Bounds in $\pi \pi$ scattering from dispersion relations Constraining $\overline{l}_1 \& \overline{l}_2$ and L_1 , $L_2 \& L_3$

Vicent Mateu

mateu@ific.uv.es

IFIC-Universitat de Valencia CSIC

Euroflavour07, Paris

-

Outline

- 2 SU(2)
 - $\pi \pi$ scattering
 - Fixed t dispersion relations & positivity conditions
 - Bounds on chiral LECs and the Linear Sigma Model
 - Equivalence with Pennington & Portoles
- 3 SU(3)
 - SU(3)_V limit
 - Symmetry breaking
 - Results

Motivations

Seyond tree–level χ PT has undetermined LECs. Estimates (resonance saturation) and fitted values have big errors.

Motivations

- Seyond tree–level χ PT has undetermined LECs. Estimates (resonance saturation) and fitted values have big errors.
- **2** Model independent approach \implies dispersion relations.

Motivations

- Seyond tree–level χ PT has undetermined LECs. Estimates (resonance saturation) and fitted values have big errors.

Motivations

- Seyond tree–level χ PT has undetermined LECs. Estimates (resonance saturation) and fitted values have big errors.
- **Over the set of the**

∃ ► < ∃ ►</p>

Motivations

- Beyond tree–level χ PT has undetermined LECs. Estimates (resonance saturation) and fitted values have big errors.
- **2** Model independent approach \implies dispersion relations. Dispersion relations and unitarity \implies positivity conditions. Positivity conditions \implies bounds for $\overline{l_1}$ and $\overline{l_2}$ (and $L_{1,2,3}$).
- Other (less restrictive) methods are contained in ours. Distler et al '06 hep-ph/0604255 [1] Pennington et al '95 hep-ph/9409426 [2]

A B > A B >

Motivations

- Beyond tree–level χ PT has undetermined LECs. Estimates (resonance saturation) and fitted values have big errors.
- **2** Model independent approach \implies dispersion relations. Dispersion relations and unitarity \implies positivity conditions. Positivity conditions \implies bounds for \overline{l}_1 and \overline{l}_2 (and $L_{1,2,3}$).
- Other (less restrictive) methods are contained in ours. Distler et al '06 hep-ph/0604255 [1] Pennington et al '95 hep-ph/9409426 [2]
- Sigma Model \overline{l}_1 and \overline{l}_2 in contradiction with bounds

A B > < B >

Motivations

- Beyond tree–level χ PT has undetermined LECs. Estimates (resonance saturation) and fitted values have big errors.
- 2 Model independent approach \implies dispersion relations. Dispersion relations and unitarity \implies positivity conditions. Positivity conditions \implies bounds for \overline{l}_1 and \overline{l}_2 (and $L_{1,2,3}$).
- Other (less restrictive) methods are contained in ours. Distler et al '06 hep-ph/0604255 [1] Pennington et al '95 hep-ph/9409426 [2]
- Sigma Model \overline{l}_1 and \overline{l}_2 in contradiction with bounds
- **3**–flavour χ PT \implies generalization for $SU(3)_V$ breaking.

Motivations

- Beyond tree–level χ PT has undetermined LECs. Estimates (resonance saturation) and fitted values have big errors.
- **2** Model independent approach \implies dispersion relations. Dispersion relations and unitarity \implies positivity conditions. Positivity conditions \implies bounds for $\overline{l_1}$ and $\overline{l_2}$ (and $L_{1,2,3}$).
- Other (less restrictive) methods are contained in ours. Distler et al '06 hep-ph/0604255 [1] Pennington et al '95 hep-ph/9409426 [2]
- Sigma Model \overline{l}_1 and \overline{l}_2 in contradiction with bounds
- **3**–flavour χ PT \implies generalization for $SU(3)_V$ breaking.
- SU(2) → A.Manohar & V.M. in preparation [SU(3) → V.M. work in preparation [4]

Motivations	ππε
SU(2)	
SU(3)	
Conclusions	

 π π scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Model Equivalence with Pennington & Portoles

Outline

2 SU(2)

- $\pi \pi$ scattering
- Fixed t dispersion relations & positivity conditions
- Bounds on chiral LECs and the Linear Sigma Model
- Equivalence with Pennington & Portoles

3 SU(

- $SU(3)_V$ limit
- Symmetry breaking
- Results
- 4 Conclusions

 $\pi \pi$ scattering

Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Model Equivalence with Pennington & Portoles

$\pi \pi$ scattering : generalities

Symmetry constrains

 $SU(2)_V \Rightarrow$ only three independent amplitudes I = 0, 1, 2.

