EuroFlavour 07 Univ. Paris-Sud 11, Orsay November 14-16, 2007

The LHCb experiment and its expected physics performance

Olivier Schneider

Olivier.Schneider@epfl.ch

Given the fact that

- LHC will be producing the largest number of b hadrons (of all types), by far, and for a long time
- Tevatron experiments have demonstrated the feasibility of B physics at a hadron machine

→ perform a dedicated B-physics experiment at the LHC, but with a new challenge:

- exploit the huge bb production in the not-well-known forward region, despite the unfriendly hadronic environment (multiplicity, ...) for B physics
 - ~ 230 μb of bb production in one of the forward peaks (~300 mrad), corresponding to nearly 10⁵ b hadrons per second at a modest luminosity of 2×10³² cm⁻²s⁻¹

LHCb

Pileup and luminosity

- □ LHC machine, pp collisions at $\sqrt{s} = 14$ TeV:
 - design luminosity = $L = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, bunch crossing rate = 40 MHz
 - average non-empty bunch crossing rate = f = 30 MHz (in LHCb)
 - Pileup:
 - n = number of inelastic pp interactions occurring in the same bunch crossing
 - Poisson distribution with mean $\langle n \rangle = L\sigma_{inel}/f$, with $\sigma_{inel} = 80$ mb
 - $\langle n \rangle = 25$ at 10^{34} cm⁻²s⁻¹ \rightarrow not good for B physics

At LHCb:

- L tuneable by adjusting final beam focusing
- Choose to run at $<L> \sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ (max. $5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$)
 - Clean environment: $\langle n \rangle = 0.5$
 - Less radiation damage
 - Expected to be available from "first" physics run
- -2 fb⁻¹ of data in 10⁷ s (= nominal year)

LHCb construction on schedule

Kich VELO installation (Oct 30–31, 2007)

Monte Carlo studies: a long way

- **Technical proposal (1998):**
 - Rough detector description
 - No trigger simulation
 - No pattern recognition in tracking
 - Parametrized PID performance
- Re-opt. Technical Design Report (2003)
 - Final detector design
 - Simulation of L0 and L1 trigger only
 - First version of full pattern recognition
- **"DC04" MC datasets (2004–2006):**
 - Detailed material description
 - First simulation of High-Level Trigger
- **"** "DC06" MC datasets (2006–2007):
 - Close-to-final geometry and material description
 - Redesigned High-Level Trigger
 - Close-to-final reconstruction algorithms
- •

Today's numbers from DC04 MC performance studies:

- Tuned PYTHIA
- $<L> = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ with pileup included
- Full detector simulation (spillover effects included)
- Background estimates:
 - based on a sample of inclusive bb events equivalent to a few minutes of data taking !
 - sometimes can only set upper limits

In 2007, large push to describe all these studies in public LHCb notes

CERN-LHCb-2007-xxx

Expected tracking performance

□ Track finding:

LHCh

- efficiency > 95% for long tracks from B decays
 - ~ 4% ghosts for $p_T > 0.5$ GeV/c
- $K_s \rightarrow \pi^+\pi^-$ reconstruction 75% efficient for decay in the VELO, lower otherwise
- Average b-decay track resolutions:
 - Impact parameter: ~ $30 \ \mu m$
 - Momentum: ~ 0.36%

Typical B resolutions:

- Proper time: ~ 40 fs (essential for B_s physics)
- Mass: 8–18 MeV/c²

	Mass resolution
$B_s \rightarrow \mu\mu$	18 MeV/c ²
$B_s \rightarrow D_s \pi$	14 MeV/c^2
$B_s \rightarrow J/\psi \phi$	16 MeV/c ²
$B_s \rightarrow J/\psi \phi$	8 MeV/c ² *

