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Motivation

these processes enable to study

Chiral Perturbation Theory at NiLO

QCD constraints

Large NC methods

electromagnetic contributions

and (last but not least) can be (hopefully) directly confronted by existing
experiments.
They are also important ‘indirectly’ in many other processes (g − 2,
normalization of decays of kaons, understand the background etc.).
Technically, one can use the results (with different masses) also for other
particles e.g. for η physics (η-(double)Dalitz, η → e+e−, µ+µ−, etc.).
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Dalitz decay

[K.K., Knecht, Novotný ’06]

history

First calculated by [Dalitz ’51].

Radiative corrections studied by [Joseph ’60], [Lautrup, Smith ’71],
[Mikaelian, Smith ’72]

and during the 1980s by Tupper, Grose, Samuel, Lambin, Pestieau,
Roberts...
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Dalitz decay: Anatomy of the amplitude

one-photon reducible graphs: electron-positron pair is produced by a
single photon (Dalitz pair)

one-photon irreducible graphs

π0(P )

ց

ր
q

γ(k)

e+(p+)

e−(p−)

one-fermion reducible topologies
one-photon irreducible contributions

π0
ց

γ

e−

e+

π0
→

γ

e−

e+

K. Kampf π0 decays 5/23



Dalitz decay: One-photon reducible diagrams

π0(P )

ց

ր
q

γ(k)

e+(p+)

e−(p−)

Γ1γR
µ (p+, p−, k) = ie2ε ναβ

µ qαkβ Fπ0γγ∗(q2) iDT
νρ(q)(−ie)Λρ (1)

Fπ0γγ∗(q2) is related to the doubly off-shell form factor Aπ0γ∗γ∗(q2
1 , q

2
2),

defined as
∫

d4x eil·x〈0|T (jµ(x)jν(0)|π0(P )〉 =

= −iεµναβ lαPβ Aπ0γ∗γ∗(l2, (P − l)2) (2)
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Dalitz decay: One-photon irreducible diagrams

One-fermion reducible and one-particle irreducible graphs:

π0
ց

γ

e−

e+

π0
→

γ

e−

e+

represent (together) a transverse subset. They both start at order O(e5):
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Dalitz decay: Leading order

π0(P )

ց

ր
q

γ(k)

e+(p+)

e−(p−)

The leading order amplitude corresponds to the O(e3) one-photon reducible
contribution with the form factor Aπ0γ∗γ∗(l2, (P − l)2) reduced to its expression for a
pointlike pion, i.e. a constant, ALO

π0γ∗γ∗ = −NC/12π2Fπ , fixed by the chiral anomaly.
Partial decay rates read

dΓLO

dxdy
=

α3

(4π)4
Mπ0

F 2
π

(1 − x)3

x2
[M2

π0x(1 + y2) + 4m2],

dΓLO

dx
=

α3

(4π)4
8

3

Mπ0

F 2
π

(1 − x)3

x2
(xM2

π0 + 2m2). (3)
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Dalitz decay: Next-to-leading order corrections

These corrections will be described as

dΓ

dxdy
= δ(x, y)

dΓLO

dxdy
,

dΓ

dx
= δ(x)

dΓLO

dx
.

(4)

One can define a slope parameter aπ

Fπ0γγ∗(q2) = Fπ0γγ∗(0)
[

1 + aπ
q2

M2
π0

+ · · ·
]

, (5)

which can be obtained from

dΓexp

dx
− δQED(x)

dΓLO

dx
=

dΓLO

dx
[1 + 2xaπ]. (6)
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Dalitz decay: results

Our work provides a detailed analysis of NLO radiative corrections to the Dalitz
decay amplitude.

The off-shell pion-photon transition form factor was included:
this requires a treatment of non perturbative strong interaction effects

The one-photon irreducible contributions, which had been usually neglected,
were included.
We have shown that, although these contributions are negligible as far as the
corrections to the total decay rate are concerned, they are however sizeable in
regions of the Dalitz plot which are relevant for the determination of the slope
parameter aπ of the pion-photon transition form factor.

Our prediction for the slope parameter aπ = 0.029 ± 0.005 is in good agreement
with the determinations obtained from the (model dependent) extrapolation of
the CELLO and CLEO data.
Unfortunately, the experimental error bars on the latest values of aπ extracted
from the Dalitz decay are still too large

Hopefully, future experiments will improve the situation in this respect.

some existing data could partially test our results (NA48, PrimEx (?))
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Double Dalitz decay
collaboration with M. Knecht, J. Novotný

It seems natural to convert the on-shell photon to the other Dalitz pair
and obtain immediately Double Dalitz decay. This is true for LO:

However, for higher orders we have new topologies [Barker et al. ’03]:

We are recalculating these results and try to put them together with our
parameters introduced in the context of π0 → e+e−γ.
Our motivation: possible verification in the Dirac experiment
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π
0 → e

+
e
− (Drell decay)

history

first studied in [S. Drell ’59]

radiative corrections: [L. Bergström ’83]

further teor. studies: e.g. [Gomez Dumm, Pich ’98], [Knecht, et al. ’99]

recent experiment: KTeV E799-II [Abouzaid ’07]

and its confrontation with theory: [Dorokhov, Ivanov ’07]