 $\pi \pi$ scattering Fixed t dispersion relations & positivity cond Bounds on chiral LECs and the Linear Sigm

$\pi \pi$ scattering : generalities

Symmetry constrains

 $SU(2)_V \Rightarrow$ only three independent amplitudes I = 0, 1, 2. Crossing \Rightarrow only one independent function

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

 $\pi \pi$ scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Mode Equivalence with Pennington & Portoles

$\pi \pi$ scattering : generalities

Symmetry constrains

 $SU(2)_V \Rightarrow$ only three independent amplitudes I = 0, 1, 2. Crossing \Rightarrow only one independent function

Chew-Mandelstam representation

$$T(ab \to cd) = A(s,t) \,\delta^{ab} \delta^{cd} + A(t,s) \,\delta^{ac} \delta^{bd} + A(u,t) \delta^{ad} \delta^{bc}$$

with $A(x,y) = A(x,4m_{\pi}^2 - x - y).$

ヘロン 人間 とくほど 不同と

 $\pi \pi$ scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Mode Equivalence with Pennington & Portoles

$\pi \pi$ scattering : generalities

Symmetry constrains

 $SU(2)_V \Rightarrow$ only three independent amplitudes I = 0, 1, 2. Crossing \Rightarrow only one independent function

Chew-Mandelstam representation

$$T(ab \to cd) = A(s,t) \,\delta^{ab} \delta^{cd} + A(t,s) \,\delta^{ac} \delta^{bd} + A(u,t) \delta^{ad} \delta^{bc}$$

with $A(x,y) = A(x,4m_{\pi}^2 - x - y)$. Isospin amplitudes
 $T^3(s,t) = 3A(s,t) + A(t,s) + A(u,s), \quad T^{1,2}(s,t) = A(t,s) \pm A(u,s)$

ヘロン 人間 とくほど 不同と

 $\pi \pi$ scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Mode Equivalence with Pennington & Portoles

$\pi \pi$ scattering : generalities

Symmetry constrains

 $SU(2)_V \Rightarrow$ only three independent amplitudes I = 0, 1, 2. Crossing \Rightarrow only one independent function

Chew-Mandelstam representation

$$T(ab \to cd) = A(s,t) \,\delta^{ab} \delta^{cd} + A(t,s) \,\delta^{ac} \delta^{bd} + A(u,t) \delta^{ad} \delta^{bc}$$

with $A(x,y) = A(x,4m_{\pi}^2 - x - y)$. Isospin amplitudes
 $T^3(s,t) = 3A(s,t) + A(t,s) + A(u,s), \quad T^{1,2}(s,t) = A(t,s) \pm A(u,s)$

Then we can write

$$T'(s,t) = C_u^{ll'}T^{l'}(u,t), \quad C_u^{ll'}C_u^{l'J} = \delta_{lJ}, \quad C_u = \frac{1}{6} \begin{pmatrix} 2 & -6 & 10 \\ -2 & 3 & 5 \\ 2 & 3 & 1 \end{pmatrix},$$

< □ > < 同 > < 回 > < 回 > < 回 >

 π π scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Mode Equivalence with <code>Pennington & Portoles</code>

$\pi \pi$ scattering : generalities

Symmetry constrains

 $SU(2)_V \Rightarrow$ only three independent amplitudes I = 0, 1, 2. Crossing \Rightarrow only one independent function

Chew-Mandelstam representation

$$T(a b \to c d) = A(s, t) \,\delta^{ab} \delta^{cd} + A(t, s) \,\delta^{ac} \delta^{bd} + A(u, t) \delta^{ad} \delta^{bc}$$
with $A(x, y) = A(x, 4m_{\pi}^2 - x - y)$. Isospin amplitudes
$$T^3(s, t) = 3 \,A(s, t) + A(t, s) + A(u, s), \quad T^{1,2}(s, t) = A(t, s) \pm A(u, s)$$
Then we can write
$$T'(s, t) = C_u^{ll'} T^{l'}(u, t), \quad C_u^{ll'} C_u^{l'J} = \delta_{lJ}, \quad C_u = \frac{1}{6} \begin{pmatrix} 2 & -6 & 10 \\ -2 & 3 & 5 \\ 2 & 3 & 1 \end{pmatrix},$$

$$T'(s, t) = C_t^{ll'} T^{l'}(t, s), \quad C_t^{ll'} C_t^{l'J} = \delta_{lJ}, \quad C_t = \frac{1}{6} \begin{pmatrix} 2 & 6 & 10 \\ 2 & 3 & -5 \\ 2 & -3 & 1 \end{pmatrix}$$

