Marián Kolesár, Jiří Novotný

Institute of particle and nuclear physics, MFF UK, Prague

Some aspects of 'Resummed' chiral perturbation theory

A Introduction

- **B** Illustrative example
- $\eta \, \pi^0
 ightarrow \eta \, \pi^0$ scattering
- **C** Definition of the bare expansion
- analyticity of unitarity corrections
- treatment of the masses inside chiral logarithms
- D Remainder treatment
- resonance estimate
- Generalized χ PT Lagrangian
- **E** Stability of the chiral series and the Standard approach to NLO
- **F** Summary

A. Introduction

A.1 Phase structure of QCD with varying number of light quarks

nonperturbative approaches, lattice $N_f^c \simeq 6$

$egin{aligned} N_f \geq N_f^A = 11/2N_c \ N_f^c < N_f < N_f^A \end{aligned}$	asymptotic freedom lost conformal window	t			
$N_f = N_f^c$	chiral phase transition		(Appelquist et al.1998)		
$N_f < N_f^c$	quark confinement, SBy	$_{\rm C}$ S, hadron spectrum			
Interpretation - counter-play:					
 condensating effect of gluon self-interactions 					

- screening of light quark loop vacuum fluctuations

Indications $N_c = 3$: perturbative methods $N_f^c \sim 10-12$

(Appelquist et al.1998)

(Fischer, Alkofer 2003) (Iwasaki et al. 2004)

A.1 Phase structure of QCD with varying number of light quarks

$egin{aligned} N_f \geq N_f^A = 11/2N_c \ N_f^c < N_f < N_f^A \end{aligned}$	asymptotic freedom lost conformal window				
$N_f = N_f^c$	chiral phase transition	(Appelquist et al.1998)			
$N_f < N_f^c$	quark confinement, SB χ S, hadron spec	trum			
Interpretation - counter-play: - condensating effect of gluon self-interactions - screening of light quark loop vacuum fluctuations					
Indications $N_c = 3$:	perturbative methods $N_f^c \sim 10{-}12$	(Appelquist et al.1998)			
	nonperturbative approaches, lattice $N_f^c\simeq$	6 (Fischer, Alkofer 2003) (Iwasaki et al.2004)			

"**Paramagnetic**" inequality: dependence of chiral order parameters on N_f

(Stern et al.2000)

$$F_0(N_f + 1) < F_0(N_f), \ \Sigma(N_f + 1) < \Sigma(N_f)$$

F₀(N_f): pseudoscalar decay constant in the chiral limit $\Sigma(N_f)$: quark condensate in the chiral limit ($\Sigma(N_f) = B_0(N_f)F_0(N_f)^2$)

A.1 Phase structure of QCD with varying number of light quarks

$egin{aligned} N_f \geq N_f^A = 11/2N_c \ N_f^c < N_f < N_f^A \end{aligned}$	asymptotic freedom lost conformal window			
$N_f = N_f^c$	chiral phase transition	(Appelquist et al.1998)		
$N_f < N_f^c$	quark confinement, SB χ S, hadron spectrum			
Interpretation - counter-play: - condensating effect of gluon self-interactions - screening of light quark loop vacuum fluctuations				
Indications $N_c = 3$: pe	(Appelquist et al.1998)			

nonperturbative approaches, lattice $N_f^c \simeq 6$

(Fischer, Alkofer 2003) (Iwasaki et al.2004)

"Paramagnetic" inequality: dependence of chiral order parameters on N_f

(Stern et al. 2000)

$$F_0(N_f+1) < F_0(N_f), \ \Sigma(N_f+1) < \Sigma(N_f)$$

 $\Sigma(N_f)$:

 $F_0(N_f)$: pseudoscalar decay constant in the chiral limit quark condensate in the chiral limit $(\Sigma(N_f) = B_0(N_f)F_0(N_f)^2)$

 \rightarrow difference between SU(2) and SU(3) χ PT ?

A.2 LEC's connected to suppresion of order paramters

Three flavor χ **PT:** (effect of *s*-quark vacuum fluctuations)

$$F_0(2)^2 = F_0(3)^2 + 16m_s B_0 L_4^r - 2\bar{\mu}_K + \mathcal{O}(m_s^2)$$

$$\Sigma(2) = \Sigma(3)(1 + \frac{32m_sB_0}{F_0^2}L_6^r - 2\bar{\mu}_K - \frac{1}{3}\bar{\mu}_\eta) + \mathcal{O}(m_s^2)$$

Large N_c approximation: $N_f/N_c \rightarrow 0$ limit

- possible $1/N_c$ and Zweig rule violation?
- L_4 , L_6 Zweig rule and $1/N_c$ suppressed LEC's

positive

- connection to the scalar sector

(Stern et al.2000)

Predictions for L_4^r , L_6^r at M_{ρ}

- Zweig rule: negative
- Standard χPT to $\mathcal{O}(p^6)$: positive
- Sum rules:
- Lattice: positive

(Gasser,Leutwyler 1985)

(Bijnens, Dhonte 2003) (Moussallam 2000)

(Descotes 2001)

(MILC Coll.2004,2007)

A.3 Parameters controlling the suppresion

Convenient parameters relating the order parameters to physical quantities (isospin limit $\hat{m} = (m_u + m_d)/2$)

$$Z(N_f) = \frac{F_0(N_f)^2}{F_\pi^2}, \quad X(N_f) = \frac{2\widehat{m}\Sigma(N_f)}{F_\pi^2 M_\pi^2}, \quad Y(N_f) = \frac{X(N_f)}{Z(N_f)} = \frac{m_\pi^2}{M_\pi^2}$$

A.3 Parameters controlling the suppresion

Convenient parameters relating the order parameters to physical quantities (isospin limit $\hat{m} = (m_u + m_d)/2$)

$$Z(N_f) = \frac{F_0(N_f)^2}{F_\pi^2}, \quad X(N_f) = \frac{2\widehat{m}\Sigma(N_f)}{F_\pi^2 M_\pi^2}, \quad Y(N_f) = \frac{X(N_f)}{Z(N_f)} = \frac{m_\pi^2}{M_\pi^2}$$

Experimental results for the $\pi\pi$ *s*-wave scattering length (K_{e4}): (Stern et al.2002)

 $X(2) = 0.81 \pm 0.07, \ Z(2) = 0.89 \pm 0.03$

A.3 Parameters controlling the suppresion

Convenient parameters relating the order parameters to physical quantities (isospin limit $\hat{m} = (m_u + m_d)/2$)

$$Z(N_f) = \frac{F_0(N_f)^2}{F_\pi^2}, \quad X(N_f) = \frac{2\widehat{m}\Sigma(N_f)}{F_\pi^2 M_\pi^2}, \quad Y(N_f) = \frac{X(N_f)}{Z(N_f)} = \frac{m_\pi^2}{M_\pi^2}$$

Experimental results for the $\pi\pi$ s-wave scattering length (K_{e4}): (Stern et al.2002)

 $X(2) = 0.81 \pm 0.07, \ Z(2) = 0.89 \pm 0.03$

Three flavor parameters much less constrained ($r = m_s/\hat{m}$)

 $\pi\pi~s$ -wave scattering length (K_{e4}):

$$X({\sf 3})\sim 0-0.8,\,\,Z({\sf 3})\sim 0.3-0.9,\,\,r>14,\,\,Y<1.2$$

Sum rules $(r \sim 25)$: $X(2), Z(2) \sim 0.9, X(3), Z(3) \sim 0.5 - 0.6$ (Descotes, Stern 2000)

Recent 'resummed' combined analysis of $\pi\pi$ and πK data:

(Descotes 2007)

(Stern et al. 2002)

 $X(3) \sim 0 - 0.8, Z(3) \sim 0.2 - 1, r > 15, Y < 1.1$

A.1 \rightarrow irregularities in the expansion, possible partial suppression of LO Small demonstration: chiral expansion of an observable A:

$$A = A^{(2)} + A^{(4)} + \Delta_A^{(6)}$$

Inverted expansion:

$$\frac{1}{A} = \frac{1}{A^{(2)}} - \frac{A^{(4)}}{A^{(2)^2}} + \Delta^{(6)}_{1/A}, \quad \Delta^{(6)}_{1/A} = \frac{1}{A} \left[\left(\frac{A^{(4)}}{A^{(2)}} \right)^2 + \Delta^{(6)}_A \left(\frac{A^{(4)} - A^{(2)}}{A^{(2)^2}} \right) \right]$$

A.1 \rightarrow irregularities in the expansion, possible partial suppression of LO Small demonstration: chiral expansion of an observable A:

$$A = A^{(2)} + A^{(4)} + \Delta_A^{(6)}$$

Inverted expansion:

$$\frac{1}{A} = \frac{1}{A^{(2)}} - \frac{A^{(4)}}{A^{(2)^2}} + \Delta_{1/A}^{(6)}, \quad \Delta_{1/A}^{(6)} = \frac{1}{A} \left[\left(\frac{A^{(4)}}{A^{(2)}} \right)^2 + \Delta_A^{(6)} \left(\frac{A^{(4)} - A^{(2)}}{A^{(2)^2}} \right) \right]$$

 \rightarrow even if $\Delta_A^{(6)} \ll A$, if $A^{(2)} \sim A^{(4)} \rightarrow$

A.1 \rightarrow irregularities in the expansion, possible partial suppression of LO Small demonstration: chiral expansion of an observable A:

$$A = A^{(2)} + A^{(4)} + \Delta_A^{(6)}$$

Inverted expansion:

$$\frac{1}{A} = \frac{1}{A^{(2)}} - \frac{A^{(4)}}{A^{(2)^2}} + \Delta_{1/A}^{(6)}, \quad \Delta_{1/A}^{(6)} = \frac{1}{A} \left[\left(\frac{A^{(4)}}{A^{(2)}} \right)^2 + \Delta_A^{(6)} \left(\frac{A^{(4)} - A^{(2)}}{A^{(2)^2}} \right) \right]$$

 \rightarrow even if $\Delta_A^{(6)} \ll A$, if $A^{(2)} \sim A^{(4)} \rightarrow \Delta_{1/A}^{(6)} \sim 1/A \equiv$ large higher order remainder

A.1 \rightarrow irregularities in the expansion, possible partial suppression of LO Small demonstration: chiral expansion of an observable A:

$$A = A^{(2)} + A^{(4)} + \Delta_A^{(6)}$$

Inverted expansion:

$$\frac{1}{A} = \frac{1}{A^{(2)}} - \frac{A^{(4)}}{A^{(2)^2}} + \Delta_{1/A}^{(6)}, \quad \Delta_{1/A}^{(6)} = \frac{1}{A} \left[\left(\frac{A^{(4)}}{A^{(2)}} \right)^2 + \Delta_A^{(6)} \left(\frac{A^{(4)} - A^{(2)}}{A^{(2)^2}} \right) \right]$$