* with J/ψ mass constraint

Kich Particle ID performance with RICH

- Average performance: - kaon ID eff. = 88%- π mis-ID = 3%
- Good K/π separation in 2–100 GeV/c range
 - Low momentum
 - Tagging kaons
 - High momentum
 - clean separation of the different B_{d,s}→hh modes
 - will be best performance ever achieved at a hadron collider

CERN-LHCb-2007-059

LHCb ГНСр

Flavour tagging

CERN-LHCb-2007-058 CERN-LHCb-2006-058 CERN-LHCb-2007-127 CERN-LHCb-2007-036 CERN-LHCb-2007-029

Q_{vtx}

B_S

Yield

D

K⁺

B-

ŔΫ

 K^-

- Several tags, combined with neural network:
 - Opposite side (OS): electron, muon, kaon, vertex charge
 - Same side (SS): pion (B^0) or kaon (B_s)
 - Kaon tags most powerful

□ Full MC performance on triggered and selected events:

 $- \begin{bmatrix} \varepsilon D^2 = 4 - 5\% \text{ for } B^0 \\ \varepsilon D^2 = 7 - 9\% \text{ for } B_s \end{bmatrix} de$

depending on channel

EuroFlavour 07, Orsay

Trigger performance & rates

□ Algorithms and performance:

- Hardware level (L0), max. 1 MHz output rate:
 - algorithms mature
- Software level (HLT = High Level Trigger):
 - prototype available within time budget for a limited set of channels
- L0*HLT efficiencies:
 - typically 30%-80% for offline-selected signal events, depending on channel

□ HLT output rates:

- Indicative rates
 - split between streams still to be determined
- Large inclusive streams to control calib. & syst.
 - trigger, tracking, PID, tagging

Output rate	Event type	Physics
200 Hz	Exclusive B candidates	B (core program)
600 Hz	High mass di-muons	J/ψ , b $\rightarrow J/\psi X$ (unbiased)
300 Hz	D* candidates	Charm
900 Hz	Inclusive b (e.g. b \rightarrow µ)	B (data mining)

Integrated luminosity scenario

[personal and unofficial guess]

2008:

- LHC startup with full detector installed
- Establish running procedures, time and space alignment of the detectors
- Calibration of momentum, energy and particle ID
- Integrated luminosity for physics ~ 0.1 fb^{-1}

2009:

- Complete commissioning of trigger
- Start of significant physics data taking, assume $\sim 0.5 \text{ fb}^{-1}$

□ 2010–:

- Stable running, assume ~ 2 fb⁻¹/year
- If found to be advantageous for physics, push average luminosity from 2×10^{32} to 5×10^{32} cm⁻²s⁻¹
- Availability of physics results:
 - with 0.5 fb⁻¹ in ~ 2010
 - with 2 fb⁻¹ in ~2011
 - with 10 fb⁻¹ in ~2015

followed by 100 fb⁻¹ LHCb upgrade ?

LHCD

 $B_s \rightarrow \mu^+ \mu^-$

□ Very rare loop decay, sensitive to new physics: $-BR = (3.4 \pm 0.4) \times 10^{-9}$ in SM,

can be strongly enhanced in SUSY:

- e.g. current measurement of $g_{\mu}-2$ suggests BR(B_s $\rightarrow \mu^{+}\mu^{-})$ up to 100×10^{-9} within the CMSSM for high tan β \rightarrow see next slide
- Current 90% CL limit:
 - CDF note 8956 (2 fb⁻¹): $47 \times 10^{-9} = 14^{*}BR_{SM}$
 - D0 note 5344-CONF (2 fb⁻¹): $75 \times 10^{-9} = 20 \text{*BR}_{SM}$
- Easy for LHCb to trigger and select
- □ Main issue is background rejection
 - with limited MC statistics,
 - indication that largest background is $b \rightarrow \mu$, $b \rightarrow \mu$
 - specific background dominated by $B_c \rightarrow J/\psi(\mu\mu)\mu\nu$

