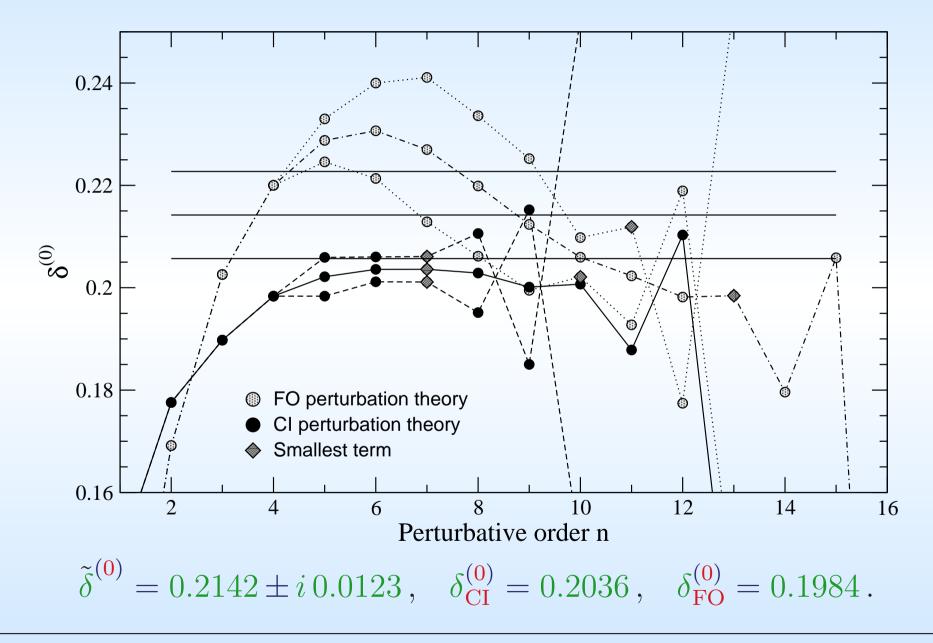
 $lpha_s$ and au hadronic width Matthias Jamin