 \rightarrow even if $\Delta_A^{(6)} \ll A$, if $A^{(2)} \sim A^{(4)} \rightarrow \Delta_{1/A}^{(6)} \sim 1/A \equiv$ large higher order remainder

'Resummed' χPT - a special treatment of the chiral expansion

- Standard power counting and form of the effective Lagrangian
- Assumes possible irregularities in the expansion
- Only a limited subset of 'bare' expansions of 'good' observables trusted
- Reparametrizations done in a non-perturbative algebraic way
- Higher order remainders are kept and estimated, treated as sources of error

A.1 \rightarrow irregularities in the expansion, possible partial suppression of LO Small demonstration: chiral expansion of an observable A:

$$A = A^{(2)} + A^{(4)} + \Delta_A^{(6)}$$

Inverted expansion:

$$\frac{1}{A} = \frac{1}{A^{(2)}} - \frac{A^{(4)}}{A^{(2)^2}} + \Delta_{1/A}^{(6)}, \quad \Delta_{1/A}^{(6)} = \frac{1}{A} \left[\left(\frac{A^{(4)}}{A^{(2)}} \right)^2 + \Delta_A^{(6)} \left(\frac{A^{(4)} - A^{(2)}}{A^{(2)^2}} \right) \right]$$

 \rightarrow even if $\Delta_A^{(6)} \ll A$, if $A^{(2)} \sim A^{(4)} \rightarrow \Delta_{1/A}^{(6)} \sim 1/A \equiv$ large higher order remainder

'Resummed' χPT - a special treatment of the chiral expansion

- Standard power counting and form of the effective Lagrangian
- Assumes possible irregularities in the expansion
- Only a limited subset of 'bare' expansions of 'good' observables trusted
- Reparametrizations done in a non-perturbative algebraic way
- Higher order remainders are kept and estimated, treated as sources of error

A.1 \rightarrow irregularities in the expansion, possible partial suppression of LO Small demonstration: chiral expansion of an observable A:

$$A = A^{(2)} + A^{(4)} + \Delta_A^{(6)}$$

Inverted expansion:

$$\frac{1}{A} = \frac{1}{A^{(2)}} - \frac{A^{(4)}}{A^{(2)^2}} + \Delta^{(6)}_{1/A}, \quad \Delta^{(6)}_{1/A} = \frac{1}{A} \left[\left(\frac{A^{(4)}}{A^{(2)}} \right)^2 + \Delta^{(6)}_A \left(\frac{A^{(4)} - A^{(2)}}{A^{(2)^2}} \right) \right]$$

 \rightarrow even if $\Delta_A^{(6)} \ll A$, if $A^{(2)} \sim A^{(4)} \rightarrow \Delta_{1/A}^{(6)} \sim 1/A \equiv$ large higher order remainder

'Resummed' χPT - a special treatment of the chiral expansion

- Standard power counting and form of the effective Lagrangian
- Assumes possible irregularities in the expansion
- Only a limited subset of 'bare' expansions of 'good' observables trusted
- Reparametrizations done in a non-perturbative algebraic way
- Higher order remainders are kept and estimated, treated as sources of error

A.1 \rightarrow irregularities in the expansion, possible partial suppression of LO Small demonstration: chiral expansion of an observable A:

$$A = A^{(2)} + A^{(4)} + \Delta_A^{(6)}$$

Inverted expansion:

$$\frac{1}{A} = \frac{1}{A^{(2)}} - \frac{A^{(4)}}{A^{(2)^2}} + \Delta^{(6)}_{1/A}, \quad \Delta^{(6)}_{1/A} = \frac{1}{A} \left[\left(\frac{A^{(4)}}{A^{(2)}} \right)^2 + \Delta^{(6)}_A \left(\frac{A^{(4)} - A^{(2)}}{A^{(2)^2}} \right) \right]$$

 \rightarrow even if $\Delta_A^{(6)} \ll A$, if $A^{(2)} \sim A^{(4)} \rightarrow \Delta_{1/A}^{(6)} \sim 1/A \equiv$ large higher order remainder

'Resummed' χPT - a special treatment of the chiral expansion

- Standard power counting and form of the effective Lagrangian
- Assumes possible irregularities in the expansion
- Only a limited subset of 'bare' expansions of 'good' observables trusted
- Reparametrizations done in a non-perturbative algebraic way
- Higher order remainders are kept and estimated, treated as sources of error

A.1 \rightarrow irregularities in the expansion, possible partial suppression of LO Small demonstration: chiral expansion of an observable A:

$$A = A^{(2)} + A^{(4)} + \Delta_A^{(6)}$$

Inverted expansion:

$$\frac{1}{A} = \frac{1}{A^{(2)}} - \frac{A^{(4)}}{A^{(2)^2}} + \Delta^{(6)}_{1/A}, \quad \Delta^{(6)}_{1/A} = \frac{1}{A} \left[\left(\frac{A^{(4)}}{A^{(2)}} \right)^2 + \Delta^{(6)}_A \left(\frac{A^{(4)} - A^{(2)}}{A^{(2)^2}} \right) \right]$$

 \rightarrow even if $\Delta_A^{(6)} \ll A$, if $A^{(2)} \sim A^{(4)} \rightarrow \Delta_{1/A}^{(6)} \sim 1/A \equiv$ large higher order remainder

'Resummed' χPT - a special treatment of the chiral expansion

- Standard power counting and form of the effective Lagrangian
- Assumes possible irregularities in the expansion
- Only a limited subset of 'bare' expansions of 'good' observables trusted
- Reparametrizations done in a non-perturbative algebraic way
- Higher order remainders are kept and estimated, treated as sources of error

A.1 \rightarrow irregularities in the expansion, possible partial suppression of LO Small demonstration: chiral expansion of an observable A:

$$A = A^{(2)} + A^{(4)} + \Delta_A^{(6)}$$

Inverted expansion:

$$\frac{1}{A} = \frac{1}{A^{(2)}} - \frac{A^{(4)}}{A^{(2)^2}} + \Delta_{1/A}^{(6)}, \quad \Delta_{1/A}^{(6)} = \frac{1}{A} \left[\left(\frac{A^{(4)}}{A^{(2)}} \right)^2 + \Delta_A^{(6)} \left(\frac{A^{(4)} - A^{(2)}}{A^{(2)^2}} \right) \right]$$

 \rightarrow even if $\Delta_A^{(6)} \ll A$, if $A^{(2)} \sim A^{(4)} \rightarrow \Delta_{1/A}^{(6)} \sim 1/A \equiv$ large higher order remainder

'Resummed' χPT - a special treatment of the chiral expansion

- Standard power counting and form of the effective Lagrangian
- Assumes possible irregularities in the expansion
- Only a limited subset of 'bare' expansions of 'good' observables trusted
- Reparametrizations done in a non-perturbative algebraic way
- Higher order remainders are kept and estimated, treated as sources of error

Step 1: 'Strict' chiral expansion

- linearly related to a Green function obtained from the generated functional
- expressed strictly in terms of the parameters of the effective Lagrangian
- done formally to all orders, higher orders collected in a remainder

Step 1: 'Strict' chiral expansion

- linearly related to a Green function obtained from the generated functional
- expressed strictly in terms of the parameters of the effective Lagrangian
- done formally to all orders, higher orders collected in a remainder

Step 2: Definition of the 'bare' expansion

- careful modification of the strict expansion in order to accommodate additional requirements, chiefly:
- unitarity, analytical structure of the S-matrix (physical masses in loops)
- physical masses in all chiral logarithms?

Step 1: 'Strict' chiral expansion

- linearly related to a Green function obtained from the generated functional
- expressed strictly in terms of the parameters of the effective Lagrangian
- done formally to all orders, higher orders collected in a remainder

Step 2: Definition of the 'bare' expansion

- careful modification of the strict expansion in order to accommodate additional requirements, chiefly:
- unitarity, analytical structure of the S-matrix (physical masses in loops)
- physical masses in all chiral logarithms?

Step 3: Reparametrization of the LEC's

- leading order parameters left free (i.e. $r, F_0 \rightarrow Z, B_0 \hat{m} \rightarrow X$ (resp. Y))
- NLO LEC's L_i reparametrized using bare expansions for F_P^2 , $F_P^2 M_P^2$
- no additional expansion, done algebraically
- Remainders to masses and decay constants introduced, each reparametrized LEC is replaced by a higher order remainder

Step 1: 'Strict' chiral expansion

- linearly related to a Green function obtained from the generated functional
- expressed strictly in terms of the parameters of the effective Lagrangian
- done formally to all orders, higher orders collected in a remainder

Step 2: Definition of the 'bare' expansion

- careful modification of the strict expansion in order to accommodate additional requirements, chiefly:
- unitarity, analytical structure of the S-matrix (physical masses in loops)
- physical masses in all chiral logarithms?

Step 3: Reparametrization of the LEC's

- leading order parameters left free (i.e. $r, F_0 \rightarrow Z, B_0 \hat{m} \rightarrow X$ (resp. Y))
- NLO LEC's L_i reparametrized using bare expansions for F_P^2 , $F_P^2 M_P^2$
- no additional expansion, done algebraically
- Remainders to masses and decay constants introduced, each reparametrized LEC is replaced by a higher order remainder

Step 4: Remainders

- higher order remainders not neglected, explicitly present in the formulas, which are valid to all orders
- generated from the bare expansions of the observable in question and reparameterization of LEC's
- source of theoretical error, effect has to be estimated

Step 1: 'Strict' chiral expansion

- linearly related to a Green function obtained from the generated functional
- expressed strictly in terms of the parameters of the effective Lagrangian
- done formally to all orders, higher orders collected in a remainder

Step 2: Definition of the 'bare' expansion

- careful modification of the strict expansion in order to accommodate additional requirements, chiefly:
- unitarity, analytical structure of the S-matrix (physical masses in loops)
- physical masses in all chiral logarithms?