 $B_s \rightarrow \mu^+ \mu^-$

Anomalous magnetic moment of the muon

- Muon g-2 collab. measurement deviates by 2.7 σ from SM: $\Delta a_{\mu} = (25.2 \pm 9.2) \times 10^{-10}$

□ Implications on $B_s \rightarrow \mu^+\mu^-$ within constrained MSSM:

 $\rightarrow 250 < m_{1/2}$ (gaugino mass) < 650 GeV \Rightarrow BR(B_s $\rightarrow \mu^+\mu^-) = 5 \times 10^{-9} - 10^{-7}$

EuroFlavour 07, Orsay

 $B_s \rightarrow \mu^+ \mu^-$

 $\sin(2\beta)$ with $B^0 \rightarrow J/\psi K_s$

CERN-LHCb-2007-045

Expected to be one of the first CP measurements:

- Demonstrate (already with ≤ 0.5 fb⁻¹) that we can keep under control the main ingredients of a CP analysis
 - in particular tagging performance extraction from control channel $B^0 \rightarrow J/\psi K^{*0}$
- Sensitivity:
 - 236k signal events/2 fb⁻¹ with B/S = $0.6(bb)+7.7(J/\psi)$
 - $\Rightarrow \sigma_{\text{stat}}(\sin(2\beta)) = 0.020$
 - to be compared with 0.019 from final BaBar+Belle $B^0 \rightarrow J/\psi K_s$ statistics

With 10 fb⁻¹:

- Should be able to reach $\sigma(\sin(2\beta)) \sim 0.010$
- Can also push further the search for direct CP violating term $\propto \cos(\Delta m_d t)$

Lнср

□ Important control channel for all time-dependent B_s analyses

- Flavour-specific decay:
 - \rightarrow can use to measure dilution of B_s oscillations
 - \rightarrow once mistag known (from other channels) can **isolate resolution effect**

 $B_s \rightarrow D_s^- \pi^+$ sample and Δm_s

- Expect 140k events in 2 fb⁻¹ with $B_{bb}/S < 0.05$ at 90% CL and average $\sigma_t \sim 40$ fs

CERN-LHCb-2007-017

- Measurement of Δm_s (with 0.5 fb⁻¹)
 - $\sigma_{\rm stat}(\Delta m_{\rm s}) = 0.012 \ {\rm ps}^{-1}$
 - will be dominated by systematics on proper time scale
- Normalization channel for all
 - B_s branching fraction measurements

• ~10% absolute measurement of BR($B_s \rightarrow D_s^- \pi^+$) expected from Belle's current data

LHCb

New physics in B_s mixing

□ B_s mixing phase $\phi_s = -2\beta_s$ is the strange counterpart of $\phi_d = 2\beta$:

 $-\phi_s$ very small in SM, and very precisely predicted:

$$\phi_{s}^{SM} = -\arg(V_{ts}^{2}) = -2\lambda^{2}\eta$$

= -0.0368 ± 0.0018 [CKMfitter, summer 2007]

$\Box \phi_s$ very sensitive to New Physics contributions:

- Some models can predict large ϕ_s , while satisfying all existing constraints:
 - e.g. Little Higgs model with T-parity provides significant enhancement of both ϕ_s and B_s semi-leptonic asymmetry A_{SL} while Δm_s measurement is found to be smaller than SM value

- No evidence of CP violation found

 $-\phi_{s} = -0.70 + 0.47 - 0.39$ [D0, PRD 76 (2007) 057101]

$\frac{HCb}{CC} B_s \text{ mixing phase } \phi_s \text{ with } b \rightarrow c\overline{c}s$

□ Golden b→ccs mode is $B_s \rightarrow J/\psi \phi$:

- Single weak phase in decay amplitude
- Angular analysis needed to separate CP-even and CP-odd contributions
- Expect ~130k B_s \rightarrow J/ $\psi(\mu\mu)\phi$ events/2fb⁻¹ with B_{bb}/S= 0.12