 $\pi \pi$ scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Mode Equivalence with Pennington & Portoles

$\pi \pi$ scattering : analyticity

s channel

 \blacklozenge No other state lighter than the pion. No lighter intermediate state $m_
ho>2m_\pi$

 $\pi \pi$ scattering

$\pi \pi$ scattering : analyticity

s channel

• No other state lighter than the pion. No lighter intermediate state $m_{\rho} > 2m_{\pi}$ • Unitarity \Rightarrow $T(s \leq 4 m_{\pi}^2) \in \Re \rightarrow$ single-valued

 Motivations
 $\pi \pi$ scattering

 SU(2) Fixed t dispersion relation

 SU(3) Bounds on chiral LECs

 Conclusions
 Equivalence with Penni

$\pi \pi$ scattering : analyticity

s channel

 ♦ No other state lighter than the pion. No lighter intermediate state m_ρ > 2m_π
 ♦ Unitarity ⇒ T(s ≤ 4 m_π²) ∈ ℜ → single-valued for s > 4m_π² T(s + iε) − T(s − iε) = 2 i Im T(s + iε) ≠ 0 → multivalued

< □ > < 同 > < 回 > < 回 > < 回 >

 Motivations
 $\pi \pi$ scattering

 SU(2) Fixed t dispersion rel

 SU(3) Bounds on chiral LE0

 Conclusions
 Equivalence with Period

$\pi \pi$ scattering : analyticity

s channel

♦ No other state lighter than the pion. No lighter intermediate state $m_{\rho} > 2m_{\pi}$ ♦ Unitarity $\Rightarrow T(s \le 4 m_{\pi}^2) \in \Re \rightarrow \text{single-valued}$ for $s > 4m_{\pi}^2$ $T(s + i\epsilon) - T(s - i\epsilon) = 2i \text{ Im } T(s + i\epsilon) \neq 0 \rightarrow \text{multivalued}$

• Branch cut for $s > 4m_{\pi}^2$! Rest of singularities and branch points lay on it.

$\pi \pi$ scattering : analyticity

s channel

• No other state lighter than the pion. No lighter intermediate state $m_{\rho} > 2m_{\pi}$

♦ Unitarity \Rightarrow $T(s \le 4 m_{\pi}^2) \in \Re \rightarrow$ single-valued for $s > 4m_{\pi}^2$ $T(s + i\epsilon) - T(s - i\epsilon) = 2i \operatorname{Im} T(s + i\epsilon) \neq 0 \rightarrow$ multivalued

• Branch cut for $s > 4m_{\pi}^2$! Rest of singularities and branch points lay on it.

Remaining branch cuts obtained by crossing.

$\pi \pi$ scattering : analyticity

s channel

♦ No other state lighter than the pion. No lighter intermediate state $m_{\rho} > 2m_{\pi}$ ♦ Unitarity $\Rightarrow T(s < 4 m_{\pi}^2) \in \Re \rightarrow \text{single-valued}$

for $s > 4m_{\pi}^2$ $T(s + i\epsilon) - T(s - i\epsilon) = 2i \operatorname{Im} T(s + i\epsilon) \neq 0 \rightarrow \text{multivalued}$

• Branch cut for $s > 4m_{\pi}^2$! Rest of singularities and branch points lay on it.

Remaining branch cuts obtained by crossing.

• Analytic region \Rightarrow s, t, $u \le 4m_{\pi}^2 \longrightarrow$ Dispersion relations

 Motivations
 $\pi \ \pi$ scattering

 SU(2) Fixed 1 dispersion relations & positivi

 SU(3) Bounds on chiral LECs and the Lines

 Conclusions
 Equivalence with Pennington & P

$\pi \pi$ scattering : analyticity

s channel

♦ No other state lighter than the pion. No lighter intermediate state $m_{\rho} > 2m_{\pi}$ ♦ Unitarity $\Rightarrow T(s \le 4 m_{\pi}^2) \in \Re \rightarrow \text{single-valued}$

for $s > 4m_{\pi}^2$ $T(s + i\epsilon) - T(s - i\epsilon) = 2i \operatorname{Im} T(s + i\epsilon) \neq 0 \rightarrow \text{multivalued}$

• Branch cut for $s > 4m_{\pi}^2$! Rest of singularities and branch points lay on it.

Remaining branch cuts obtained by crossing.