Step 3: Reparametrization of the LEC's

- leading order parameters left free (i.e. $r, F_0 \rightarrow Z, B_0 \hat{m} \rightarrow X$ (resp. Y))
- NLO LEC's L_i reparametrized using bare expansions for F_P^2 , $F_P^2 M_P^2$
- no additional expansion, done algebraically
- Remainders to masses and decay constants introduced, each reparametrized LEC is replaced by a higher order remainder

Step 4: Remainders

- higher order remainders not neglected, explicitly present in the formulas, which are valid to all orders
- generated from the bare expansions of the observable in question and reparameterization of LEC's
- source of theoretical error, effect has to be estimated

B. Illustrative example: $\eta \pi^0 \rightarrow \eta \pi^0$ scattering

B.1 $\eta \pi^0 \rightarrow \eta \pi^0$ scattering: observables

4-point Green function $G_{\pi\eta}(s,t,u) = F_{\pi}^2 F_{\eta}^2 \mathcal{A}_{fi}(s,t,u)$ to NLO

$$G_{\pi\eta}(s,t,u) = G_{pol}(s,t,u) + G_{unit}^{(4)}(s,t,u)|_{J_{PQ}^{r}(0)=0} + \Delta_{G}$$

$$G_{pol}(s,t,u) = \alpha + \beta t + \gamma t^2 + \omega(s-u)^2$$

 α , β , γ , ω ... 'good' observables

'Bad' observables not linearly related to $G_{\pi\eta}(s,t,u)$

- subthreshold parameters c_{00} , c_{10} , c_{20} , c_{01}
- scattering lengths a_0 , a_1

Expansions of 'bad' observables are avoided

- they are calculated as nonlinear functions of expansions of 'good' observables
- specifically quantities in the denominator are not expanded

B.1 $\eta \pi^0 \rightarrow \eta \pi^0$ scattering: observables

4-point Green function $G_{\pi\eta}(s,t,u)=F_{\pi}^{2}F_{\eta}^{2}\mathcal{A}_{fi}(s,t,u)$ to NLO

$$G_{\pi\eta}(s,t,u) = G_{pol}(s,t,u) + G_{unit}^{(4)}(s,t,u)|_{J_{PQ}^{r}(0)=0} + \Delta_{G}$$

$$G_{pol}(s,t,u) = \alpha + \beta t + \gamma t^2 + \omega (s-u)^2$$

 α , β , γ , ω ... 'good' observables

'Bad' observables not linearly related to $G_{\pi\eta}(s,t,u)$

- subthreshold parameters $c_{00}, c_{10}, c_{20}, c_{01}$
- scattering lengths a_0, a_1

Expansions of 'bad' observables are avoided

- they are calculated as nonlinear functions of expansions of 'good' observables
- specifically quantities in the denominator are not expanded

B.1 $\eta \pi^0 \rightarrow \eta \pi^0$ scattering: observables

4-point Green function $G_{\pi\eta}(s,t,u)=F_{\pi}^{2}F_{\eta}^{2}\mathcal{A}_{fi}(s,t,u)$ to NLO

$$G_{\pi\eta}(s,t,u) = G_{pol}(s,t,u) + G_{unit}^{(4)}(s,t,u)|_{J_{PQ}^{r}(0)=0} + \Delta_{G}$$

$$G_{pol}(s,t,u) = \alpha + \beta t + \gamma t^2 + \omega(s-u)^2$$

 α , β , γ , ω ... 'good' observables

'Bad' observables not linearly related to $G_{\pi\eta}(s,t,u)$

- subthreshold parameters $c_{00}, c_{10}, c_{20}, c_{01}$
- scattering lengths a_0, a_1

Expansions of 'bad' observables are avoided

- they are calculated as nonlinear functions of expansions of 'good' observables
- specifically quantities in the denominator are not expanded

(Bernard et al.1991)

$$\begin{aligned} G^{(2)}(s,t,u) &= \frac{F_0^2}{3}m_{\pi}^2 \end{aligned} \text{Exact renormalization scale independence} \\ G^{(4)}_{ct}(s,t,u) &= 8(L_1^r(\mu) + \frac{1}{6}L_3^r(\mu))(t - 2M_{\pi}^2)(t - 2M_{\eta}^2) \\ &+ 4(L_2^r(\mu) + \frac{1}{3}L_3^r(\mu))[(s - M_{\pi}^2 - M_{\eta}^2)^2 + (u - M_{\pi}^2 - M_{\eta}^2)^2] \\ &+ 8L_4^r(\mu)[(t - 2M_{\pi}^2)m_{\eta}^2 + (t - 2M_{\eta}^2)m_{\pi}^2] - \frac{8}{3}L_5^r(\mu)(M_{\pi}^2 + M_{\eta}^2)m_{\pi}^2 \\ &+ 8L_6^r(\mu)m_{\pi}^2(m_{\pi}^2 + 5m_{\eta}^2) + 32L_7^r(\mu)(m_{\pi}^2 - m_{\eta}^2)m_{\pi}^2 + \frac{64}{3}L_8^r(\mu)m_{\pi}^4 \end{aligned}$$

$$G^{(4)}_{tad}(s,t,u) &= -\frac{F_0^2}{3}m_{\pi}^2\left(3\mu_{\pi} + 2\mu_K + \frac{1}{3}\mu_{\eta}\right) \\ G^{(4)}_{unit}(s,t,u) &= \frac{1}{9}m_{\pi}^4[J_{\pi\eta}^r(s) + J_{\pi\eta}^r(u)] \\ &+ \frac{3}{8}[s - M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3}m_{\pi}^2]^2J_{KK}^r(s) + \frac{3}{8}[u - M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3}m_{\pi}^2]^2J_{KK}^r(u) \\ &+ \frac{1}{3}m_{\pi}^2[t - 2M_{\pi}^2 + \frac{3}{2}m_{\pi}^2]J_{\pi\pi}^r(t) + \frac{2}{9}m_{\pi}^2(m_{\eta}^2 - \frac{1}{4}m_{\pi}^2)J_{\eta\eta}^r(t) \\ &+ \frac{1}{8}[t - 2M_{\pi}^2 + 2m_{\pi}^2][3t - 6M_{\eta}^2 + 4m_{\eta}^2 - \frac{2}{3}m_{\pi}^2]J_{KK}^r(t) \end{aligned}$$

$$\begin{split} G^{(2)}(s,t,u) &= \frac{F_0^2}{3}m_{\pi}^2 & \text{ in, out lines - on mass shell} \\ G^{(4)}_{ct}(s,t,u) &= 8(L_1^r(\mu) + \frac{1}{6}L_3^r(\mu))(t-2M_{\pi}^2)(t-2M_{\eta}^2) \\ &+ 4(L_2^r(\mu) + \frac{1}{3}L_3^r(\mu))[(s-M_{\pi}^2 - M_{\eta}^2)^2 + (u-M_{\pi}^2 - M_{\eta}^2)^2] \\ &+ 8L_4^r(\mu)[(t-2M_{\pi}^2)m_{\eta}^2 + (t-2M_{\eta}^2)m_{\pi}^2] - \frac{8}{3}L_5^r(\mu)(M_{\pi}^2 + M_{\eta}^2)m_{\pi}^2 \\ &+ 8L_6^r(\mu)m_{\pi}^2(m_{\pi}^2 + 5m_{\eta}^2) + 32L_7^r(\mu)(m_{\pi}^2 - m_{\eta}^2)m_{\pi}^2 + \frac{64}{3}L_8^r(\mu)m_{\pi}^4 \\ G^{(4)}_{lad}(s,t,u) &= -\frac{F_0^2}{3}m_{\pi}^2\left(3\mu_{\pi} + 2\mu_K + \frac{1}{3}\mu_{\eta}\right) \\ G^{(4)}_{unit}(s,t,u) &= \frac{1}{9}m_{\pi}^4[J_{\pi\eta}^r(s) + J_{\pi\eta}^r(u)] \\ &+ \frac{3}{8}[s-M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3}m_{\pi}^2]^2J_{KK}^r(s) + \frac{3}{8}[u-M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3}m_{\pi}^2]^2J_{KK}^r(u) \\ &+ \frac{1}{3}m_{\pi}^2[t-2M_{\pi}^2 + \frac{3}{2}m_{\pi}^2]J_{\pi\pi}^r(t) + \frac{2}{9}m_{\pi}^2(m_{\eta}^2 - \frac{1}{4}m_{\pi}^2)J_{\eta\eta}^r(t) \\ &+ \frac{1}{8}[t-2M_{\pi}^2 + 2m_{\pi}^2][3t-6M_{\eta}^2 + 4m_{\eta}^2 - \frac{2}{3}m_{\pi}^2]J_{KK}^r(t) \end{split}$$

$$\begin{split} G^{(2)}(s,t,u) &= \frac{F_0^2}{3} \mathbf{m}_{\pi}^2 \qquad \mathbf{m}_{\pi}^2 = 2B_0 \hat{m}, \ \mathbf{m}_{K}^2 = B_0 \hat{m} (r+1), \ \mathbf{m}_{\eta}^2 = \frac{2}{3} B_0 \hat{m} (2r+1) \\ G^{(4)}_{ct}(s,t,u) &= 8(L_1^r(\mu) + \frac{1}{6} L_3^r(\mu))(t-2M_{\pi}^2)(t-2M_{\eta}^2) \\ &+ 4(L_2^r(\mu) + \frac{1}{3} L_3^r(\mu))[(s-M_{\pi}^2 - M_{\eta}^2)^2 + (u-M_{\pi}^2 - M_{\eta}^2)^2] \\ &+ 8L_4^r(\mu)[(t-2M_{\pi}^2)\mathbf{m}_{\eta}^2 + (t-2M_{\eta}^2)\mathbf{m}_{\pi}^2] - \frac{8}{3} L_5^r(\mu)(M_{\pi}^2 + M_{\eta}^2)\mathbf{m}_{\pi}^2 \\ &+ 8L_6^r(\mu)\mathbf{m}_{\pi}^2(\mathbf{m}_{\pi}^2 + 5\mathbf{m}_{\eta}^2) + 32L_7^r(\mu)(\mathbf{m}_{\pi}^2 - \mathbf{m}_{\eta}^2)\mathbf{m}_{\pi}^2 + \frac{64}{3} L_8^r(\mu)\mathbf{m}_{\pi}^4 \\ G^{(4)}_{tad}(s,t,u) &= -\frac{F_0^2}{3} \mathbf{m}_{\pi}^2 \left(3\mu_{\pi} + 2\mu_{K} + \frac{1}{3}\mu_{\eta}\right) \\ G^{(4)}_{unit}(s,t,u) &= \frac{1}{9} \mathbf{m}_{\pi}^4 [J_{\pi\eta}^r(s) + J_{\pi\eta}^r(u)] \\ &+ \frac{3}{8} [s-M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3} \mathbf{m}_{\pi}^2]^2 J_{KK}^r(s) + \frac{3}{8} [u-M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3} \mathbf{m}_{\pi}^2]^2 J_{KK}^r(u) \\ &+ \frac{1}{3} \mathbf{m}_{\pi}^2 [t-2M_{\pi}^2 + \frac{3}{2} \mathbf{m}_{\pi}^2] J_{\pi\pi}^r(t) + \frac{2}{9} \mathbf{m}_{\pi}^2 (\mathbf{m}_{\eta}^2 - \frac{1}{4} \mathbf{m}_{\pi}^2) J_{\eta\eta}^r(t) \\ &+ \frac{1}{8} [t-2M_{\pi}^2 + 2\mathbf{m}_{\pi}^2] [3t-6M_{\eta}^2 + 4\mathbf{m}_{\eta}^2 - \frac{2}{3} \mathbf{m}_{\pi}^2] J_{KK}^r(t) \end{split}$$