□ Sensitivity after 10 fb⁻¹:

 $\sigma_{stat}(\phi_s) = 0.009$

- Includes also pure CP modes such as $B_s \rightarrow J/\psi \eta^{(')}$, $\eta_c \phi$, $D_s D_s$, but dominated by $B_s \rightarrow J/\psi \phi$
- Systematics (tagging, resolution) need to be tackled
- > 3σ evidence of non-zero φ_s, even if only SM

$$A_{CP}(t) = \frac{-\eta_f \sin \phi_s \sin(\Delta m_s t)}{\cosh(\Delta \Gamma_s t/2) - \eta_f \cos \phi_s \sinh(\Delta \Gamma_s t/2)}$$

Statistical sensitivities on ϕ_s for 2 fb⁻¹

Constraints on New Physics in B_s mixing from ϕ_s measurement

□ New Physics in B_s mixing amplitude M_{12} parametrized with h_s and σ_s :

 $M_{12} = (1 + h_s exp(2i\sigma_s)) M_{12}^{SM}$

Can exclude already significant region of allowed phase space with the very first data

$\frac{krcb}{kcp}$ b \rightarrow ss hadronic penguin decays

Time-dependent CP analysis of pure penguin decays to CP eigenstates

□ "Golden mode" is $B_s \rightarrow \phi \phi$

- CP violation < 1% in SM
 - $(V_{ts} \text{ enters both in mixing and decay amplitudes})$
- significant CP-violating phase difference $\Delta \phi^{NP}$ can only be due to New Physics
- Angular analysis required
- − 3.1k signal events per 2 fb⁻¹ (BR=1.4×10⁻⁵),
 B/S < 0.8 at 90%CL

- After 10 fb⁻¹: $\sigma_{\text{stat}}(\Delta \phi^{\text{NP}}) = 0.05$

 $\Box B^0 \rightarrow \phi K_S:$

- -920 signal events per 2 fb⁻¹, B/S < 1.1 at 90% CL
- After 10 fb⁻¹: $\sigma_{stat}(sin(2\beta_{eff})) = 0.10$
 - to be compared with 0.12 from final BaBar+Belle analysis

 \overline{B}^{0}_{c}

 \overline{B}_{c}^{0}

CERN-LHCb-2007-130

22

LHCb ГНСр

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Suppressed loop decay

- Forward-backward asymmetry $A_{FB}(s)$ in the $\mu\mu$ rest-frame
 - sensitive probe of New Physics
 - zero of A_{FB} gives access to ratio of Wilson coefficients C_7^{eff}/C_9^{eff}

Sensitivity

(ignoring non-resonant $K\pi\mu\mu$ evts for the time being)

- 7.2k signal events/2fb⁻¹, $B_{bb}/S = 0.2 \pm 0.1$
 - NB: expect 0.3k/1ab⁻¹ at B factories

- With 10 fb⁻¹, the zero of $A_{FB}(s)$ can be measured to $\pm 0.27 \text{ GeV}^2$ (~7% of SM value)

EuroFlavour 07, Orsay

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Stat. precisions in the region

 $s = (m_{uu})^2 \in [1, 6] (GeV/c^2)^2$

where theory calculations

are most reliable

- Other observables based on transversity amplitudes $(A_1, A_{//}, A_0)$ extracted from a 3-angle analysis:
 - $A_{\perp}, A_{\parallel}, A_{0}$) extracted from a 5-angle anal
 - small theoretical errors in the SM,
 - sensitive to right-handed FCNC

