Light pseudoscalar mesons in 2+1 flavor QCD

Laurent Lellouch

with S. Dürr, Z. Fodor, C. Hoelbling, S. Katz, S. Krieg, T. Kurth, T. Lippert, K. Szabo, G. Vulvert

arXiv:0710.4769 [hep-lat], arXiv:0710.4866 [hep-lat]

CPT, Marseille

All results are preliminary

EuroFlavor '07 Orsay, November 14-16, 2007

<ロ > < 同 > < 三 > < 三 > < 三 > <

3

Goal: calculate hadronic observables on the lattice, relevant for fundamental quark property determination with controlled extrapolations to the physical limit of QCD:

 $M_{\pi} \rightarrow 135 \,\mathrm{MeV}, \qquad a \rightarrow 0, \qquad L \rightarrow \infty$

Pseudo-Goldstone boson (PGB) masses and decay constants give access to:

- Fundamental parameters: m_{ud} and m_s
- Flavor mixing parameters: $\pi, K \to \mu \bar{\nu}$ allows precise determination of $|V_{us}/V_{ud}|$ given a precise calculation of F_K/F_{π}

 \Rightarrow important check of $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ and universality

- Properties of QCD vacuum: $\langle \bar{q}q \rangle$ and *F*
- Higher order couplings of chiral Lagrangian: $(2L_6 L_4)$, $(2L_8 L_5)$, L_4 , L_5 ...

▲□▶▲□▶▲≡▶▲≡▶ = ∽) Q (~)

In both cases: $N_f = 2 + 1$ tree-level, O(a)-improved Wilson seas (break $SU(3)_A$)

- 1. "Unitary" simulations: valence quarks are discretized in the same way as the sea quarks
- 2. "Mixed-action" simulations: valence quarks are chirally symmetric overlap (Ginsparg-Wilson) fermions

Why use a mixed action approach?

- + Recent algorithmic (multiple time-scale integration, Hasenbusch acceleration, RHMC, DDHMC . . .) (Sexton & Weingarten '92, Hasenbusch '01, Clark et al '06, Lüscher '05, Urbach et al '06, . . .) and hardware advances
 - $\Rightarrow N_f = 2 + 1$ QCD with e.g. $M_{\pi}^{\text{lat}} \sim 190$ MeV, $a \sim 0.09$ fm and $L \sim 4.2$ fm becoming accessible to Wilson fermions

 \Rightarrow near-continuum chiral *p*-regime w/out conceptual pbs of staggered fermions

- + Overlap inversions are numerically feasible on these backgrounds
 - \Rightarrow full χ S (in valence sector) w/out cost of dynamical overlap fermions
 - \Rightarrow simplified renormalization
 - \Rightarrow full O(a) improvement w/ only NP O(a)-improved Wilson sea action
- + To extrapolate to physical and chiral limits in a model independent-way \rightarrow finite-volume (FV) mixed action (MA) PQ χ PT (Sharpe '90 '92, Bernard & Golterman '92 '94, Sharpe & Shoresh '00 '01, Sharpe & Singleton '98, Aoki '03, Bär et al '03 '04, Sharpe '06, . . .)
- Discretization induced unitarity violations, but should be able to describe low energy manifestations with MA PQ χ PT (Golterman et al '05)

Finite-volume mixed action $PQ\chi PT$

- An effective theory in finite volume for the PGBs of χ SB which includes discretization errors (Sharpe & Singleton '98). Expansion in:
 - $(M_{PGB}/4\pi F_{\pi})^2 \sim 0.03 \div 0.2$
 - $(p/4\pi F_{\pi})^2 \sim (1/2LF_{\pi})^2 \sim 0.06$
 - $\alpha_s a \Lambda_{QCD} \sim 0.06 \leftarrow$ we use tree-level O(a)-improved Wilson seas
- Take here $(M_{PGB}/4\pi F_{\pi})^2 \sim (p/4\pi F_{\pi})^2 \sim \alpha_s a \Lambda_{QCD}$

 \rightarrow *p*-regime and above phase transitions (Aoki or 1st order)

