NA48/NA62 Status and Prospects of Semileptonic and Leptonic Kaon Decays

Rainer Wanke

Institut für Physik, Universität Mainz

EuroFlavour'07

Orsay, November 14, 2007

Overview

NA48/NA62 K_{13} and K_{12} :

1999 K_L running (NA48):

 $K_{L\,e3}$ branching ratio and form factors, $K_{L\,\mu3}$ form factors, $K_{L\,e3\gamma}$

2003 and **2004** K[±] running (NA48/2):

 K_{e3}^{\pm} , $K_{\mu3}^{\pm}$ branching ratios, K_{l3}^{\pm} form factors, $\Gamma(K_{e2})/\Gamma(K_{\mu2})$

2007 K⁺ running (NA62):

High statistics $\Gamma(K_{e2})/\Gamma(K_{\mu 2})$. Possibility for K_{l3}^{\pm} , K_{Ll3}

All NA48 Semileptonic and Leptonic Analyses:

Minimum-bias data for precision measurements

 \implies High trigger efficiencies, small systematics.

1997	ε'/ε run	K _L +K _S		
1998	ε'/ε run	K _L + K _S		
1999	ε'/ε run K _L +K _S	K _S Hi. Int		
2000	K _L only NO Spectrom	K _S High Intensity neter		
2001	ε'∕ε run K _L +K _S	K _S High Int.		
2002 K _s High Intensity				
2003 K [±] High Intensity				
2004	K [±] High Int	ensity		
•				

\mathbf{K}_{l3} Decays

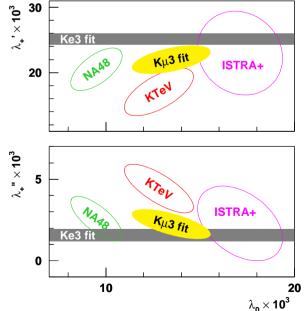
K_L Semileptonics — Branching Fractions

Minimum-bias K_L run 1999:

```
About two days of data-taking after \epsilon'/\epsilon run.
```

Branching fraction measurements:

 $\begin{array}{l} \mathbf{K_{e3}:} \\ \text{From 6.76 million } \mathbf{K_{e3}} \text{ decays:} \\ \mathbf{From 6.76 million } \mathbf{K_{e3}} \text{ decays:} \\ \mathbf{K_{L}} \to \pi e \nu) / \mathbf{Br}(\mathbf{K_{L}} \to all \ 2\text{-track}) = 0.4978 \pm 0.0035 \\ \end{array}$


K_L Semileptonics — Form Factors

K_L form factor slopes from NA48 1999 data:

Channel	$\lambda'_+ \times 10^3$	$\lambda_{+}^{\prime\prime} \times 10^3$	$\lambda_0 \times 10^3$
K_Le3 (PLB 604 (2004) 1)			
${f K_L μ 3}$ (PLB 647 (2007) 341)	16.8 ± 3.3	4.0 ± 1.4	9.1 ± 1.4

- K_Le3 data agree well with other experiments within errors (although no quadratic slope seen).
- $\mathbf{K_L}\mu\mathbf{3}$ result on λ_0 does not agree at all with other experiments. (In particular, when correlations are taken into account.)
- Indication for right-handed currents in $K_L \mu 3$, but again not confirmed by other experiments.

Flavianet fit

30

K^{\pm} Semileptonics — Branching

Fractions

Eight hours of 2003 data-taking with minimum bias trigger:

- About 89000 reconstructed \mathbf{K}_{e3}^{\pm} and 77000 $\mathbf{K}_{\mu3}^{\pm}$ decays.
 - \implies Quite enough for high-precision BR measurement.

 $\begin{array}{lll} R_{Ke3/K2\pi} &=& 0.2470 \pm 0.0009 \pm 0.0004 \\ R_{K\mu3/K2\pi} &=& 0.1637 \pm 0.0006 \pm 0.0003 \\ R_{Ke3/K\mu3} &=& 0.1663 \pm 0.0003 \pm 0.0001 \end{array}$

Result dominated by statistical error.

Determination of V_{us}: (using $Br(K_{2\pi} = 0.2092 \pm 0.0012)$)

 $|\mathbf{V_{us}}| \times \mathbf{f_+}(\mathbf{0}) = 0.2188 \pm 0.0012$

K^{\pm} Semileptonics — Form Factors

Expectations for 2004 minimum-bias data-taking:

- Much more data than in 2003.
- In particular: More than 4 million \mathbf{K}_{u3}^{\pm} decays.