EuroFlavour 07, Orsay

$$\begin{array}{c} \mathbf{J} \ \mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \mathbf{I}^{+} \mathbf{I}^{-} \ \text{decays} \\ -\mu\mu/\text{ee ratio in SM:} \end{array} \\ \mathbf{R}_{\mathrm{K}} = \int_{4m_{\mu}^{2}}^{q_{\mathrm{max}}^{2}} \mathrm{ds} \frac{\mathrm{d}\Gamma(\mathbf{B} \rightarrow \mathrm{K}\mu\mu)}{\mathrm{ds}} / \int_{4m_{\mu}^{2}}^{q_{\mathrm{max}}^{2}} \mathrm{ds} \frac{\mathrm{d}\Gamma(\mathbf{B} \rightarrow \mathrm{K}ee)}{\mathrm{ds}} = 1.000 \pm 0.001 \\ \text{Hiller \& Krüger, hep-ph/0310219} \end{array}$$

- New Physics can have O(10%) effect - After 10 fb⁻¹: $\sigma_{stat}(R_K) = 0.043$

□ Radiative decays:

- $K^*\gamma$: A_{CP} < 1% in SM, up to 40% in SUSY; can measure at <% level
- $-\phi$ γ: No mixing-induced CP asymmetry in SM, up to 50% in SUSY

Decay	2 fb ⁻¹ yield	B _{bb} /S
$B^+ \rightarrow K^+ \mu \mu$	3.8k	1.7
$B^+ \rightarrow K^+ ee$	1.9k	15
$B_d \rightarrow K^* \gamma$	68k	0.60
$B_s \rightarrow \phi \gamma$	11.5k	< 0.55
$Λ_b \rightarrow \Lambda(1115)$ γ	0.75k	< 42
$\Lambda_b \rightarrow \Lambda(1670)$ γ	2.5k	< 18

 $-\Lambda\gamma$: Right-handed component of photon polarization O(10%) in SM; can get 3σ evidence down to 21% (10 fb⁻¹)

I I antonia I EV doceva		LHCb 90%CL limit	Current 90%CL limit
Leptonic LI'v decays	$BR(B^0 \rightarrow e\mu)$	1.6×10 ⁻⁸ (2 fb ⁻¹)	1.7×10 ⁻⁷ (Belle 03)
	$BR(B_s \rightarrow e\mu)$	6.5×10 ⁻⁸ (2 fb ⁻¹)	6.1×10 ⁻⁶ (CDF 98)

LHCb ГНСр

γ from $B_s \rightarrow D_s K$

CERN-LHCb-2007-017 CERN-LHCb-2007-041

- □ Two tree decays (b→c and b→u), which interfere via B_s mixing:
 - can determine $\gamma + \varphi_s$, hence γ in a very clean way
 - similar to $2\beta + \gamma$ extraction with $B^0 \rightarrow D^*\pi$, but with the advantage that the two decay amplitudes are similar $(\sim\lambda^3)$ and that their ratio can be extracted from data

 B_s → D_s⁻π⁺ background (with ~15 × larger BR) suppressed using PID:
 → residual contamination only (15±5)%

All specific backgrounds B/S = [0.08,3] at 90% CL

 γ from $B_s \rightarrow D_s K$

CERN-LHCb-2007-041

□ Fit 4 tagged and 2 untagged time-dependent rates:

- Extract $\gamma + \phi_s$, strong phase difference Δ , amplitude ratio $|\lambda|$
 - $B_s \rightarrow D_s \pi$ also used in the fit to constrain other parameters (mistag rate, $\Delta m_s, \Delta \Gamma_s \dots$)

With 10 fb^{-1} :

	Tagged & untagged	Tagged only
φ _s + γ	± 4.6 °	± 5.7°
Δ	± 4.6°	± 5.4°
lλl	± 0.027	± 0.029

 $(\gamma = 60^{\circ}, \Delta = 0, |\lambda| = 0.37, \Delta m_s = 17.5 \text{ ps}^{-1}, \Delta \Gamma_s / \Gamma_s = 0.1)$

EuroFlavour 07, Orsay

proper time (ps)

proper time (ps)

 γ from $B^{\pm} \rightarrow DK^{\pm} (ADS)$

Weak phase difference = $-\gamma$ Strong phase difference = δ Magnitude ratio = $r_B \sim 0.08$