$$\begin{split} G^{(2)}(s,t,u) &= \frac{F_0^2}{3}m_{\pi}^2 \qquad \qquad \mu_P = m_P^2/32\pi^2 F_0^2 \ln[m_P^2/\mu^2] \\ G^{(4)}_{ct}(s,t,u) &= 8(L_1^r(\mu) + \frac{1}{6}L_3^r(\mu))(t - 2M_{\pi}^2)(t - 2M_{\eta}^2) \\ &+ 4(L_2^r(\mu) + \frac{1}{3}L_3^r(\mu))[(s - M_{\pi}^2 - M_{\eta}^2)^2 + (u - M_{\pi}^2 - M_{\eta}^2)^2] \\ &+ 8L_4^r(\mu)[(t - 2M_{\pi}^2)m_{\eta}^2 + (t - 2M_{\eta}^2)m_{\pi}^2] - \frac{8}{3}L_5^r(\mu)(M_{\pi}^2 + M_{\eta}^2)m_{\pi}^2 \\ &+ 8L_6^r(\mu)m_{\pi}^2(m_{\pi}^2 + 5m_{\eta}^2) + 32L_7^r(\mu)(m_{\pi}^2 - m_{\eta}^2)m_{\pi}^2 + \frac{64}{3}L_8^r(\mu)m_{\pi}^4 \\ G^{(4)}_{tad}(s,t,u) &= -\frac{F_0^2}{3}m_{\pi}^2\left(3\mu_{\pi} + 2\mu_K + \frac{1}{3}\mu_{\eta}\right) \\ G^{(4)}_{unit}(s,t,u) &= \frac{1}{9}m_{\pi}^4[J_{\pi\eta}^r(s) + J_{\pi\eta}^r(u)] \\ &+ \frac{3}{8}[s - M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3}m_{\pi}^2]^2J_{KK}^r(s) + \frac{3}{8}[u - M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3}m_{\pi}^2]^2J_{KK}^r(u) \\ &+ \frac{1}{3}m_{\pi}^2[t - 2M_{\pi}^2 + \frac{3}{2}m_{\pi}^2]J_{\pi\pi}^r(t) + \frac{2}{9}m_{\pi}^2(m_{\eta}^2 - \frac{1}{4}m_{\pi}^2)J_{\eta\eta}^r(t) \\ &+ \frac{1}{8}[t - 2M_{\pi}^2 + 2m_{\pi}^2][3t - 6M_{\eta}^2 + 4m_{\eta}^2 - \frac{2}{3}m_{\pi}^2]J_{KK}^r(t) \end{split}$$

$$\begin{aligned} G^{(2)}(s,t,u) &= \frac{F_0^2}{3}m_{\pi}^2 \end{aligned} \qquad \text{Loop functions } J_{PQ}^r \text{ contain LO masses as well} \\ G^{(4)}_{ct}(s,t,u) &= 8(L_1^r(\mu) + \frac{1}{6}L_3^r(\mu))(t - 2M_{\pi}^2)(t - 2M_{\eta}^2) \\ &+ 4(L_2^r(\mu) + \frac{1}{3}L_3^r(\mu))[(s - M_{\pi}^2 - M_{\eta}^2)^2 + (u - M_{\pi}^2 - M_{\eta}^2)^2] \\ &+ 8L_4^r(\mu)[(t - 2M_{\pi}^2)m_{\eta}^2 + (t - 2M_{\eta}^2)m_{\pi}^2] - \frac{8}{3}L_5^r(\mu)(M_{\pi}^2 + M_{\eta}^2)m_{\pi}^2 \\ &+ 8L_6^r(\mu)m_{\pi}^2(m_{\pi}^2 + 5m_{\eta}^2) + 32L_7^r(\mu)(m_{\pi}^2 - m_{\eta}^2)m_{\pi}^2 + \frac{64}{3}L_8^r(\mu)m_{\pi}^4 \end{aligned}$$

$$G^{(4)}_{tad}(s,t,u) &= -\frac{F_0^2}{3}m_{\pi}^2\left(3\mu_{\pi} + 2\mu_K + \frac{1}{3}\mu_{\eta}\right) \\ G^{(4)}_{unit}(s,t,u) &= \frac{1}{9}m_{\pi}^4[J_{\pi\eta}^r(s) + J_{\pi\eta}^r(u)] \\ &+ \frac{3}{8}[s - M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3}m_{\pi}^2]^2J_{KK}^r(s) + \frac{3}{8}[u - M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3}m_{\pi}^2]^2J_{KK}^r(u) \\ &+ \frac{1}{3}m_{\pi}^2[t - 2M_{\pi}^2 + \frac{3}{2}m_{\pi}^2]J_{\pi\pi}^r(t) + \frac{2}{9}m_{\pi}^2(m_{\eta}^2 - \frac{1}{4}m_{\pi}^2)J_{\eta\eta}^r(t) \\ &+ \frac{1}{8}[t - 2M_{\pi}^2 + 2m_{\pi}^2][3t - 6M_{\eta}^2 + 4m_{\eta}^2 - \frac{2}{3}m_{\pi}^2]J_{KK}^r(t) \end{aligned}$$

B.3 Reparametrization of LEC's

Decay constant and mass strict chiral expansions: (Descotes et al.2004)

$$\begin{split} F_{\pi}^{2} &= F_{0}^{2}(1 - 4\mu_{\pi} - 2\mu_{K}) + 16B_{0}\hat{m}(L_{4}^{r}(r+2) + L_{5}^{r}) + \Delta_{F_{\pi}}^{(4)} \\ F_{K}^{2} &= F_{0}^{2}(1 - \frac{3}{2}\mu_{\pi} - 3\mu_{K} - \frac{3}{2}\mu_{\eta}) + 16B_{0}\hat{m}(L_{4}^{r}(r+2) + \frac{1}{2}L_{5}^{r}(r+1)) + \Delta_{F_{K}}^{(4)} \\ F_{\pi}^{2}M_{\pi}^{2} &= 2B_{0}\hat{m}F_{0}^{2}(1 - 3\mu_{\pi} - 2\mu_{K} - \frac{1}{3}\mu_{\eta} + \frac{32B_{0}\hat{m}}{F_{0}^{2}}(L_{8}^{r} + L_{6}^{r}(r+2)) + \Delta_{M_{\pi}}^{(6)} \\ F_{\pi}^{2}M_{\pi}^{2} &= B_{0}\hat{m}F_{0}^{2}(r+1)(1 - \frac{3}{2}\mu_{\pi} - 3\mu_{K} - \frac{5}{6}\mu_{\eta} + \frac{16B_{0}\hat{m}}{F_{0}^{2}}(L_{8}^{r}(r+1) + 2L_{6}^{r}(r+2)) + \Delta_{M_{K}}^{(6)} \\ F_{\eta}^{2}M_{\eta}^{2} &= \frac{2}{3}B_{0}\hat{m}F_{0}^{2}((2r+1) - 3\mu_{\pi} - 2(4r+1)\mu_{K} - \frac{1}{3}(8r+1)\mu_{\eta} + \frac{32B_{0}\hat{m}}{F_{0}^{2}}(L_{6}^{r}(2r^{2} + 5r + 2) + 2L_{7}(r-1)^{2} + L_{8}^{r}(2r^{2} + 1))) + \Delta_{M_{\eta}}^{(6)} \end{split}$$

B.3 Reparametrization of LEC's

Simple linear equation system for $L_5 \ldots L_8$

$$\begin{split} F_{\pi}^{2} &= F_{0}^{2}(1 - 4\mu_{\pi} - 2\mu_{K}) + 16B_{0}\hat{m}(L_{4}^{r}(r+2) + L_{5}^{r}) + \Delta_{F_{\pi}}^{(4)} \\ F_{K}^{2} &= F_{0}^{2}(1 - \frac{3}{2}\mu_{\pi} - 3\mu_{K} - \frac{3}{2}\mu_{\eta}) + 16B_{0}\hat{m}(L_{4}^{r}(r+2) + \frac{1}{2}L_{5}^{r}(r+1)) + \Delta_{F_{K}}^{(4)} \\ F_{\pi}^{2}M_{\pi}^{2} &= 2B_{0}\hat{m}F_{0}^{2}(1 - 3\mu_{\pi} - 2\mu_{K} - \frac{1}{3}\mu_{\eta} + \frac{32B_{0}\hat{m}}{F_{0}^{2}}(L_{8}^{r} + L_{6}^{r}(r+2)) + \Delta_{M_{\pi}}^{(6)} \\ F_{\pi}^{2}M_{\pi}^{2} &= B_{0}\hat{m}F_{0}^{2}(r+1)(1 - \frac{3}{2}\mu_{\pi} - 3\mu_{K} - \frac{5}{6}\mu_{\eta} + \frac{16B_{0}\hat{m}}{F_{0}^{2}}(L_{8}^{r}(r+1) + 2L_{6}^{r}(r+2)) + \Delta_{M_{\pi}}^{(6)} \\ F_{\eta}^{2}M_{\eta}^{2} &= \frac{2}{3}B_{0}\hat{m}F_{0}^{2}((2r+1) - 3\mu_{\pi} - 2(4r+1)\mu_{K} - \frac{1}{3}(8r+1)\mu_{\eta} + \frac{32B_{0}\hat{m}}{F_{0}^{2}}(L_{6}^{r}(2r^{2} + 5r + 2) + 2L_{7}(r-1)^{2} + L_{8}^{r}(2r^{2} + 1))) + \Delta_{M_{\eta}}^{(6)} \end{split}$$