(Compare with 2.3 million in $K_{L \mu 3}$.)

- → Very precise **form factor measurement** possible!
- K^{\pm} momentum known and π^0 reconstruction straight-forward:
- \implies Analysis expected to be much less tricky than in $K^0_{\mu 3}$ (but background from $K^{\pm}_{2\pi}$ has to be suppressed).

Preliminary results expected next year.

Also: similar amount of \mathbf{K}_{e3}^{\pm} decays.

$$\mathbf{K_{e2}}/\mathbf{K}_{\mu 2}$$

$$K_{e2}/K_{\mu 2}$$

Two preliminary NA48 measurements from 2003/2004 data:

NA48/2 (2003 data), presented in 2005:

- About 4000 signal events from normal running period.
- Systematics dominated by trigger efficiencies.

 $\Gamma({f K_{e2}})/\Gamma({f K_{\mu 2}}) = (2.416 \pm 0.043 \pm 0.024) imes 10^{-5}$

NA48/2 (2004 data), presented in 2007:

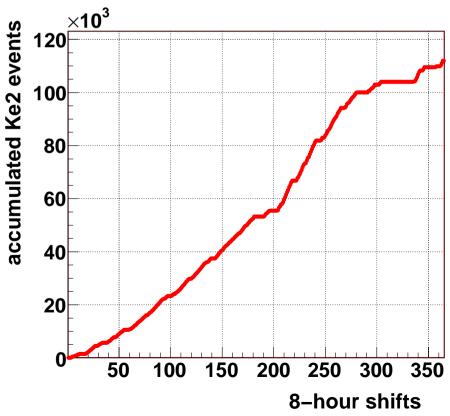
- About 4000 signal events from special minimum bias trigger.
- Small systematics, except background. (measured from data → large statistical uncertainty in syst. error.)
- Completely uncorrelated with 2003 measurement.

 $\Gamma({f K_{e2}})/\Gamma({f K_{\mu 2}}) = (2.455 \pm 0.045 \pm 0.041) imes 10^{-5}$

Both results in agreement with each other, PDG, KLOE and SM theory.

$K_{e2}/K_{\mu 2}$ — **NA62 2007**

Special run for $\mathbf{K_{e2}}/\mathbf{K_{\mu 2}}$ in 2007:

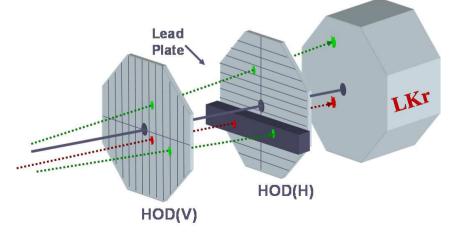

About 120 days of minimum-bias data-taking, mainly K^+ decays.

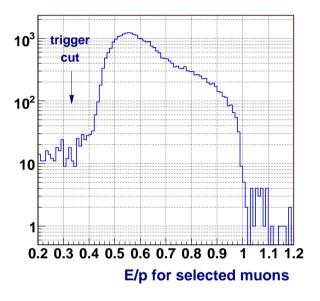
Old detector (w/o beam spectrometer and hadron calorimeter). New collaboration: NA62

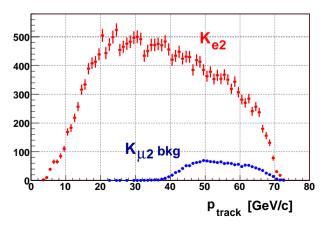
Accumulated statistics:

About 110 k K_{e2} events

(Number might still change up or down, due to e.g. loosening analysis cuts or excluding run periods.)

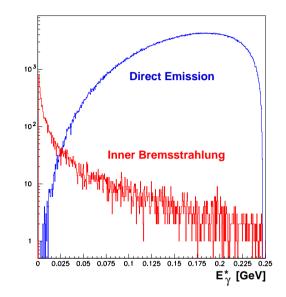

NA62 $K_{e2}/K_{\mu 2}$ — $K_{\mu 2}$ Suppression


Background from $\mathbf{K}_{\mu 2}$ **for large** $\mathbf{p}_{\text{track}}$:


- Catastrophic energy-loss of $\sim 5 \cdot 10^{-6}$ of muons in the LKr.
 - \implies mis-identified as electrons.
- Solution:

Lead bar in front of LKr, covering $\sim 18\%$ acceptance for 2/3 of the run

 \implies Only μ pass, E/p measured in LKr.