□ "ADS+GLW" strategy:

- Measure the relative rates of $B^- \rightarrow DK^-$ and $B^+ \rightarrow DK^+$ decays with neutral D's observed in final states such as: $K^-\pi^+$ and $K^+\pi^-$, $K^-\pi^+\pi^-\pi^+$ and $K^+\pi^-\pi^+\pi^-$, K^+K^-
- These depend on:
 - Relative magnitude, weak phase and strong phase between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D^0} K^-$
 - Relative magnitudes (known) and strong phases between $D^0 \rightarrow K^-\pi^+$ and $\overline{D^0} \rightarrow K^-\pi^+$, and between $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$ and $\overline{D^0} \rightarrow K^-\pi^+\pi^-\pi^+$

- Can solve for all unknowns,	Decay	2 fb ⁻¹ yield	B _{bb} /S
$\frac{1}{2} = 5 \cdot \frac{129}{12} \text{ with } 2 \text{ fb} = 1$	$B^{-,+} \rightarrow D(K\pi) K^{-,+}$ favoured	28k, 28k	0.6
$O(\gamma) = 3-13$ with 2 m -	$B^{-,+} \rightarrow D(K\pi\pi\pi) K^{-,+}$ favoured	28k, 28k	0.6
- depending on D strong phases	$B^{-,+} \rightarrow D(K\pi) K^{-,+}$ suppr.	393, 8	2.0, 98
- Use of $B^{\pm} \rightarrow D^*K^{\pm}$ under study	$B^{-,+} \rightarrow D(K\pi\pi\pi) K^{-,+}$ suppr.	516, 99	1.5, 8
	$B^{-,+} \rightarrow D(hh) K^{-,+}$	4.3k, 3.5k	1.7, 2.1

Lнср

γ from $B^{\pm} \rightarrow DK^{\pm} (GGSZ)$

□ Giri-Grossman-Soffer-Zupan method with 3-body $D^0 \rightarrow K_S \pi^+ \pi^-$ decay

- Large strong phases between the intermediate resonances allow the extraction of r_B , γ and δ by studying the D-Dalitz plots from B⁺ and B⁻ decays

$$A(B^{\pm} \rightarrow DK^{\pm}) = f(m_{\pm}^{2}, m_{\mp}^{2}) + r_{B}e^{i(\pm\gamma+\delta)}f(m_{\mp}^{2}, m_{\pm}^{2})$$
$$m_{\pm}^{2} = m(K_{S}^{0}\pi^{\pm})$$
$$f(m_{\pm}^{2}, m_{\mp}^{2}) = \text{Dalitz amplitudes}$$

- Clean, but need to assume $D^0 \rightarrow K_S \pi^+ \pi^-$ decay model:

• Current isobar model used at B factories $\Rightarrow \sigma_{syst}(\gamma) = 10^{\circ}$

At LHCb:

- 5k signal events in 2 fb⁻¹, B/S = 0.24 (D⁰ π), B_{bb}/S < 0.7

 $\sigma_{\text{stat}}(\gamma) = 7 - 12^{\circ} \text{ with } 2 \text{ fb}^{-1}$

depending on bkg assumptions

• With more statistics plan to do a model-independent analysis and control model systematics using CLEO-c data at $\psi(3770)$

$$\sigma_{stat}(\gamma) = 4-6^{\circ} (10 \text{ fb}^{-1})$$

 $\sigma_{syst}(\gamma) = 3-4^{\circ}$

$\frac{\mu cb}{\mu c} \gamma \text{ from } B^{\pm} \rightarrow D(4-Dalitz) K^{\pm} CERN-LHCb-2007-004}$