K. Kampf π0 decays 12/23



π
0 → e

+
e
−

Bergström analysis: pictures taken from [Bergström ’83]

simplifications: invariant mass of the lepton pair, structure of the vertex,
bremsstrahlung of the internal lepton are neglected

+ interference with Dalitz:
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π
0 → e

+
e
−

Bergström analysis: pictures taken from [Bergström ’83]

Results of the radiative corrections as a function of the acceptance for the mee
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π
0 → e

+
e
−

normalization to the two-photon BR

R ≡
Br(π0 → e+e−)

Br(π0 → γγ)
= 2

( αme

πMπ

)2
√

1 − 4
m2

s
|A|2

A ∼ Fπ , where Fπ(0, 0) = 1
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π
0 → e

+
e
−

normalization to the two-photon BR

R ≡
Br(π0 → e+e−)

Br(π0 → γγ)
= 2

( αme

πMπ

)2
√

1 − 4
m2

s
|A|2

A ∼ Fπ , where Fπ(0, 0) = 1

Imaginary part is model independent

ImA =
π

2βe
log

1 − βe

1 + βe

and implies the so-called unitary bound (neglecting radiative corrections):

R ≥ Runit = 4.75 × 10−8

K. Kampf π0 decays 14/23



π
0 → e

+
e
−

Real part can be parameterized using the dispersive techniques. The
unknown subtraction constant can be expressed by means of the
low-energy constant χ(µ) which describes the direct interactions of π0

with lepton pair to LO. For details see e.g. [Dorokhov, Ivanov ’07].
Schematically we have (cf. also [Knecht, Peris, Perrottet and de Rafael ’99]):

A = NC

3

[

−5
2 + 3

2 log m2

µ2 + C
]

+ χ(µ)

The different techniques can be used in order to extract this constant:

CLEO+OPE QCDsr gVMD QM NχQM NQM Experiment

−3 log(m/µ) − χ(µ) 21.9 ± 0.3 21.7 ± 0.1 21.9 23.4 ± 0.5 22.1 ± 0.5 24.5 18.6 ± 0.9

B
(

π0 → e+e−
)

× 108 6.23 ± 0.09 6.21 ± 0.05 6.2 5.8 ± 0.2 6.1 ± 0.2 5.38 7.49 ± 0.38
(Table taken from [Dorokhov and Ivanov ’07])
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π
0 → e

+
e
−

Are the radiative corrections under control?
Apparently they play the important role in π0 → e+e− analysis;
extrapolating the radiative tail one finds [KTeV in Abouzaid et al. ’07]:

BrxD>0.95(π0 → e+e−) × 108 = 6.5 ± 0.4 −→ Brno rad. = 7.5 ± 0.4

How is this extrapolation by 12% and 3.4% given by Bergström
approximation reliable?
⇒ we must calculate the whole radiative correction.
⇒ this means the full two-loop calculation
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Loop strategy: toy example

Demonstration of the basic recipe on one-loop correction to π → γγ.
1. Diagrams to be calculated

2. To find a superior topology with # prop ≥ # ind. scalars (so called
auxiliary diagram method), e.g.:

3. Calculate this topology for general powers of propagators (λi)

Iλ1λ2λ3
=

iπd/2

Γ(λ1)Γ(λ2)

∫

dz

2πi

Γ(λ2 + z)Γ(−z)Γ(−λ1 − λ2 − 2λ3 − 2ǫ + 4 − z)Γ(λ1 + λ2 + λ3 + ǫ − 2 + z)Γ(−λ2 − λ3 − ǫ + 2 − z)

Γ(−λ1 − λ2 − λ3 − 2ǫ + 4 − z)Γ(−λ3 − ǫ + 2)(m2)λ1+λ2+λ3+ǫ−2

4. Express the topologies (with scalars in numerator) by this formula

= I100 ∼ I110, I1−10, . . .
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Loop strategy: toy example

Demonstration of the basic recipe on one-loop correction to π → γγ.
This procedure is algorithmically very simple (=we can use computers)
but has some drawbacks.
One has to be careful in calculating some specific values of λs. E.g. in
our example we have Γ(λ2) in denominator, but this doesn’t mean that
I100 is zero (one has to take properly the limit λ2 → 0 on I1λ20).
The number of terms to take care of can be enormous – it is good to
find some relations among them; for this we can use the IBP equations:

∫

ddk
∂

∂kµ

(kµ, pµ
i , . . .)