- Allow for $O(a^2)$ unitarity violations
- Allow sea and valence quarks to have different masses (Sharpe '90 '92, Bernard & Golterman '92 '94, Sharpe & Shoresh '00 '01)
 - \Rightarrow in continuum (or w/ GW quarks), can consider

 $G_c \equiv [SU(N_f + N_v | N_v)_L \otimes SU(N_f + N_v | N_v)_R] \otimes U(1)_{L+R}$

 $\longrightarrow SU(N_f + N_v | N_v)_{L+R} \otimes U(1)_{L+R}$

Inclusion of discretization errors at NLO

(Sharpe & Singleton '98, Aoki '03, Bär et al '03 '04, Sharpe '06, Chen et al '07)

Executive summary:

- construct Symanzik effective action of Wilson fermions at O(a²) (Symanzik '75 '83, Sheikholeslami & Wohlert '85)
- for discretization operators which break G_c
 - \rightarrow additional spurions $\sim a, a^2$
- construct χ -Lagrangian using spurions in all possible ways consistent with G_c and power counting
- operators which preserve G_c contribute to LO and NLO continuum LECs at NNLO and NNNLO and O(4)-breaking operators at NNNLO

Upshot of analysis:

• <u>W-on-W</u>:

 \rightarrow 8 + 1 coupling constants of $O(ap^2, a^2)$

• <u>GW-on-W</u>:

 \rightarrow 1 extra LEC of $O(a^2)$

(口)

Unitarity violations: the *a*⁰ propagator

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Assume light sea (ℓ) and valence (\mathbf{v}) are tuned such that

$$M_{vv} = M_{\ell\ell} \stackrel{\cdot}{\equiv} M_{\pi}$$

Then, MA PQ χ PT at LO gives ($m_1 = m_2 \stackrel{\cdot}{\equiv} m_v$)

$$egin{aligned} & C_{a_0}(t) & \equiv & a^3 \sum_{ec \chi} \langle ar q_2 q_1(ec \chi,t) ar q_1 q_2(0)
angle \ & t o + \infty & rac{B^2}{J^3} \left\{ C_{Kar K}(t) + rac{2}{3} C_{\pi\eta}(t) - 2 rac{a^2 \Delta}{M_\pi^2} \left(M_\pi \ t + 1
ight) C_{\pi\pi}(t)
ight\} \end{aligned}$$

 \Rightarrow in a_0 channel $O(a^2)$ unitarity violations are LO, only vanish in continuum limit and are exponentially and polynomially enhanced in *t*

PQ result also has $m_{val} - m_{sea}$ unitarity violations

Charged PGB masses at NLO in finite volume Ω

$$(M_{12}^2)_{\Omega}^{\text{NLO}} = (m_1 + m_2) B \Big\{ 1 + \frac{1}{(4\pi F)^2} \Big[\text{PQ-logs}(\mu, M_{11}, M_{22}, M_{\ell\ell}, M_{ss}) \\ + (2\alpha_6 - \alpha_4)(\mu)(2M_{\ell\ell}^2 + M_{ss}^2) + (2\alpha_8 - \alpha_5)(\mu) M_{12}^2 \\ + a\beta_M + a^2\Delta \times \text{UV-logs}(\mu, M_{11}, M_{22}) + a^2\gamma_M(\mu) + \text{FV} \Big] \Big\}$$

with $\alpha_i(\mu) \equiv 8(4\pi)^2 L_i(\mu)$

Continuum or GW-on-GW

- m_1, m_2 : Lagrangian masses
- $\Delta = \gamma_M = \mathbf{0} = \beta_M$

W-on-W

- m_1 , m_2 : NLO, AWI masses
- $\beta_M = O(\Lambda_{\text{QCD}}^3)$ for W, $O(\alpha_s \Lambda_{\text{QCD}}^3)$ for TL O(a)–W, 0 for NP O(a)–W
- $\Delta = \gamma_M = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

... and their decay constants

<u>GW-on-W</u>

- *m*₁, *m*₂: GW Lagrangian masses
- $\beta_M = O(\Lambda_{QCD}^3)$ for W, $O(\alpha_s \Lambda_{QCD}^3)$ for TL O(a)–W, 0 for NP O(a)–W
- $\Delta, \gamma_M = O(\Lambda_{\rm QCD}^4)$