 $\sigma(\gamma) = 18^{\circ} \text{ with 2 fb}^{-1} \qquad 4\text{-body Dalitz analysis of } 1.7\text{k B}^{+} \rightarrow D^{0}(\text{K}^{+}\text{K}^{-}\pi^{+}\pi^{-})\text{K}^{+} \text{ signal events,} \\ \text{B/S} = 0.9\pm0.4 \text{ (for } \text{r}_{\text{B}} = 0.1)$

$$\gamma$$
 from $B^0 \rightarrow D^0 K^{*0}$

CERN-LHCb-2007-050

Treat with same ADS+GLW method as charged case:

- So far used only D decays to $K^-\pi^+$, $K^+\pi^-$, K^+K^- and $\pi^+\pi^-$ final states

 $\sigma(\gamma) = 9^{\circ}$ with 2 fb⁻¹

Decay mode (+cc)2 fb⁻¹ yield B_{bb}/S $B^0 \rightarrow (K^+\pi^-)_D K^{*0}$ 34000.4-2.0 $B^0 \rightarrow (K^-\pi^+)_D K^{*0}$ 5402.2-13 $B^0 \rightarrow (K^+K^-)_D K^{*0}$ 470<4.1</td> $B^0 \rightarrow (\pi^-\pi^+)_D K^{*0}$ 130<14</td>

Envisage also GGSZ analysis

EuroFlavour 07, Orsay

Lнср

Impact of LHCb on CKM angle γ

 \Box Precise measurement of γ missing in UT evaluation so far

Combined LHCb sensitivity to γ with tree decays only (educated guess): - $\sigma(\gamma) \sim 5^\circ$ with 2 fb⁻¹, ~2.5° with 10 fb⁻¹

 γ from B⁰ $\rightarrow \pi^+\pi^-$ and B_s $\rightarrow K^+K^-$ CERN-LHCb-2007-059

☐ Measure CP asymmetry in each mode:

$$A_{CP}(t) = \frac{A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)}{\cosh(\Delta \Gamma t/2) - A_{\Delta \Gamma} \sinh(\Delta \Gamma t/2)}$$

— With 2 fb⁻¹:

• 36k $B^0 \rightarrow \pi^+\pi^-$, $B_{bb}/S \sim 0.5$, $B_{hh}/S = 0.07$ 36k $B_s \rightarrow K^+K^-$, $B_{bb}/S < 0.06$, $B_{hh}/S = 0.07$

$\sigma(\mathcal{A}_{\pi\pi}^{dir})$	0.043	$\sigma(\mathcal{A}_{KK}^{dir})$	0.042
$\sigma(\mathcal{A}_{\pi\pi}^{mix})$	0.037	$\sigma(\mathcal{A}_{KK}^{mix})$	0.044

~ 2x better than current $B \rightarrow \pi\pi$ world average

- A_{dir} and A_{mix} depend on mixing phase, angle γ , and penguin/tree amplitude ratio d $e^{i\theta}$

Exploit U-spin symmetry (Fleischer): - If $d_{\pi\pi} = d_{KK}$ and $\theta_{\pi\pi} = \theta_{KK}$ assumed:

> • 4 measurements and 3 unknowns \rightarrow can solve for γ

> > (taking 2β and ϕ_s from other modes)

Lнсь гнср

- □ Foresee dedicated D* trigger with substantial bandwidth:
 - Huge sample of $D^0 \rightarrow h^+h^-$ decays
 - Tag D⁰ or anti-D⁰ flavor with pion from $D^{*\pm} \rightarrow D^0 \pi^{\pm}$
- Interesting (sensitive to NP) and promising searches/measurements:
 - D^0 mixing parameters from time-dependence

	$\sigma(x^{2}) \times 10^{3}$	$\sigma(y') \times 10^3$	$\sigma(y_{CP}) \times 10^3$
LHCb (10 fb ⁻¹)	0.064 (stat)	0.87 (stat)	0.5 (stat)
B fact. (2 ab^{-1})	0.15	3.0	3.0