- Analytic region \Rightarrow s, t, $u \le 4m_{\pi}^2 \longrightarrow$ Dispersion relations
- Mandelstam triangle $\Rightarrow 0 \le s, t, u \le 4m_{\pi}^2$ wrongly assumed in [1]

< ロ > < 同 > < 回 > < 回 > < 回 >

 Motivations
 $\pi \pi$ scattering

 SU(2) Fixed t dispersion relations & positivi

 SU(3) Bounds on chiral LECs and the Lines

 Conclusions
 Equivalence with Pennington & P

$\pi \pi$ scattering : analyticity

s channel

♦ No other state lighter than the pion. No lighter intermediate state $m_{\rho} > 2m_{\pi}$ ♦ Unitarity $\Rightarrow T(s \le 4 m_{\pi}^2) \in \Re \rightarrow \text{single-valued}$

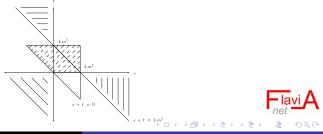
for $s > 4m_{\pi}^2$ $T(s + i\epsilon) - T(s - i\epsilon) = 2i \operatorname{Im} T(s + i\epsilon) \neq 0 \rightarrow \text{multivalued}$

• Branch cut for $s > 4m_{\pi}^2$! Rest of singularities and branch points lay on it. • Remaining branch cuts obtained by crossing.

Remaining branch cuts obtained by crossing.

• Analytic region \Rightarrow *s*, *t*, *u* \leq 4 m_{π}^2 \longrightarrow Dispersion relations

• Mandelstam triangle $\Rightarrow 0 \le s, t, u \le 4m_{\pi}^2$ wrongly assumed in [1]



Outline

- $\pi \pi$ scattering
- Fixed t dispersion relations & positivity conditions
- Bounds on chiral LECs and the Linear Sigma Model
- Equivalence with Pennington & Portoles

3 SU(

- $SU(3)_V$ limit
- Symmetry breaking
- Results
- 4 Conclusions

 π π scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Model Equivalence with Pennington & Portoles

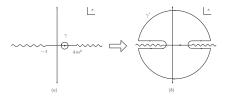
Fixed t dispersion relations

For $t \leq 4m_{\pi}^2$ and $s \notin$ branch cut $\to T'(s, t) = \frac{1}{2\pi i} \oint_{\gamma} dx \frac{T'(x,t)}{x-s}$

 π π scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Model Equivalence with Pennington & Portoles

Fixed t dispersion relations

For $t \leq 4m_{\pi}^2$ and $s \notin \text{branch cut} \to T'(s, t) = \frac{1}{2\pi i} \oint_{\gamma} dx \frac{T'(x, t)}{x-s}$

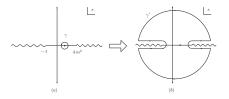


→ ∃ > < ∃ >

 π π scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Model Equivalence with Pennington & Portoles

Fixed t dispersion relations

For $t \leq 4m_{\pi}^2$ and $s \notin \text{branch cut} \to T'(s, t) = \frac{1}{2\pi i} \oint_{\gamma} dx \frac{T'(x, t)}{x-s}$



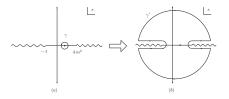
if
$$\oint_{\circ} \mathrm{d}x \frac{T^{l}(x,t)}{x-s} \neq 0$$
 "subtract" $\frac{\mathrm{d}^{n}}{\mathrm{d}s^{n}} T^{l}(s,t) = \frac{n!}{2\pi i} \oint_{\gamma} \mathrm{d}x \frac{T^{l}(x,t)}{(x-s)^{n+1}}$

→ ∃ > < ∃ >

 π π scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Model Equivalence with <code>Pennington & Portoles</code>

Fixed t dispersion relations

For $t \leq 4m_{\pi}^2$ and $s \notin \text{branch cut} \to T'(s, t) = \frac{1}{2\pi i} \oint_{\gamma} dx \frac{T'(x, t)}{x-s}$



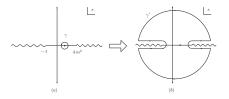
if $\oint_{\circ} dx \frac{T^{l}(x,t)}{x-s} \neq 0$ "subtract" $\frac{d^{n}}{ds^{n}} T^{l}(s,t) = \frac{n!}{2\pi i} \oint_{\gamma} dx \frac{T^{l}(x,t)}{(x-s)^{n+1}}$ Froissart bound $\rightarrow n = 2$

$$\frac{d^2}{ds^2}T'(s,t) = \frac{2}{\pi} \int_{4m_{\pi}^2}^{\infty} dx \left[\frac{\delta'''}{(x-s)^3} + \frac{C_u''}{(x-u)^3} \right] \operatorname{Im} T''(x+i\epsilon,t)$$