B.3 Reparametrization of LEC's

NLO LEC's expressed in terms of physical observables and remainders

$$\begin{split} F_{\pi}^{2} &= F_{0}^{2}(1 - 4\mu_{\pi} - 2\mu_{K}) + 16B_{0}\hat{m}(L_{4}^{r}(r+2) + L_{5}^{r}) + \Delta_{F_{*}}^{(4)} \\ F_{K}^{2} &= F_{0}^{2}(1 - \frac{3}{2}\mu_{\pi} - 3\mu_{K} - \frac{3}{2}\mu_{\eta}) + 16B_{0}\hat{m}(L_{4}^{r}(r+2) + \frac{1}{2}L_{5}^{r}(r+1)) + \Delta_{F_{K}}^{(4)} \\ F_{\pi}^{2}M_{\pi}^{2} &= 2B_{0}\hat{m}F_{0}^{2}(1 - 3\mu_{\pi} - 2\mu_{K} - \frac{1}{3}\mu_{\eta} + \frac{32B_{0}\hat{m}}{F_{0}^{2}}(L_{8}^{r} + L_{6}^{r}(r+2)) + \Delta_{M_{*}}^{(6)} \\ F_{\pi}^{2}M_{\pi}^{2} &= B_{0}\hat{m}F_{0}^{2}(r+1)(1 - \frac{3}{2}\mu_{\pi} - 3\mu_{K} - \frac{5}{6}\mu_{\eta} + \frac{16B_{0}\hat{m}}{F_{0}^{2}}(L_{8}^{r}(r+1) + 2L_{6}^{r}(r+2)) + \Delta_{M_{*}}^{(6)} \\ F_{\eta}^{2}M_{\eta}^{2} &= \frac{2}{3}B_{0}\hat{m}F_{0}^{2}((2r+1) - 3\mu_{\pi} - 2(4r+1)\mu_{K} - \frac{1}{3}(8r+1)\mu_{\eta} + \frac{32B_{0}\hat{m}}{F_{0}^{2}}(L_{6}^{r}(2r^{2} + 5r + 2) + 2L_{7}(r-1)^{2} + L_{8}^{r}(2r^{2} + 1))) + \Delta_{M_{\pi}}^{(6)} \end{split}$$

C. Definition of the bare expansion
Strict form of the expansion does not have the correct analytical structure

Solutions:

- exchange LO masses with physical ones in \overline{J}_{PQ} by hand
- use dispersion relations

Strict form of the expansion does not have the correct analytical structure Solutions:

- exchange LO masses with physical ones in \overline{J}_{PQ} by hand

(Descotes 2007)

- use dispersion relations
- 1. Redefinition of the strict expansion into a bare one by hand

Original strict form:

Exchange $m_P \rightarrow M_P$ inside \overline{J}_{PQ}

$$G_{\pi\eta}^{strict}(s,t,u) = G_{pol}(s,t,u) + G_{unit}^{(4)}(s,t,u)|_{J_{PQ}^{r}(0)=0} + \Delta_{G}$$

$$\begin{aligned} G_{unit}^{(4)}(s,t,u)|_{J_{p_Q}^r(0)=0} &= \frac{1}{9} m_{\pi}^4 [\,\overline{J}_{\pi\eta}(s)] + \frac{3}{8} [s - M_{\pi}^2 - M_{\eta}^2 + \frac{2}{3} m_{\pi}^2]^2 \,\overline{J}_{KK}(s) \\ &+ (s \leftrightarrow u) + \frac{1}{3} m_{\pi}^2 [t - 2M_{\pi}^2 + \frac{3}{2} m_{\pi}^2] \,\overline{J}_{\pi\pi}(t) + \frac{2}{9} m_{\pi}^2 (m_{\eta}^2 - \frac{1}{4} m_{\pi}^2) \,\overline{J}_{\eta\eta}(t) \\ &+ \frac{1}{8} [t - 2M_{\pi}^2 + 2m_{\pi}^2] [3t - 6M_{\eta}^2 + 4m_{\eta}^2 - \frac{2}{3} m_{\pi}^2] \,\overline{J}_{KK}(t) \end{aligned}$$

Strict form of the expansion does not have the correct analytical structure Solutions:

- exchange LO masses with physical ones in \overline{J}_{PQ} by hand
- use dispersion relations
- 1. Redefinition of the strict expansion into a bare one by hand

Bare form definition:

Exchange $m_P \rightarrow M_P$ inside \overline{J}_{PQ}

$$G_{\pi\eta}^{bare}(s,t,u) = G_{pol}(s,t,u) + G'_{unit}^{(4)}(s,t,u)|_{J_{PQ}^{r}(0)=0} + \Delta_{G}'$$

$$\begin{aligned} G_{unit}^{\prime(4)}(s,t,u)|_{J_{PQ}^{r}(0)=0} &= \frac{1}{9} m_{\pi}^{4} [\overline{J}_{\pi\eta}(s)] + \frac{3}{8} [s - M_{\pi}^{2} - M_{\eta}^{2} + \frac{2}{3} m_{\pi}^{2}]^{2} \overline{J}_{KK}(s) \\ &+ (s \leftrightarrow u) + \frac{1}{3} m_{\pi}^{2} [t - 2M_{\pi}^{2} + \frac{3}{2} m_{\pi}^{2}] \overline{J}_{\pi\pi}(t) + \frac{2}{9} m_{\pi}^{2} (m_{\eta}^{2} - \frac{1}{4} m_{\pi}^{2}) \overline{J}_{\eta\eta}(t) \\ &+ \frac{1}{8} [t - 2M_{\pi}^{2} + 2m_{\pi}^{2}] [3t - 6M_{\eta}^{2} + 4m_{\eta}^{2} - \frac{2}{3} m_{\pi}^{2}] \overline{J}_{KK}(t) \end{aligned}$$

Strict form of the expansion does not have the correct analytical structure Solutions:

- exchange LO masses with physical ones in \overline{J}_{PQ} by hand
- use dispersion relations

2. Redefinition of the strict expansion into a bare one - dispersive relations Disp.relations determine the form of the unitarity part of the amplitude S_{unit}

$$G_{\pi\eta}^{strict}(s,t,u) = G_{pol}(s,t,u) + G_{unit}^{(4)}(s,t,u)|_{J_{PQ}^{r}(0)=0} + \Delta_{G}$$

 $G_{unit}^{(4)} \to \mathcal{G}_{unit}$

How to relate $\mathcal{G}_{unit} \leftrightarrow \mathcal{S}_{unit}$? Two possibilities:

Strict form of the expansion does not have the correct analytical structure Solutions:

- exchange LO masses with physical ones in \overline{J}_{PQ} by hand
- use dispersion relations
- 2. Redefinition of the strict expansion into a bare one dispersive relations

Possibility a) $\mathcal{G}_{unit}(s,t,u) = F_0^4 \mathcal{S}_{unit}(s,t,u)$

$$\begin{aligned} G_{\pi\eta}^{bare}(s,t,u) &= G_{pol}(s,t,u) + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}} \\ \mathcal{G}_{unit}(s,t,u) &= \frac{1}{9}m_{\pi}^{4}\,\overline{J}_{\pi\eta}(s) + \frac{3}{8}\left[s - \frac{1}{3}M_{\pi}^{2} - \frac{1}{3}M_{\eta}^{2} - \frac{2}{3}M_{K}^{2} + \frac{2}{9}m_{\pi}^{2} - \frac{2}{9}m_{K}^{2}\right]^{2}\,\overline{J}_{KK}(s) \\ &+ (s\leftrightarrow u) + \frac{1}{3}m_{\pi}^{2}\left[t - \frac{4}{3}M_{\pi}^{2} + \frac{5}{6}m_{\pi}^{2}\right]\,\overline{J}_{\pi\pi}(t) + \frac{2}{9}m_{\pi}^{2}(m_{\eta}^{2} - \frac{1}{4}m_{\pi}^{2})\,\overline{J}_{\eta\eta}(t) \\ &+ \frac{1}{8}\left[t - \frac{2}{3}M_{\pi}^{2} - \frac{2}{3}M_{K}^{2} + \frac{2}{3}m_{\pi}^{2} + \frac{2}{3}m_{K}^{2}\right]\left[3t - 2M_{K}^{2} - 2M_{\eta}^{2} + 2m_{\eta}^{2} - \frac{2}{3}m_{K}^{2}\right]\,\overline{J}_{KK}(t) \end{aligned}$$

terms in front of the loop functions are effected too

Strict form of the expansion does not have the correct analytical structure Solutions:

- exchange LO masses with physical ones in \overline{J}_{PQ} by hand
- use dispersion relations
- 2. Redefinition of the strict expansion into a bare one dispersive relations

Possibility b) $\mathcal{G}_{unit}(s,t,u) = \prod_{i=1}^{4} F_{P_i} \mathcal{S}_{unit}(s,t,u)$

$$\begin{aligned} G_{\pi\eta}^{bare}(s,t,u) &= G_{pol}(s,t,u) + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}} \\ \mathcal{G}_{unit}(s,t,u) &= \frac{1}{9} m_{\pi}^{4} \frac{F_{0}^{4}}{F_{\pi}^{2} F_{\eta}^{2}} \,\overline{J}_{\pi\eta}(s) + \frac{3}{8} \left[s - \frac{1}{3} M_{\pi}^{2} - \frac{1}{3} M_{\eta}^{2} - \frac{2}{3} M_{K}^{2} + \frac{2}{9} m_{\pi}^{2} - \frac{2}{9} m_{K}^{2} \right]^{2} \frac{F_{0}^{4}}{F_{\pi}^{2}} \,\overline{J}_{KK}(s) \\ &+ (s \leftrightarrow u) + \frac{1}{3} m_{\pi}^{2} \left[t - \frac{4}{3} M_{\pi}^{2} + \frac{5}{6} m_{\pi}^{2} \right] \frac{F_{0}^{4}}{F_{\pi}^{4}} \,\overline{J}_{\pi\pi}(t) + \frac{2}{9} m_{\pi}^{2} (m_{\eta}^{2} - \frac{1}{4} m_{\pi}^{2}) \frac{F_{0}^{4}}{F_{\eta}^{4}} \,\overline{J}_{\eta\eta}(t) \\ &+ \frac{1}{8} \left[t - \frac{2}{3} M_{\pi}^{2} - \frac{2}{3} M_{K}^{2} + \frac{2}{3} m_{\pi}^{2} + \frac{2}{3} m_{K}^{2} \right] \left[3t - 2M_{K}^{2} - 2M_{\eta}^{2} + 2m_{\eta}^{2} - \frac{2}{3} m_{K}^{2} \right] \frac{F_{0}^{4}}{F_{\pi}^{4}} \,\overline{J}_{KK}(t) \end{aligned}$$

 \rightarrow perturbative unitarity and exact ren.scale independence

Central value, remainders neglected

scattering length a_0

solid:	strict form
dotted:	redefinition by hand
dash-dot.:	disp.relations a)
dashed:	disp.relations b)
hor.dashed:	LO value

subthreshold parameter c_{01}

solid: strict form
dotted: redefinition by hand
dash-dot.: disp.relations a)
dashed: disp.relations b)
hor.dashed: Standard NLO value

Central value, remainders neglected

50na.	
dotted:	redefinition by hance
dash-dot.:	disp.relations a)
dashed:	disp.relations b)
hor.dashed:	LO value

solid:	strict form
dotted:	redefinition by hand
dash-dot.:	disp.relations a)
dashed:	disp.relations b)
hor.dashed:	Standard NLO value