$K_{e2}/K_{\mu 2}$ — Other Backgrounds

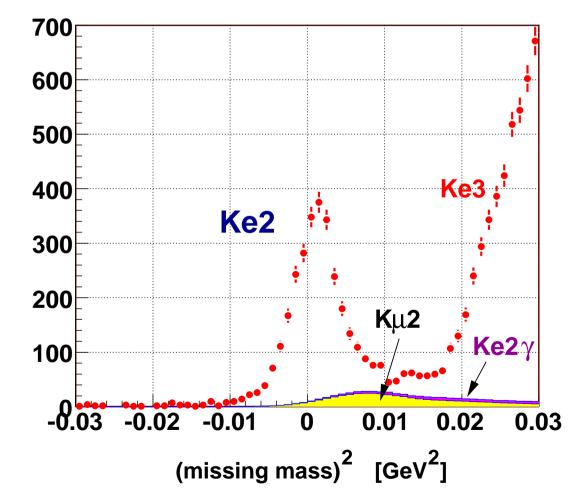
Background from $\mathbf{K}_{e2\gamma}$ events:

- Inner bremsstrahlung (IB): Part of the decay and well-known.
 - \implies Harmless.
- Direct emission (SD+):

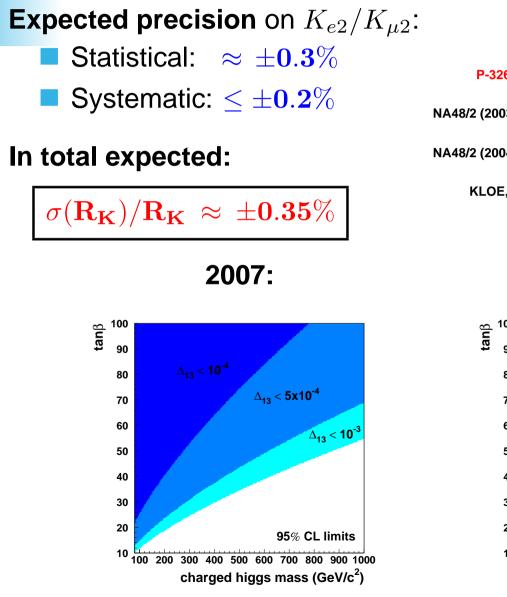
BR and form factor not well-known.

 \implies Measured on the same data set.

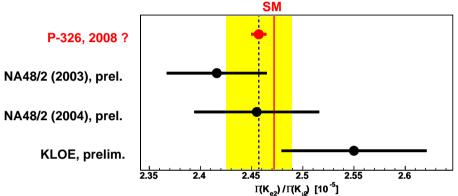
Background from prompt muons:

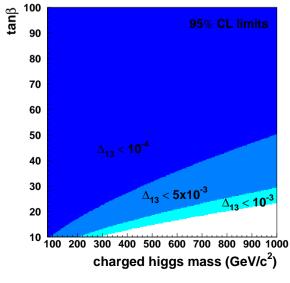

- Some muons (mainly μ⁻) from π decay nearby the target not swept away by beam-line magnets.
- Took special K^- -only runs to measure background to K_{e2}^+ .

All backgrounds are measured from data.


$K_{e2}/K_{\mu 2}$ — First look at the 2007 data

First look at 3% of the 2007 data:

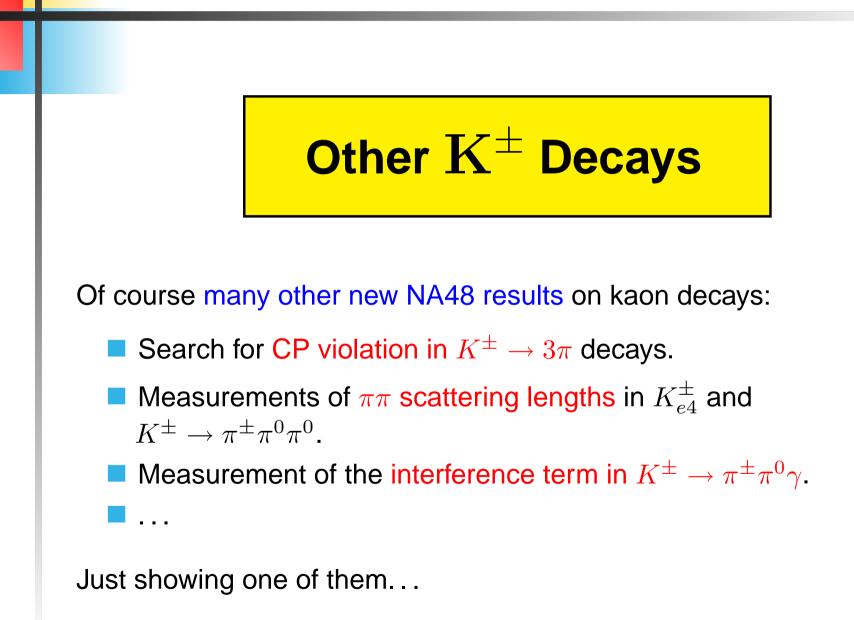

(Still final calibrations & background estimation missing!)


$K_{e2}/K_{\mu 2}$ — Expectations from 2007

Rainer Wanke

Next year?! same R_K central value

EuroFlavour'07, Orsay, November 14, 2007


\mathbf{K}_{13}^{\pm} from NA62 2007 data:

- 2007 trigger condition: Just 1 track + 15 GeV Lkr energy deposit ⇒ Ideal for K_{L3}^{\pm} (E_{π^0} usually > 15 GeV).
- $\blacksquare \sim 60\%$ of the run period LKr obstructed by lead bar, but remaining data still a lot!
- **K** $_{\mu 3}^+$: Statistics should be of $\mathcal{O}(20 \text{ million})!$

$\rm K_{L\,l3}$ from NA62 2007 data:

- Special **K**_L **run** for measurement of electron ID efficiency
- Total statistics: About 20% more than in 1999 special run.
 - $\implies K_{Ll3}$ analyses could be repeated with a different data set.

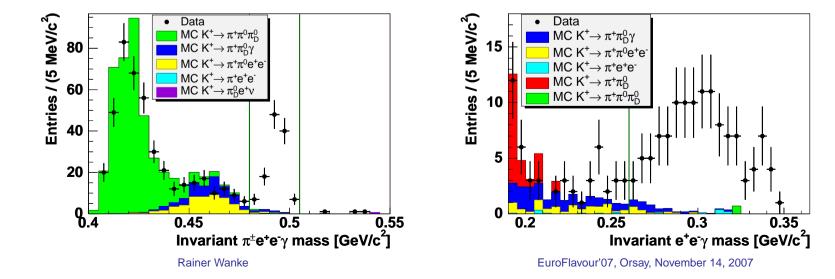
However: No results expected for these channels soon.

First Measurement of $K^{\pm} \rightarrow \pi^{\pm} e^+ e^- \gamma$

In whole 2003/2004 K^{\pm} data:

(CERN-PH-EP/2007-033)

■ 120 $K^{\pm} \rightarrow \pi^{\pm} e^+ e^- \gamma$ signal candidates (Bkg: 7.3 ± 1.7 events)


 $\implies 4 \times$ the published $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ statistics!

Model-independent branching fraction:

 $Br(K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}\gamma, m_{ee\gamma} > 260 \text{ MeV})$

 $= (1.19\pm0.12_{\text{stat}}\pm0.04_{\text{sys}})\times10^{-8}$

 $\hat{\mathbf{c}}$ extraction: $\hat{\mathbf{c}} = 0.90 \pm 0.45$

Conclusions

Many new measurements of semileptonic channels: Branching fractions and form factors.

Open question of $K_{L \mu 3}$ form factor result:

In disagreement with other experiments.

 \implies Expect a NA48 measurement from $\mathbf{K}_{\mu\mathbf{3}}^{\pm}$ in the future.

Very successful $K_{e2}/K_{\mu 2}$ run in 2007.

 \implies More than 100 000 $\mathbf{K_{e2}}$ events collected.

And, of course...:

Constructing a new experiment for measuring $\mathbf{K}^+ \rightarrow \pi^+ \nu \bar{\nu}!$