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Introduction 2

☞ Investigations of hadronic τ decays already contributed
tremendously for fundamental QCD parameters like αs,
the strange mass and non-perturbative condensates.

☞ In particular: (Davier, Höcker, Zhang 2007)

αs(M τ) = 0.345± 0.004exp ± 0.009th ,

leading to

αs(MZ) = 0.1215± 0.0012 .

☞ This should be compared to the recent average:
(Bethke 2007)

αs(MZ) = 0.1185± 0.0010 ,

displaying a 2.5σ difference.
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Hadronic τ decay rate 3

Consider the physical quantity Rτ : (Braaten, Narison, Pich 1992)

Rτ ≡
Γ(τ−→ hadrons ντ(γ))

Γ(τ−→ e−ν̄eντ(γ))
= 3.640±0.010 .

Rτ is related to the QCD correlators ΠT ,L(z): (z ≡ s/M 2
τ)

Rτ = 12π
1

∫

0

dz(1−z)2
[

(1+2z)ImΠT(z)+ImΠL(z)
]

,

with the appropriate combinations

ΠJ(z) = |Vud|
2
[

ΠV,J
ud +ΠA,J

ud

]

+|Vus|
2
[

ΠV,J
us +ΠA,J

us

]

.
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Hadronic τ decay moments 4

Additional information can be inferred from the moments

Rkl
τ ≡

1
∫

0

dz (1−z)kzl dRτ

dz
= Rkl

τ ,V+A + Rkl
τ ,S .

Theoretically, Rkl
τ can be expressed as:

Rkl
τ = Nc SEW

{

(|Vud|
2+|Vus|

2)
[

1+δkl(0)
]

+
∑

D≥2

[

|Vud|
2δ

kl(D)
ud +|Vus|

2δkl(D)
us

]

}

.

δ
kl(D)
ud and δkl(D)

us are corrections in the Operator Product
Expansion, the most important ones being ∼m2

s and ms〈q̄q〉.

αs and τ hadronic width
Matthias Jamin

EuroFlavour’ 07, Orsay



Perturbative expansion 5

For Rτ , it is advantageous to work with the Adler function D(s):

D(s) ≡ − s
d

ds
Π(s) =

Nc

12π2

∞
∑

n=0

an
µ

n+1
∑

k=1

k cn,kL
k−1

where aµ ≡ αs(µ)/π and L≡ ln(−s/µ2).

The physical quantity D(s) satisfies a homogeneous RGE:

−µ
d

dµ
D(s) =

[

2
∂

∂L
+ β(a)

∂

∂a

]

D(s) = 0

As a consequence, only the coefficients cn,1 are independent:

c0,1 = c11 = 1 , c2,1 = 1.640 , c3,1 = 6.371 ,

c4,1 = 49.076 !!! (Baikov, Chetyrkin, Kühn 2007)
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RG-improvement 6

Fixed order perturbation theory amounts to choice µ2 = M 2
τ :

δ
(0)
FO =

∞
∑

n=0

an(M 2
τ)

n+1
∑

k=1

k cn,kJk−1

A given perturbative order n depends on all coefficients cm,1

with m≤n, and on the coefficients of the QCD β-function.

Contour improved perturbation theory employs µ2 =−M 2
τx:

(Pivovarov; Le Diberder, Pich 1992)

δ
(0)
CI =

∞
∑

n=0

cn,1J
a
n(M

2
τ) with

Ja
n(M

2
τ) =

1

2πi

∮

|x|=1

dx

x
(1−x)3(1+x)an(−M 2

τx)
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Contour integrals 7
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Numerical analysis 8

Employing αs(M
2
τ) = 0.34, the numerical analysis results in:

a1 a2 a3 a4 a5

δ
(0)
FO = 0.108+0.061+0.033+0.017(+0.009) = 0.220 (0.229)

δ
(0)
CI = 0.148+0.030+0.012+0.009(+0.004) = 0.198 (0.202)

Contour improved PT appears to be better convergent.

The difference between both approaches amounts to 0.022 !

From the uniform convergence of δ
(0)
FO, and the assumption

that the series is not yet asymptotic, one may also infer

c5,1 = 283± 283 ,

leading to a difference of δ
(0)
FO−δ

(0)
CI = 0.027.
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Padé model 9

To further investigate the difference between CI and FOPT,
we propose to model the Borel-transformed Adler function.

4π2 D(s) ≡ 1+R(s) ≡ 1+
∞
∑

n=0

rnαs(s)
n+1 ,

where rn = cn+1,1/π
n+1. The Borel-transform reads:

R̃(α) =
∞
∫

0

dt e−t/αB[R](t) ; B[R](t) =
∞
∑

n=0

rn
tn

n!
.

Our main model will be a “Padé-type” approximant, which is
inspired by the large-β0 approximation.
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Padé model 10

B[R](u) = e−Cu
{

dUV
1

[

1

(1+u)2
+

5

6

1

(1+u)

]

+
dUV

2

(2+u)

+
dIR

1

(2−u)
+

dIR
2

(3−u)
+

dIR
3

(4−u)

}

,

where u = β0t.

The model incorporates the renormalon pole structure as found
in the large-β0 approximation. (Beneke 1993; Broadhurst 1993)

C is a scheme-dependent constant. (C =−5/3 in large-β0.)

With a definite prescription of how to treat the poles, also the
Borel-resummation can be defined. (Principal Value Prescr.)
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Large-β0 11
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Large-β0 12
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Model with 2 UV and 3 IR poles 13
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Model with 2 UV and 3 IR poles 14
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Leading IR pole fixed to large- β0 15
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Quadratic higher poles 16
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αs analysis 17

Employing the hadronic decay rate into light quarks

Rτ ,V+A = Nc |Vud|
2 SEW

[

1+δ(0)+δNP
V+A

]

one finds

δ(0) =
Rτ ,V+A

3|Vud|2SEW
−1−δNP

V+A = 0.2032(48)(21)

The first uncertainty is due to Rτ ,V+A, while the remaining

error is dominated by δNP
V+A.

Scanning over plausible models and adjusting αs such as
to reproduce δ(0), one finally obtains

αs(M τ) = 0.3293(52)(94) ⇒ αs(MZ) = 0.1197(13)
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Conclusions 18

For small coupling, FOPT povides the smoother approach

to the resummed value δ̃
(0)

. At αs ≈ 0.33, though CIPT
and FOPT turn out compatible, the situation is less clear.

In all studied cases the difference δ̃
(0)
− δ

(0)
CI is found to be

of the order of the complex ambiguity.

The size of the complex ambiguity is dominated by the size of
the residue of the leading IR pole at u = 2.

Work on m2 and scalar contributions in process with F. Schwab.
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For small coupling, FOPT povides the smoother approach

to the resummed value δ̃
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. At αs ≈ 0.33, though CIPT
and FOPT turn out compatible, the situation is less clear.

In all studied cases the difference δ̃
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− δ
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CI is found to be

of the order of the complex ambiguity.

The size of the complex ambiguity is dominated by the size of
the residue of the leading IR pole at u = 2.

Work on m2 and scalar contributions in process with F. Schwab.

Thank You for Your attention !
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