Central value, remainders neglected

dotted:	redefinition by hand
dash-dot.:	disp.relations a)
dashed:	disp.relations b)
hor.dashed:	LO value

solid: dotted:	strict form redefinition by hand
dash-dot.:	disp.relations a)
dashed:	disp.relations b)
hor.dashed:	Standard NLO value

Central value, remainders neglected

dotted:	redefinition by hance
dash-dot.:	disp.relations a)
dashed:	disp.relations b)
hor.dashed:	LO value

solid:	strict form
dotted:	redefinition by hand
dash-dot.:	disp.relations a)
dashed:	disp.relations b)
hor.dashed:	Standard NLO value

Central value, remainders neglected

scattering length a_0

solid	strict form
30110.	Strict IOIIII
dotted:	redefinition by hand
dash-dot.:	disp.relations a)
dashed:	disp.relations b)
hor.dashed:	LO value

Difference between treatments:

up to 30% of Standard LO value

subthreshold parameter c_{01}

solid:	strict form
dotted:	redefinition by hand
dash-dot.:	disp.relations a)
dashed:	disp.relations b)
nor.dashed:	Standard NLO value

Central value, remainders neglected

solid: strict form
dotted: redefinition by hand
dash-dot.: disp.relations a)
dashed: disp.relations b)
hor.dashed: Standard NLO value

Difference between treatments:

up to 15% of Standard NLO value

subthreshold parameter c_{01}

solid:	strict form
dotted:	redefinition by hand
dash-dot.:	disp.relations a)
dashed:	disp.relations b)
hor.dashed:	Standard NLO value

up to 40% of Standard NLO value

Do not influence the analytical structure of the amplitude

Exchange LO masses with physical ones?

$$m_{\pi}^2 = Y M_{\pi}^2$$

? $\ln(m_P^2/\mu^2) \to \ln(M_P^2/\mu^2)$?

Do not influence the analytical structure of the amplitude Exchange LO masses with physical ones?

?
$$\ln(m_P^2/\mu^2) \to \ln(M_P^2/\mu^2)$$
 ?

Illustrative example - polynomial parameter β :

$$G_{\pi\eta}^{bare}(s,t,u) = \alpha + \beta t + \gamma t^2 + \omega(s-u)^2 + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}}$$

$$\beta = 2\left(M_{\eta}^{2} + M_{\pi}^{2}\right)\left[\frac{3}{128\pi^{2}}\left(\ln\frac{m_{K}^{2}}{\mu^{2}} + 1\right) - 8\left(L_{1}^{r}(\mu) + \frac{1}{6}L_{3}^{r}(\mu)\right)\right] + 8\left(m_{\eta}^{2} + m_{\pi}^{2}\right)L_{4}^{r}(\mu)$$
$$-\frac{1}{32\pi^{2}}m_{\eta}^{2}\left(\ln\frac{m_{K}^{2}}{\mu^{2}} + 1\right) - \frac{1}{48\pi^{2}}m_{\pi}^{2}\left(\ln\frac{m_{\pi}^{2}}{\mu^{2}} + 1\right) - \frac{1}{96\pi^{2}}m_{\pi}^{2}\left(\ln\frac{m_{K}^{2}}{\mu^{2}} + 1\right) + \Delta_{\beta}$$

Two types of chiral logarithms

 $m_{\pi}^2 = Y M_{\pi}^2$

Do not influence the analytical structure of the amplitude Exchange LO masses with physical ones?

?
$$\ln(m_P^2/\mu^2) \to \ln(M_P^2/\mu^2)$$
 ?

Illustrative example - polynomial parameter β :

 $G_{\pi\eta}^{bare}(s,t,u) = \alpha + \beta t + \gamma t^2 + \omega(s-u)^2 + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}}$

$$\beta = 2 \left(M_{\eta}^{2} + M_{\pi}^{2} \right) \left[\frac{3}{128\pi^{2}} \left(\ln \frac{m_{K}^{2}}{\mu^{2}} + 1 \right) - 8 \left(L_{1}^{r}(\mu) + \frac{1}{6} L_{3}^{r}(\mu) \right) \right] + 8 \left(m_{\eta}^{2} + m_{\pi}^{2} \right) L_{4}^{r}(\mu) - \frac{1}{32\pi^{2}} m_{\eta}^{2} \left(\ln \frac{m_{K}^{2}}{\mu^{2}} + 1 \right) - \frac{1}{48\pi^{2}} m_{\pi}^{2} \left(\ln \frac{m_{\pi}^{2}}{\mu^{2}} + 1 \right) - \frac{1}{96\pi^{2}} m_{\pi}^{2} \left(\ln \frac{m_{K}^{2}}{\mu^{2}} + 1 \right) + \Delta_{\beta}$$

Type 1: $M_p^2 \ln m_P^2$ - only from unitarity corrections

 $m_{\pi}^2 = Y M_{\pi}^2$

Diverge for $Y \rightarrow 0!$ Have to be treated.

Definite solution: reparametrization of all NLO LEC's including $L_1 \dots L_3$.

Do not influence the analytical structure of the amplitude Exchange LO masses with physical ones?

?
$$\ln(m_P^2/\mu^2) \to \ln(M_P^2/\mu^2)$$
 ?

Illustrative example - polynomial parameter β :

 $G_{\pi\eta}^{bare}(s,t,u) = \alpha + \beta t + \gamma t^2 + \omega(s-u)^2 + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}}$

$$\beta = 2\left(M_{\eta}^{2} + M_{\pi}^{2}\right)\left[\frac{3}{128\pi^{2}}\left(\ln\frac{m_{K}^{2}}{\mu^{2}} + 1\right) - 8\left(L_{1}^{r}(\mu) + \frac{1}{6}L_{3}^{r}(\mu)\right)\right] + 8\left(m_{\eta}^{2} + m_{\pi}^{2}\right)L_{4}^{r}(\mu)$$
$$-\frac{1}{32\pi^{2}}m_{\eta}^{2}\left(\ln\frac{m_{K}^{2}}{\mu^{2}} + 1\right) - \frac{1}{48\pi^{2}}m_{\pi}^{2}\left(\ln\frac{m_{\pi}^{2}}{\mu^{2}} + 1\right) - \frac{1}{96\pi^{2}}m_{\pi}^{2}\left(\ln\frac{m_{K}^{2}}{\mu^{2}} + 1\right) + \Delta_{\beta}$$

Type 2: $m_p^2 \ln m_P^2$ - both from tadpoles and unitarity corrections

 $m_{\pi}^2 = Y M_{\pi}^2$

Argued $\ln(m_P^2/\mu^2) \rightarrow \ln(M_P^2/\mu^2)$ should not have a large numerical effect: (Descotes 2007) $Y \ll 1: m_p^2 \ln m_P^2 \rightarrow 0, Y \sim 1: m_p^2 \rightarrow M_P^2$

$\eta\pi$ scattering

$\eta\pi$ scattering

$\eta\pi$ scattering

$\eta\pi$ scattering

Difference between treatments:

up to 50% of Standard LO value

$\eta\pi$ scattering

Difference between treatments:

up to 30% of Standard NLO value

up to 1.5x of Standard NLO value

D. Remainder treatment

D.1 Remainder estimates

1. Based on general arguments about the convergence of the chiral series (*Stern et al.2004, Descotes 2007*)

$$\Delta_A^{(6)} \sim \pm 0.1 A$$

In principle an assumption.

2. Based on information outside $\mathcal{O}(p^4)$ $\chi \mathsf{PT}$

The framework of $R\chi PT$ is well suited to incorporate additional information:

- makes a distinction between the explicitly manageable part of the expansion and the remainder
- consistently distinguishes between both parts and keeps traction of them
- makes the distinction at the right point the number of LEC's is too large in higher orders to be treated solely within the theory
- the remainder can be estimated in various ways and considered as a source of error

We investigated:

- resonance Lagrangian
- Generalized χPT Lagrangian

D.1 Remainder estimates

1. Based on general arguments about the convergence of the chiral series (*Stern et al.2004, Descotes 2007*)

$$\Delta_A^{(6)} \sim \pm 0.1 A$$

In principle an assumption.

2. Based on information outside $\mathcal{O}(p^4)$ $\chi \mathsf{PT}$

The framework of $R\chi PT$ is well suited to incorporate additional information:

- makes a distinction between the explicitly manageable part of the expansion and the remainder
- consistently distinguishes between both parts and keeps traction of them
- makes the distinction at the right point the number of LEC's is too large in higher orders to be treated solely within the theory
- the remainder can be estimated in various ways and considered as a source of error

We investigated:

- resonance Lagrangian
- Generalized χPT Lagrangian

D.1 Remainder estimates

1. Based on general arguments about the convergence of the chiral series (*Stern et al.2004, Descotes 2007*)

$$\Delta_A^{(6)} \sim \pm 0.1 A$$

In principle an assumption.

2. Based on information outside $\mathcal{O}(p^4)$ $\chi \mathsf{PT}$

The framework of $R\chi PT$ is well suited to incorporate additional information:

- makes a distinction between the explicitly manageable part of the expansion and the remainder
- consistently distinguishes between both parts and keeps traction of them
- makes the distinction at the right point the number of LEC's is too large in higher orders to be treated solely within the theory
- the remainder can be estimated in various ways and considered as a source of error

We investigated:

- resonance Lagrangian
- Generalized χ PT Lagrangian

Reconstructing an approximation of a more complete theory ($R\chi T$)

$$G_{\pi\eta}^{R\chi T}(s,t,u) = G_{\pi\eta}^{\chi PT}(s,t,u) + \Delta G_{\pi\eta}^{R}(s,t,u)$$

Ingredients:

Reconstructing an approximation of a more complete theory ($R\chi T$)

$$G_{\pi\eta}^{R\chi T}(s,t,u) = G_{\pi\eta}^{\chi PT}(s,t,u) + \Delta G_{\pi\eta}^{R}(s,t,u)$$

Ingredients:

1.'Resummed' χ PT bare expansion

 $G_{\pi\eta}^{bare}(s,t,u) = G_{pol}(s,t,u) + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}}$

Provides the explicit form to NLO in chiral counting

Reconstructing an approximation of a more complete theory ($R\chi T$)

$$G_{\pi\eta}^{R\chi T}(s,t,u) = G_{\pi\eta}^{\chi PT}(s,t,u) + \Delta G_{\pi\eta}^{R}(s,t,u)$$

Ingredients:

1. 'Resummed' χ PT bare expansion

$$G_{\pi\eta}^{bare}(s,t,u) = G_{pol}(s,t,u) + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}}$$