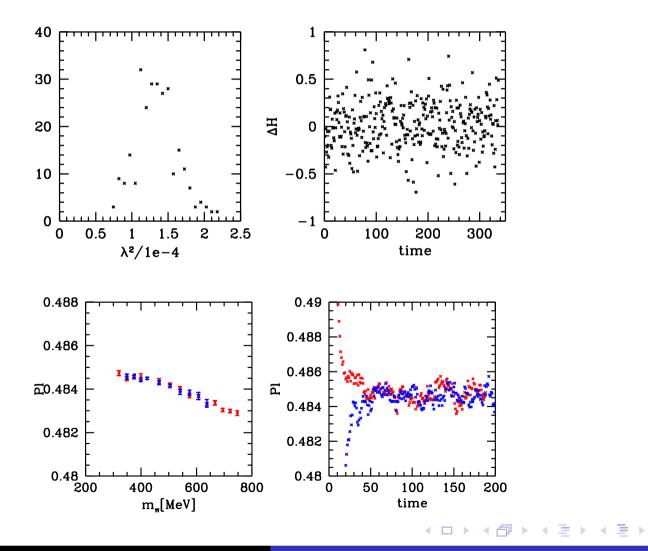
 \Rightarrow MA unitarity violations for $a \neq 0$

Charged PGB decay constants at NLO in Ω

$$(F_{12})_{\Omega}^{\text{NLO}} = F\left\{1 + \frac{1}{2(4\pi F)^2} \left[\text{PQ-logs}(\mu, M_{11}, M_{22}, M_{\ell\ell}, M_{ss}) + \alpha_4(\mu)(2M_{\ell\ell}^2 + M_{ss}^2) + \alpha_5(\mu)M_{12}^2\right]\right\}$$

 $+a\beta_F + a^2\Delta \times \text{UV-logs}(M_{11}, M_{22}) + a^2\gamma_F + \text{FV}\Big]\Big\}$

Same three cases here as for masses, but in GW-on-W case, MA unitarity violations $\propto a^2 \Delta$ are $SU(3)_{val}$ -breaking and do not depend on μ

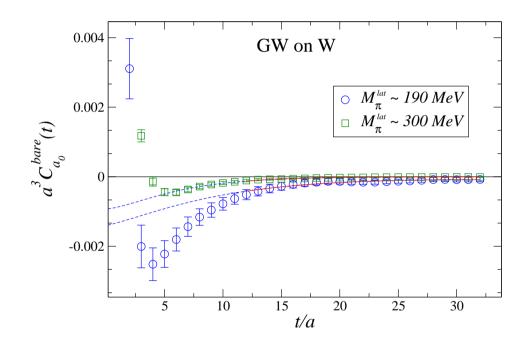

Simulation ingredients

- Gauge action: tree-level Symanzik improved
- Sea quarks: smeared-link, tree-level O(a)-improved Wilson fermions
- Valence quarks: same as sea ("unitary") or smeared-link overlap fermions ("mixed-action")
- Algorithm: Rational HMC with even-odd preconditioning, multiple time-scale Omelyan integration and Hasenbusch acceleration (Clark et al '06, Sexton & Weingarten '92, Omelyan et al '03, Hasenbusch '01, Urbach et al '06)
- Renormalization: non-perturbative à la Rome-Southampton
- Parameters:
 - $a \sim 0.09 \, \mathrm{fm}$
 - $M_{\pi}^{\text{lat}} \sim 190, 300, 410, 490, 570 \,\text{MeV}$ with $M_{\pi}^{\text{lat}} L \gtrsim 4$
 - Overlap roughly matched with Wilson
 - m_s^{lat} such that $M_K^{\text{lat}} \simeq 1.07 M_K$ and 2 valence m_s^{lat} at 190, 300 MeV
 - 34 configs at 190 MeV, 68 at 300 MeV and O(100) at other points

Calculations performed on BG/L's at FZ Jülich and on clusters at the University of Wuppertal and CPT Marseille