. . .
= 0 (7)

to obtained the so-called master integrals.
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Back to π
0 → e

+
e
−, preliminary 2-loop study

collaboration with M. Knecht, J. Novotný

All radiative corrections to π → e+e−

, etc.

can be obtained ‘simply’ from the ‘double-box’ topology

Number of scalar integrals is about 200. We have used IBP to obtain
about 20 master integrals to be calculated, for example:

, etc.
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π
0 → e

+
e
−, preliminary 2-loop study

To summarize: all complicated spinor-, tensor-, two-loop integrals were
reduced, so far, to the reasonable number of scalar neat (without
numerator) two-loop graphs. Some of them can be calculated trivially
(“loop × loop”), some of them can be found in the literature, some of
them, however, we have to study little bit deeper. This work is in
progress now:
we try to use different methods and perform the crosschecks. We employ
(for a review cf. [Smirnov: Feynman Integral Calculus]): Mellin-Barnes
representation [see D.Greynat talk], differential method (in general too
complicated, however suitable for 3-body processes; enables to classify
subclasses of diagrams), “infrared simplification” (if we are sure of
infrared safeness we can trivially put me = 0 in some of these master
integrals).
Example: all methods agree up to ǫ0 on the following diagram

≈
1

2ǫ2
+

5
2 + iπ − ln M2

µ2

ǫ
−

11π2

12
+

19

2
+5iπ+ln2 M2

µ2
−(5+2iπ) ln(

M2

µ2
)+O(ǫ1,me/M)

[I am grateful to B.Jantzen for helping me with Mellin-Barnes representation]; for full result see also [Bonciani et al. ’04]
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Last but not least: π
0 → γγ

π0 is the lightest hadron ⇒ primary decay mode is π0 → γγ
The rate can be predicted exactly in chiral limit by QCD axial anomaly:

Γ(π0 → γγ) =
m3

π0

64π

( αNC

3πFπ

)2
= 7.73 eV

At NLO for Nf = 2, corrections are hidden in replacement Fπ → Fπ0

and O(p6) LECs [Donoghue et al. ’85] [Bijnens et al. ’88]

Three-flavour case can get us further in this studying, mainly by means
of π0, η, η′ mixing, resulting to [Goity, Bernstein, Holstein ’02]:

ΓNLO = 8.1 ± 0.08 eV

or by studying in detail the electromagnetic corrections in SU(2)
[Ananth., Moussallam ’02]:

ΓNLO = 8.06 ± 0.02 ± 0.06 eV

(errors mainly due to the uncertainty in R and Fπ).
Quite recently another study based on dispersion relations, QCD sum
rules, using only the value Γ(η → γγ) gives [Ioffe, Oganesian ’07]:

ΓNLO = 7.93 ± 0.11 eV
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π
0 → γγ

One can imagine three kinds of measurements:

direct (time of flight)

photon collisions

Primakoff effect (i.e. photopion production in the Coulomb field

of nucleus [Primakoff ’51])

[PrimEx group April ’07]
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π
0 → γγ at NNLO, preliminary results
work in collaboration with B.Moussallam
In the isospin limit we can expect that numerically relevant could be only
double logarithms with mπ. Defining

Λ ≡
1

(4π)2
1

d − 4
, L ≡

1

(4π)2
ln

m2
π

µ2

all two-loop diagrams can be written schematically

2 = x(d)(cµ)2(d−4)
[

Λ2 + LΛ + 1
4L2

]

.

Using Weinberg consistency relation [Colangelo ’95], [Bijnens et al. 98] we
can set x0 calculating only one-loop diagrams with one divergent NLO
LEC
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π
0 → γγ at NNLO, preliminary results
work in collaboration with B.Moussallam
In the isospin limit we can expect that numerically relevant could be only
double logarithms with mπ. Defining

Λ ≡
1

(4π)2
1

d − 4
, L ≡

1

(4π)2
ln

m2
π

µ2

all two-loop diagrams can be written schematically

2 = x(d)(cµ)2(d−4)
[

Λ2 + LΛ + 1
4L2

]

.

Using Weinberg consistency relation [Colangelo ’95], [Bijnens et al. 98] we
can set x0 calculating only one-loop diagrams with one divergent NLO
LEC

table 3 in [Bijnens, Girlanda, Talavera ’01]
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π
0 → γγ at NNLO, preliminary results
work in collaboration with B.Moussallam
In the isospin limit we can expect that numerically relevant could be only
double logarithms with mπ. Defining

Λ ≡
1

(4π)2
1

d − 4
, L ≡

1

(4π)2
ln

m2
π

µ2

all two-loop diagrams can be written schematically

2 = x(d)(cµ)2(d−4)
[

Λ2 + LΛ + 1
4L2

]

.

Using Weinberg consistency relation [Colangelo ’95], [Bijnens et al. 98] we
can set x0 calculating only one-loop diagrams with one divergent NLO
LEC [Bijnens, Girlanda, Talavera ’01]. Our preliminary result is:

Γ =
m3

π

64π

( α

Fππ

)2(

1 −
1

6

m4
π

F 4
π

L2
)2

→ effect smaller than 0.1 %
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Conclusion

The 4 most important (in BR) decay modes of π0 were discussed.
The ordering in this talk reflects the ordering of my study in time

π → e+e−γ
published in [KK, Knecht, Novotný ’06]

π → e+e−e+e−

only preliminary first study

π → e+e−

classification of diagrams finished, painstaking work is now in
progress

π → γγ
important process, so far we have calculated double-logarithm
correction which is negligible. This process, however, deserves the
full two loop calculation...
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