Provides the explicit form to NLO in chiral counting

2. Resonances

(Ecker et al.1989)

$$\begin{aligned} G_{\eta\pi}^{R}(s,t,u) &= -\frac{2}{3(s-M_{S}^{2})} \left(c_{d}(s-M_{\pi}^{2}-M_{\eta}^{2}) + 2c_{m}m_{\pi}^{2} \right)^{2} + (s\leftrightarrow u) \\ &+ \frac{2}{3(t-M_{S}^{2})} \left(c_{d}(t-2M_{\pi}^{2}) + 2c_{m}m_{\pi}^{2} \right) \left(c_{d}(t-2M_{\eta}^{2}) + 2c_{m}(2m_{\eta}^{2}-m_{\pi}^{2}) \right) \\ &- \frac{4}{t-M_{S_{1}}^{2}} \left(\widetilde{c}_{d}(t-2M_{\pi}^{2}) + 2\widetilde{c}_{m}m_{\pi}^{2} \right) \left(\widetilde{c}_{d}(t-2M_{\eta}^{2}) + 2\widetilde{c}_{m}m_{\eta}^{2} \right) \\ &- \frac{4c_{m}^{2}}{3M_{S}^{2}} m_{\pi}^{2} \left(m_{\eta}^{2} - m_{\pi}^{2} \right) + \frac{4\widetilde{c}_{m}^{2}}{M_{S_{1}}^{2}} m_{\pi}^{2} \left(m_{\eta}^{2} + m_{\eta}^{2} \right) + \frac{16 \, \widetilde{d}_{m}^{2}}{M_{\eta_{1}}^{2} - M_{\eta}^{2}} m_{\pi}^{2} \left(m_{\eta}^{2} - m_{\pi}^{2} \right) \end{aligned}$$

Expand as chiral series and resum NNLO and all higher order terms

Reconstructing an approximation of a more complete theory ($R\chi T$)

$$G_{\pi\eta}^{R\chi T}(s,t,u) = G_{\pi\eta}^{\chi PT}(s,t,u) + \Delta G_{\pi\eta}^{R}(s,t,u)$$

Result:

1.'Resummed' χ PT bare expansion

$$G_{\pi\eta}^{bare}(s,t,u) = G_{pol}(s,t,u) + \mathcal{G}_{unit}(s,t,u) + \Delta G_R(s,t,u) + \widetilde{\Delta}_{\mathcal{G}}$$

2. Resonances

$$\begin{split} \Delta G_R(s,t,u) &= -\frac{2s}{3(s-M_S^2)M_S^2} \left(c_d(s-M_\pi^2-M_\eta^2) + 2c_m m_\pi^2 \right)^2 + (s\leftrightarrow u) \\ &+ \frac{2t}{3(t-M_S^2)M_S^2} \left(c_d(t-2M_\pi^2) + 2c_m m_\pi^2 \right) \left(c_d(t-2M_\eta^2) + 2c_m (2m_\eta^2-m_\pi^2) \right) \\ &- \frac{4t}{(t-M_{S_1}^2)M_{S_1}^2} \left(\widetilde{c}_d(t-2M_\pi^2) + 2\widetilde{c}_m m_\pi^2 \right) \left(\widetilde{c}_d(t-2M_\eta^2) + 2\widetilde{c}_m m_\eta^2 \right) \\ &+ \frac{16 \, \widetilde{d}_m^2 M_\eta^2}{(M_{\eta_1}^2 - M_\eta^2) M_{\eta_1}^2} m_\pi^2 \left(m_\eta^2 - m_\pi^2 \right) \end{split}$$

Reconstructing an approximation of a more complete theory ($R\chi T$)

$$G_{\pi\eta}^{R\chi T}(s,t,u) = G_{\pi\eta}^{\chi PT}(s,t,u) + \Delta G_{\pi\eta}^{R}(s,t,u)$$

Result:

1. 'Resummed' χ PT bare expansion

$$G_{\pi\eta}^{bare}(s,t,u) = G_{pol}(s,t,u) + \mathcal{G}_{unit}(s,t,u) + \Delta G_R(s,t,u) + \Delta_{\mathcal{G}}$$

Remainder 'saturation' instead of usual LEC saturation

_ _

2. Resonances

$$\begin{split} \Delta G_R(s,t,u) &= -\frac{2s}{3(s-M_S^2)M_S^2} \left(c_d(s-M_\pi^2-M_\eta^2) + 2c_m m_\pi^2 \right)^2 + (s\leftrightarrow u) \\ &+ \frac{2t}{3(t-M_S^2)M_S^2} \left(c_d(t-2M_\pi^2) + 2c_m m_\pi^2 \right) \left(c_d(t-2M_\eta^2) + 2c_m (2m_\eta^2-m_\pi^2) \right) \\ &- \frac{4t}{(t-M_{S_1}^2)M_{S_1}^2} \left(\widetilde{c}_d(t-2M_\pi^2) + 2\widetilde{c}_m m_\pi^2 \right) \left(\widetilde{c}_d(t-2M_\eta^2) + 2\widetilde{c}_m m_\eta^2 \right) \\ &+ \frac{16 \, \widetilde{d}_m^2 M_\eta^2}{(M_{\eta_1}^2 - M_\eta^2) M_{\eta_1}^2} m_\pi^2 \left(m_\eta^2 - m_\pi^2 \right) \end{split}$$

Reconstructing an approximation of a more complete theory ($R\chi T$)

$$G_{\pi\eta}^{R\chi T}(s,t,u) = G_{\pi\eta}^{\chi PT}(s,t,u) + \Delta G_{\pi\eta}^{R}(s,t,u)$$

Result:

1.'Resummed' χ PT bare expansion

$$G_{\pi\eta}^{bare}(s,t,u) = G_{pol}(s,t,u) + \mathcal{G}_{unit}(s,t,u) + \Delta G_R(s,t,u) + \Delta_{\mathcal{G}}$$

Ren.scale independent - no need to fix a saturation scale

2. Resonances

$$\begin{split} \Delta G_R(s,t,u) &= -\frac{2s}{3(s-M_S^2)M_S^2} \left(c_d(s-M_\pi^2-M_\eta^2) + 2c_m m_\pi^2 \right)^2 + (s\leftrightarrow u) \\ &+ \frac{2t}{3(t-M_S^2)M_S^2} \left(c_d(t-2M_\pi^2) + 2c_m m_\pi^2 \right) \left(c_d(t-2M_\eta^2) + 2c_m (2m_\eta^2-m_\pi^2) \right) \\ &- \frac{4t}{(t-M_{S_1}^2)M_{S_1}^2} \left(\widetilde{c}_d(t-2M_\pi^2) + 2\widetilde{c}_m m_\pi^2 \right) \left(\widetilde{c}_d(t-2M_\eta^2) + 2\widetilde{c}_m m_\eta^2 \right) \\ &+ \frac{16 \, \widetilde{d}_m^2 M_\eta^2}{(M_{\eta_1}^2 - M_\eta^2) M_{\eta_1}^2} m_\pi^2 \left(m_\eta^2 - m_\pi^2 \right) \end{split}$$

Reconstructing an approximation of a more complete theory ($R\chi T$)

$$G_{\pi\eta}^{R\chi T}(s,t,u) = G_{\pi\eta}^{\chi PT}(s,t,u) + \Delta G_{\pi\eta}^{R}(s,t,u)$$

Result:

1.'Resummed' χ PT bare expansion

$$G_{\pi\eta}^{bare}(s,t,u) = G_{pol}(s,t,u) + \mathcal{G}_{unit}(s,t,u) + \Delta G_R(s,t,u) + \Delta_{\mathcal{G}}$$

Ren.scale independent - no need to fix a saturation scale

2. Resonances

$$\begin{split} \Delta G_R(s,t,u) &= -\frac{2s}{3(s-M_S^2)M_S^2} \left(c_d(s-M_\pi^2-M_\eta^2) + 2c_m m_\pi^2 \right)^2 + (s\leftrightarrow u) \\ &+ \frac{2t}{3(t-M_S^2)M_S^2} \left(c_d(t-2M_\pi^2) + 2c_m m_\pi^2 \right) \left(c_d(t-2M_\eta^2) + 2c_m (2m_\eta^2-m_\pi^2) \right) \\ &- \frac{4t}{(t-M_{S_1}^2)M_{S_1}^2} \left(\widetilde{c}_d(t-2M_\pi^2) + 2\widetilde{c}_m m_\pi^2 \right) \left(\widetilde{c}_d(t-2M_\eta^2) + 2\widetilde{c}_m m_\eta^2 \right) \\ &+ \frac{16 \, \widetilde{d}_m^2 M_\eta^2}{(M_{\eta_1}^2 - M_\eta^2) M_{\eta_1}^2} m_\pi^2 \left(m_\eta^2 - m_\pi^2 \right) \end{split}$$

To all orders - resonance poles explicitly present

The resonance estimate only deals with the derivative part of the series

 \rightarrow the expansion in terms of quark masses is not estimated

The resonance estimate only deals with the derivative part of the series

 \rightarrow the expansion in terms of quark masses is not estimated

The Generalized χ **PT Lagrangian uses an alternative power counting** *(Stern et al.1995)*

ightarrow Standard $\mathcal{O}(p^6)$ and $\mathcal{O}(p^8)$ terms are present at NLO

 \rightarrow the ones suspected to upset the expansion

The resonance estimate only deals with the derivative part of the series

 \rightarrow the expansion in terms of quark masses is not estimated

The Generalized χ PT Lagrangian uses an alternative power counting *(Stern et al.1995)*

ightarrow Standard $\mathcal{O}(p^6)$ and $\mathcal{O}(p^8)$ terms are present at NLO

 \rightarrow the ones suspected to upset the expansion

Matching the bare expansions from both versions of power counting

$$G^{bare}(s,t,u) = G_{pol}(s,t,u) + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}}$$

$$G^{bare}(s,t,u) = G^{G\chi PT}_{pol}(s,t,u) + \mathcal{G}^{G\chi PT}_{unit}(s,t,u) + \Delta^{G\chi PT}_{\mathcal{G}}(s,t,u)$$

 $\Delta_{\mathcal{G}} = [G_{pol}^{G\chi PT}(s,t,u) - G_{pol}(s,t,u)] + [\mathcal{G}_{unit}^{G\chi PT}(s,t,u) - \mathcal{G}_{unit}(s,t,u)] + \Delta_{\mathcal{G}}^{G\chi PT}$

The resonance estimate only deals with the derivative part of the series

 \rightarrow the expansion in terms of quark masses is not estimated

The Generalized χ PT Lagrangian uses an alternative power counting *(Stern et al.1995)*

 \rightarrow Standard $\mathcal{O}(p^6)$ and $\mathcal{O}(p^8)$ terms are present at NLO