No metastabilities and stable algorithm

e.g. $a \sim 0.15 \,\text{fm}$, $\Omega/a^4 = 16^3 \times 32$ and $M_\pi^{\text{lat}} \simeq 300 \,\text{MeV}$ (difficult simulation according to $\sqrt{\langle (\lambda_{min} - \bar{\lambda}_{min})^2 \rangle} \simeq a/\sqrt{\Omega}$ criterion (Del Debbio et al '05))

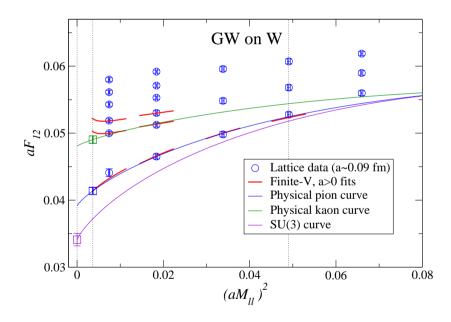


Laurent Lellouch EuroFlavor '07, Orsay, November 14-16, 2007

Э.

Unitarity violations in the a₀ propagator (preliminary)

1 parameter ($a^4 \Delta$) fit of scalar-isovector propagators to chiral expression for $C_{a_0}(t)$ at $M_{\pi}^{\text{lat}} \sim 190 \,\text{MeV}$ and $300 \,\text{MeV}$


- Find $a^4 \Delta = 0.015(6)$ and 0.024(10), i.e. compatible
- $\Rightarrow a\sqrt{\Delta} \sim 0.27 \,\text{GeV}$ and $0.35 \,\text{GeV}$, which compete with meson masses in chiral expressions

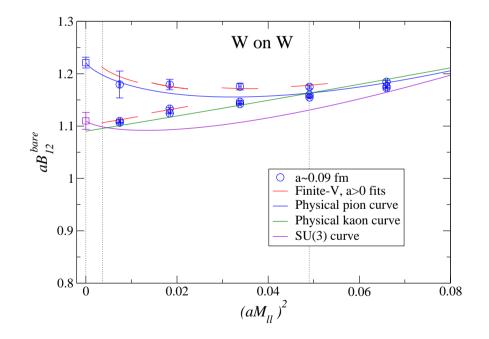
< □ > < 三 > < 三 >

Ð.

Preliminary fit to the PGB decay constants

- aF_{12} obtained using AWI \rightarrow no renormalization needed thanks to valence χS
- Fit 8 points with $M_{\pi}^{\text{lat}} \leq 500 \text{ MeV}$ and $M_{K}^{\text{lat}} \leq 590 \text{ MeV}$ to NLO expression with FV corrections and unitarity violations constrained with a_0 prior, $a^4 \Delta = 0.024(10)$

- Good χ^2/dof and find $a^4\Delta = 0.025(8)$
- Get a from self-consistent extrapolation to physical point

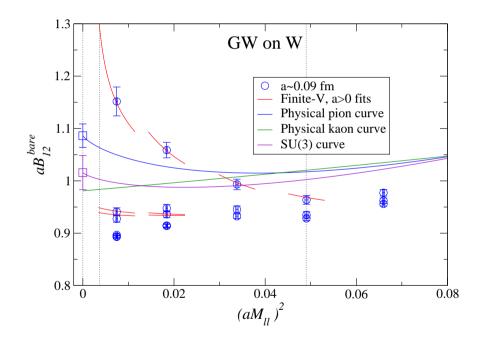

<ロ > < 同 > < 同 > < 三 > < 三 >

E.

Preliminary fit to the W-on-W PGB masses

- Unitary theory
- Fit 6 points with $M_{\pi}^{\text{lat}} \leq 500 \text{ MeV}$ and $M_{K}^{\text{lat}} \leq 590 \text{ MeV}$ are fitted to NLO expression with FV corrections for

$$aB_{12}^{\mathrm{bare}} \equiv (aM_{12})^2/(am_1 + am_2)_{\mathrm{AWI}}^{\mathrm{bare}}$$