 $lpha_s$ and au hadronic width Matthias Jamin

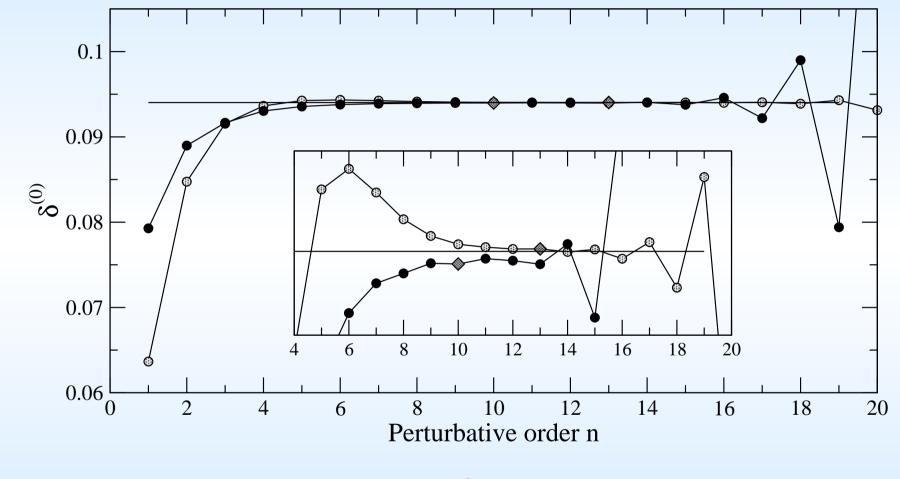


Model with 2 UV and 3 IR poles



 $lpha_s$ and au hadronic width Matthias Jamin

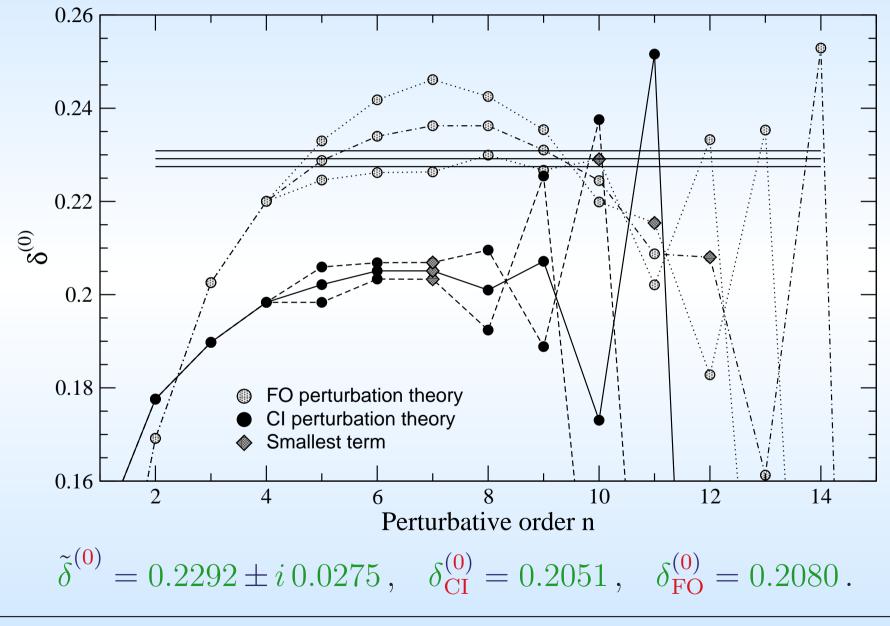
Model with 2 UV and 3 IR poles



 $\alpha_s(M_{\tau}^2) = 0.20 \,.$

$lpha_s$ and au hadronic width Matthias Jamin

Leading IR pole fixed to large- β_0

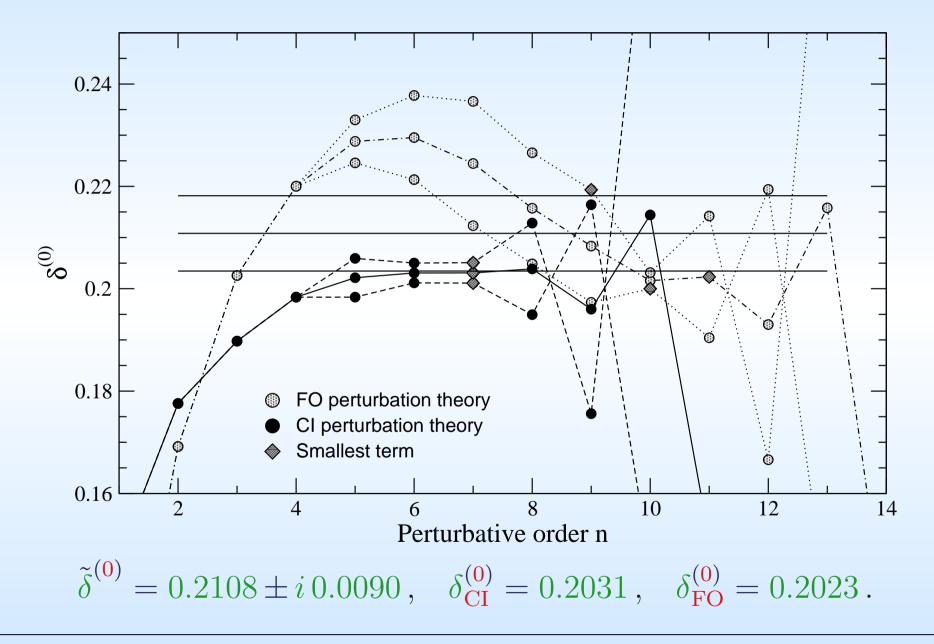


 $lpha_s$ and au hadronic width Matthias Jamin

EuroFlavour'07, Orsay

15

Quadratic higher poles



 $lpha_s$ and au hadronic width Matthias Jamin

Employing the hadronic decay rate into light quarks

$$R_{\tau,V+A} = N_c |V_{ud}|^2 S_{\rm EW} \left[1 + \delta^{(0)} + \delta^{\rm NP}_{V+A} \right]$$

one finds

$$\delta^{(0)} = \frac{R_{\tau, V+A}}{3|V_{ud}|^2 S_{\text{EW}}} - 1 - \delta^{\text{NP}}_{V+A} = 0.2032(48)(21)$$

The first uncertainty is due to $R_{\tau,V+A}$, while the remaining error is dominated by δ_{V+A}^{NP} .

Scanning over plausible models and adjusting α_s such as to reproduce $\delta^{(0)},$ one finally obtains

 $\alpha_{s}(M_{\tau}) = 0.3293(52)(94) \implies \alpha_{s}(M_{Z}) = 0.1197(13)$

 $lpha_s$ and au hadronic width Matthias Jamin

Conclusions

For small coupling, FOPT povides the smoother approach to the resummed value $\tilde{\delta}^{(0)}$. At $\alpha_s \approx 0.33$, though CIPT and FOPT turn out compatible, the situation is less clear.

In all studied cases the difference $\tilde{\delta}^{(0)} - \delta^{(0)}_{CI}$ is found to be of the order of the complex ambiguity.

The size of the complex ambiguity is dominated by the size of the residue of the leading IR pole at u = 2.

Work on m^2 and scalar contributions in process with F. Schwab.

Conclusions

For small coupling, FOPT povides the smoother approach to the resummed value $\tilde{\delta}^{(0)}$. At $\alpha_s \approx 0.33$, though CIPT and FOPT turn out compatible, the situation is less clear.

In all studied cases the difference $\tilde{\delta}^{(0)} - \delta^{(0)}_{CI}$ is found to be of the order of the complex ambiguity.

The size of the complex ambiguity is dominated by the size of the residue of the leading IR pole at u = 2.

Work on m^2 and scalar contributions in process with F. Schwab.

Thank You for Your attention !