 \rightarrow the ones suspected to upset the expansion

Matching the bare expansions from both versions of power counting

$$G^{bare}(s,t,u) = G_{pol}(s,t,u) + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}}$$

$$G^{bare}(s,t,u) = G^{G\chi PT}_{pol}(s,t,u) + \mathcal{G}^{G\chi PT}_{unit}(s,t,u) + \Delta^{G\chi PT}_{\mathcal{G}}$$
$$\Delta_{\mathcal{G}} = [G^{G\chi PT}_{pol}(s,t,u) - G_{pol}(s,t,u)] + [\mathcal{G}^{G\chi PT}_{unit}(s,t,u) - \mathcal{G}_{unit}(s,t,u)] + \Delta^{G\chi PT}_{\mathcal{G}}$$

Sewing the resonance and the $G\chi PT$ remainder estimates:

$$\Delta G_R^{G\chi PT} = \Delta G_R - \frac{16\tilde{c}_m^2 m_\pi^2 m_\eta^2 t}{M_{S_1}^4} - \frac{16c_m^2 m_\pi^2}{3M_S^4} (m_\pi^2 M_\eta^2 + m_\pi^2 M_\pi^2 - m_\eta^2 t) - \frac{16\tilde{d}_m^2 M_\eta^2}{M_{\eta_1}^4} m_\pi^2 (m_\eta^2 - m_\pi^2)$$
D.3 The $G\chi$ PT estimate

Illustrative example - polynomial parameter β :

$$G_{\pi\eta}^{bare}(s,t,u) = \alpha + \beta t + \gamma t^2 + \omega(s-u)^2 + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}}$$

$$\beta = 2\left(M_{\eta}^{2} + M_{\pi}^{2}\right)\left[\frac{3}{128\pi^{2}}\left(\ln\frac{m_{K}^{2}}{\mu^{2}} + 1\right) - 8\left(L_{1}^{r}(\mu) + \frac{1}{6}L_{3}^{r}(\mu)\right)\right] + 8\left(m_{\eta}^{2} + m_{\pi}^{2}\right)L_{4}^{r}(\mu)$$
$$-\frac{1}{32\pi^{2}}m_{\eta}^{2}\left(\ln\frac{m_{K}^{2}}{\mu^{2}} + 1\right) - \frac{1}{48\pi^{2}}m_{\pi}^{2}\left(\ln\frac{m_{\pi}^{2}}{\mu^{2}} + 1\right) - \frac{1}{96\pi^{2}}m_{\pi}^{2}\left(\ln\frac{m_{K}^{2}}{\mu^{2}} + 1\right) + \Delta_{\beta}$$

D.3 The $G\chi$ PT estimate

Illustrative example - polynomial parameter β :

$$G_{\pi\eta}^{bare}(s,t,u) = \alpha + \beta t + \gamma t^2 + \omega(s-u)^2 + \mathcal{G}_{unit}(s,t,u) + \Delta_{\mathcal{G}}$$

$$\begin{split} \beta &= 2 \left(M_{\eta}^{2} + M_{\pi}^{2} \right) \left[\frac{3}{128\pi^{2}} (\ln \frac{m_{K}^{2}}{\mu^{2}} + 1) - 8 (L_{1}^{r}(\mu) + \frac{1}{6} L_{3}^{r}(\mu)) \right] + 8 (m_{\eta}^{2} + m_{\pi}^{2}) L_{4}^{r}(\mu) \\ &- \frac{1}{32\pi^{2}} m_{\eta}^{2} (\ln \frac{m_{K}^{2}}{\mu^{2}} + 1) - \frac{1}{48\pi^{2}} m_{\pi}^{2} (\ln \frac{m_{\pi}^{2}}{\mu^{2}} + 1) - \frac{1}{96\pi^{2}} m_{\pi}^{2} (\ln \frac{m_{K}^{2}}{\mu^{2}} + 1) + \Delta_{\beta} \\ \Delta_{\beta} &= \Delta_{\beta}^{G\chi PT} + \frac{8}{3} [(C_{1}^{S} + D^{S})(2r + 1) + 2B_{4}(r^{2} + 2)] \\ &+ \frac{1}{3} \left[\tilde{m}_{\pi}^{2} + 4 \hat{m}^{2} (3A_{0} - 4(r - 1)Z_{0}^{P} + 2(2r + 1)Z_{0}^{S}) - 2B_{0} \hat{m} \right] J_{\pi\pi}^{r}(0) \\ - \frac{3}{12} \left[2 \tilde{m}_{\pi}^{2} - 8 \hat{m}^{2} (r - 1) (A_{0} + 2Z_{0}^{P}) - 4B_{0} \hat{m} \right] J_{KK}^{r}(0) + \frac{1}{8} [6 (\tilde{m}_{\eta}^{2} - M_{\eta}^{2} + \tilde{m}_{\pi}^{2} - M_{\pi}^{2}) - \frac{8}{3} \tilde{m}_{K}^{2} \\ + \frac{8}{3} (r + 1) \hat{m}^{2} (3A_{0}(r + 3) + 4Z_{0}^{S}(r + 5) + 2(r - 1)Z_{0}^{P}) - \frac{8}{3} B_{0} \hat{m} (2r + 5) + 6M_{\eta}^{2} + 6M_{\pi}^{2}] J_{KK}^{r}(0) \end{split}$$

 \tilde{m}_P are Generalized LO masses

Remainders neglected - parameter range $X \sim 0-1$, $Z \sim 0.5-0.9$, fixed r=25

Free parameters of the theory: X, Z, r

Remainder estimate - 10% uncertainty

Small reminders might generate significant uncertainty

Remainder estimate - resonances

Compatible with 10% remainder magnitude assumption

Remainder estimate - $G\chi PT$ and resonances combined

grey: resonance+ $G\chi$ PT remainder estimate, scale dependence $\mu \sim M_{\eta} - M_{\rho}$

 α : compatible, β : borderline

E. Stability of the chiral series and the Standard approach to NLO

E.1 Standard approach to NLO

Standard reparametrization - inverted expansions for LO LEC's:

$$F_0^2 = F_\pi^2 (1 + 4\mu_\pi + 2\mu_K) - 8M_\pi^2 (L_4^r (2 + r) + L_5^r)$$

$$2B_0 \hat{m} = M_\pi^2 (1 - \mu_\pi + \frac{1}{3}\mu_\eta - \frac{8M_\pi^2}{F_\pi^2} (2(L_8^r + (2 + r)L_6^r) - (L_5^r + (2 + r)L_4^r))$$
$$r = \frac{2M_K^2}{M_\pi^2} - 1 \quad \text{or} \quad r = \frac{3M_\eta^2}{2M_\pi^2} - \frac{1}{2}$$

Next-to-leading order LEC's:

[1] $\mathcal{O}(p^4)$ fit (Bijnens et al.1994) [2] $\mathcal{O}(p^6)$ fit (Bijnens et al.2000)

Results:

L_i	α/α^{CA}	$10^3 eta/M_\eta^2$	c_{00}/c_{00}^{CA}	$10^{3}c_{10}$	a_0/a_0^{CA}	$10^{3}a_{1}$
[1]	1.68	0.90	1.06	0.91	1.96	0.59
[2]	1.91	-0.68	1.51	-0.67	1.18	-0.60
Δ	2.48	7.49	2.49	7.49	3.21	2.80

Strong sensitivity to LEC fit \rightarrow suggests large higher order corrections

Parameter range $X \sim 0-1$, $Z \sim 0.5-0.9$, fixed r=25; 10% remainder estimate

Watch out for:

sensitivity to X and Z, the uncertainty generated by small remainders

Comparison with Standard LO value

Watch out for:

the ratio of LO the to the possible complete result depending on X and Z

Comparison with Standard NLO value

Watch out for:

how sufficient is Standard NLO result depending on X and Z

Restoration of the Standard value from R χ PT at the point X^{std} , Z^{std} , r^{std}

Watch out for:

whether $R\chi PT$ correctly restores the Standard value, 'good' vs.'bad' observable

Dependence on r - shift of the range at r=15

Watch out for:

if there is a change with small r

Parameter range $X \sim 0-1$, $Z \sim 0.5-0.9$, fixed r=25; 10% remainder estimate

Watch out for:

sensitivity to X and Z, the uncertainty generated by small remainders

Comparison with Standard NLO value

Watch out for:

how sufficient is Standard NLO result depending on X and Z

Restoration of the Standard value from R χ PT at the point X^{std} , Z^{std} , r^{std}

Watch out for:

whether $R\chi PT$ correctly restores the Standard value, 'good' vs.'bad' observable

Dependence on r - shift of the range at r=15

Watch out for:

if there is a change with small r

- $\eta \pi^0 \rightarrow \eta \pi^0$ scattering appears to be sensitive to effects considered by 'Resummed' χ PT. Unfortunately no low energy data is available.
- We have studied the various possibilities of the definition of the bare expansion and have shown that the differences might be significant.
- We have estimated the remainders in several ways, namely incorporated resonances and used the $G\chi PT$ Lagrangian in order to get a sense of the magnitude of the remainders

- $\eta \pi^0 \rightarrow \eta \pi^0$ scattering appears to be sensitive to effects considered by 'Resummed' χ PT. Unfortunately no low energy data is available.
- We have studied the various possibilities of the definition of the bare expansion and have shown that the differences might be significant.
- We have estimated the remainders in several ways, namely incorporated resonances and used the $G\chi PT$ Lagrangian in order to get a sense of the magnitude of the remainders

- $\eta \pi^0 \rightarrow \eta \pi^0$ scattering appears to be sensitive to effects considered by 'Resummed' χ PT. Unfortunately no low energy data is available.
- We have studied the various possibilities of the definition of the bare expansion and have shown that the differences might be significant.
- We have estimated the remainders in several ways, namely incorporated resonances and used the $G\chi PT$ Lagrangian in order to get a sense of the magnitude of the remainders

- $\eta \pi^0 \rightarrow \eta \pi^0$ scattering appears to be sensitive to effects considered by 'Resummed' χ PT. Unfortunately no low energy data is available.
- We have studied the various possibilities of the definition of the bare expansion and have shown that the differences might be significant.
- We have estimated the remainders in several ways, namely incorporated resonances and used the $G\chi PT$ Lagrangian in order to get a sense of the magnitude of the remainders

- $\eta \pi^0 \rightarrow \eta \pi^0$ scattering appears to be sensitive to effects considered by 'Resummed' χ PT. Unfortunately no low energy data is available.
- We have studied the various possibilities of the definition of the bare expansion and have shown that the differences might be significant.
- We have estimated the remainders in several ways, namely incorporated resonances and used the $G\chi PT$ Lagrangian in order to get a sense of the magnitude of the remainders

Thank you for your attention!