- Direct CP violation in $D^0 \rightarrow K^+K^-$
 - $A_{CP} \le 10^{-3}$ in SM, up to 1% (~current limit) with New Physics
 - Expect $\sigma_{stat}(A_{CP}) \sim O(10^{-3})$ with 2 fb⁻¹

 $- D^0 {\twoheadrightarrow} \mu^+ \mu^-$

- BR $\leq 10^{-12}$ in SM, up to 10^{-6} (~current limit) with New Physics
- Expect to reach down to $\sim 5 \times 10^{-8}$ with 2 fb⁻¹

Tagged signal yields in 2 fb ⁻¹ (from b hadrons only)		
right-sign D ⁰ →K ⁻ π ⁺	12.4M	
wrong-sign D ⁰ →K ⁺ π [−]	46.5k	
$D^0 \rightarrow K^+ K^-$	1.6M	

Summary for now

- couple superb highly-sensitive b→s observables
 - B_s→μμ

LHCh

- B_s mixing phase
- several other exciting windows of opportunity:
 - Exclusive $b \rightarrow sss$ Penguin decays (limited, even with 10 fb⁻¹)
 - Exclusive $b \rightarrow sll$ and $b \rightarrow s\gamma$
 - $B \rightarrow$ hh Penguins
 - High statistics charm physics

 \Box LHCb can improve significantly on γ from tree decays:

- use together with other UT observables to test CKM even more

But ... this is only MC !

Looking forward to start working with real data next year, with complete LHCb detector and successful machine startup

Next step, beyond 10 fb⁻¹?

□ New physics:

- expected to be discovered by ATLAS/CMS and/or LHCb in first phase of LHC
- will contribute to flavour observables, even in MFV scenario
- ⇒ Better flavour physics sensitivity will be required to probe or further elucidate New Physics flavour structure

LHCb:

- several measurements expected to remain statistically limited after 10 fb⁻¹:

- CPV in B_s mixing, in particular in b \rightarrow sss penguins
 - aim for 0.01 (0.002) precision on $B_s \rightarrow \phi \phi (B_s \rightarrow J \psi / \phi)$ CP asymmetry
- γ with theoretically clean methods, e.g. $B_s \rightarrow D_s K$, $B \rightarrow D(K_s \pi \pi)K$, $B \rightarrow D(hh)K$
 - aim for < 1° precision on angle γ [+ count on improvements in LQCD]
- Chiral structure of $b \rightarrow s\gamma$ ($b \rightarrow sl^+l^-$) using polarization of real (virtual) photon
 - more detailed and precise analysis of exclusive modes, e.g. $A_T^{(2)}$ in $B^0 \rightarrow K^* \mu \mu$
- Hunt for more rare and difficult modes:
 - B⁰ → µµ, exclusive b →dγ, ...

LHCb upgrade baseline

- Need 40 MHz readout of all detector sub-systems + full trigger on CPU farm to get improved hadron trigger (×2) with yield proportional to luminosity
- Event building & CPU power OK, but implies replacement of all FE electronics !
- Radiation damage
 - Need to replace VELO, inner parts of Si tracker, inner part of calorimeter, ...
- Detector occupancy (increased due to pileup ~4 int./crossing + spillover)
 - Need replacement/solution for inner part of Outer Tracker (straws)
 - Need new reconstruction algorithms in high occupancy environment

LHCb upgrade timescale

LHCb has set up an upgrade WG in early 2007:

- Examine physics case and required detector R&D
 - 1st LHCb upgrade workshop in Jan 2007
- Ramp up R&D, feasibility studies, ...

Possible timescale:

- Decision after having seen some significant results from first phase of LHC
- Start data-taking with upgraded detector ~4 years later
- Accumulate 100 fb⁻¹ by \sim 2020

□ Note:

- LHCb upgrade independent of LHC machine luminosity upgrade (SLHC)
 - SLHC not needed for LHCb upgrade & LHCb upgrade compatible with SLHC