王

Preliminary fit to the GW-on-W PGB masses

- Substantial deviation from behavior of W-on-W results and features not explainable with continuum PQ χ PT
- Fit 8 points with $M_{\pi}^{\text{lat}} \leq 500 \text{ MeV}$ and $M_{K}^{\text{lat}} \leq 590 \text{ MeV}$ to NLO expression with FV corrections and unitarity violations constrained with a_0 prior, $a^4 \Delta = 0.024(10)$

- Good χ^2/dof and find $a^4\Delta = 0.020(6)$
- Physical results consistent with W-on-W, but residual discretization errors in overall scale of condensates and quark masses may be significant

▶ < 토 ▶ < 토 ▶

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< 一型

Indicative PGB decay constant and mass fit results

Errors are statistical only ($M_{\pi} = 135 \text{ MeV}, M_{K} = 494 \text{ MeV}$)

y (~ / K	/	
qty	GW-on-W	W-on-W	MILC '07
а _{F_π} [fm]	0.088(1)		
$m{F}_{m{K}}/m{F}_{\pi}$	1.185(7)		$1.197(3)^{+6}_{-13}$
$m{F}_{\pi}/m{F}_{N_f=2}$	1.056(1)		$1.052(3)^{+6}_{-3}$
$F_{N_f=2}/F_{N_f=3}$	1.15(2)		$1.15(5)^{+13}_{-3}$
$\alpha_4(M_\eta)$	0.7(1)		$0.5(4)^{+4}_{-1}$
$\alpha_{5}(M_{\eta})$	2.9(1)		$2.8(3)^{+3}_{-1}$
$(2lpha_6-lpha_4)(M_\eta)$	0.20(4)	0.29(2)	$0.5(1)^{+3}_{-4}$
$(2lpha_8-lpha_5)(M_\eta)$	-0.62(13)	-0.71(3)	-0.1(1)(1)
$m_{ m s}/m_{ m ud}$	28.0(6)	28.3(1)	27.2(1)(3)(0)(0)
$\langlear{m{q}}m{q} angle_{N_f=2}/\langlear{m{q}}m{q} angle_{N_f=3}$	1.41(5)	1.45(5)	$1.52(17)^{+38}_{-15}$
quantities still requiring renormalization			
$m_{ud}^{\overline{\text{MS}}}(2 \text{GeV}) [\text{MeV}]$	3.8(1)(??)/Z _S	3.41(5)/ Z _S	3.2(0)(1)(2)(0)
$m_{\rm s}^{\rm \overline{MS}}(2{ m GeV})$ [MeV]	107(3)(??)/ <mark>Z</mark> S	96(1)/Z _S	88(0)(3)(4)(0)
$-\langlear{q}q angle_{N_f=3}^{\overline{ ext{MS}}}(2 ext{GeV})$ [MeV ³]	$Z_{S} \times [236(3)(??)]^{3}$	$Z_{S} \times [243(2)]^{3}$	$[242(9)^{+5}_{-17}(4)]^3$
$-\langle \bar{q}q \rangle_{N_f=2}^{\overline{\mathrm{MS}}}(2\mathrm{GeV})\mathrm{[MeV^3]}$	$Z_{S} \times [265(2)(??)]^{3}$	$Z_{s} \times [275(1)]^{3}$	$[278(1)^{+2}_{-3}(5)]^3$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんの

Conclusion

- PGB masses and decay constants provide access to many important quantities, e.g. light quark masses, CKM matrix elements, vacuum properties and chiral Lagrangian LECs
- We are actively pursuing lattice calculations with 2 + 1 dynamical flavors of tree-level improved Wilson sea quarks close to the physical QCD point
- Preliminary results for PGB masses and decay constants composed of either tree-level improved Wilson valence quarks ("unitary" simulations) or chirally symmetric overlap valence quarks ("mixed-action" simulations) were presented
- Fits of the valence and sea-quark mass-dependence of these results to NLO expressions in finite-volume MA PQ χ PT expressions were performed
- In the MA case, the unitarity violations predicted by MA PQ χ PT appear to provide a consistent description of the unphysical features in our results
- More detailed analyses and data other lattice spacings are needed to determine the extent to which we can reach the physical point in a model-independent way
- Weak matrix elements and non-perturbative renormalization are also being studied

<ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3