 π π scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Model Equivalence with Pennington & Portoles

Fixed t dispersion relations

For $t \leq 4m_{\pi}^2$ and $s \notin \text{branch cut} \to T'(s, t) = \frac{1}{2\pi i} \oint_{\gamma} dx \frac{T'(x, t)}{x-s}$



if $\oint_{\circ} dx \frac{T'(x,t)}{x-s} \neq 0$ "subtract" $\frac{d^n}{ds^n} T'(s,t) = \frac{n!}{2\pi i} \oint_{\gamma} dx \frac{T'(x,t)}{(x-s)^{n+1}}$ Froissart bound $\rightarrow n = 2$

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2}T'(s,t) = \frac{2}{\pi}\int_{4m_\pi^2}^{\infty}\mathrm{d}x \left[\frac{\delta^{ll'}}{(x-s)^3} + \frac{C_u^{ll'}}{(x-u)^3}\right]\mathrm{Im} \ T'(x+i\epsilon,t)$$

For $s + t \ge 0$ s $\le 4 m_{\pi}^2$ both denominators ≥ 0 in the integral path

otivations	$\pi~\pi$ scattering
SU(2)	Fixed t dispersion relations & positivity conditions
SU(3)	Bounds on chiral LECs and the Linear Sigma Model
nclusions	Equivalence with Pennington & Portoles

• Partial wave expansion $T'(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f'_{\ell}(s) P_{\ell} \left(1 + \frac{2t}{s-4m_{\perp}^2}\right)$

Cor

Motivations	$\pi \ \pi$ scattering
SU(2)	Fixed t dispersion relations & positivity conditions
SU(3)	Bounds on chiral LECs and the Linear Sigma Model
Conclusions	Equivalence with Pennington & Portoles

- Partial wave expansion $T'(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f'_{\ell}(s) P_{\ell} \left(1 + \frac{2t}{s-4m_{\perp}^2}\right)$
- Optical theorem $\Rightarrow \operatorname{Im} f'_{\ell}(s) = s \beta(s) \sigma'_{\ell}(s) \theta(s m_{\pi}^2) \ge 0$

Motivations	$\pi \ \pi$ scattering
SU(2)	Fixed t dispersion relations & positivity conditions
SU(3)	Bounds on chiral LECs and the Linear Sigma Model
Conclusions	Equivalence with Pennington & Portoles

- Partial wave expansion $T'(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f'_{\ell}(s) P_{\ell} \left(1 + \frac{2t}{s-4m^2}\right)$
- Optical theorem $\Rightarrow \operatorname{Im} f'_{\ell}(s) = s \beta(s) \sigma'_{\ell}(s) \theta(s m_{\pi}^2) \ge 0$
- $P_{\ell}(z) \geq 1$ for $z \geq 1$ for all ℓ

Motivations	$\pi \ \pi$ scattering
SU(2)	Fixed t dispersion relations & positivity conditions
SU(3)	Bounds on chiral LECs and the Linear Sigma Model
Conclusions	Equivalence with Pennington & Portoles

- Partial wave expansion $T'(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f'_{\ell}(s) P_{\ell} \left(1 + \frac{2t}{s-4m_{\perp}^2}\right)$
- Optical theorem $\Rightarrow \operatorname{Im} f'_{\ell}(s) = s \beta(s) \sigma'_{\ell}(s) \theta(s m_{\pi}^2) \ge 0$
- $P_{\ell}(z) \ge 1$ for $z \ge 1$ for all $\ell \Rightarrow \text{If } t \ge 0 \& s \ge 4 m_{\pi}^2$ then $z \ge 1$

Motivations	$\pi \ \pi$ scattering
SU(2)	Fixed t dispersion relations & positivity conditions
SU(3)	Bounds on chiral LECs and the Linear Sigma Model
Conclusions	Equivalence with Pennington & Portoles

- Partial wave expansion $T'(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f'_{\ell}(s) P_{\ell} \left(1 + \frac{2t}{s-4m_{\perp}^2}\right)$
- Optical theorem $\Rightarrow \operatorname{Im} f_{\ell}^{\prime}(s) = s \beta(s) \sigma_{\ell}^{\prime}(s) \theta(s m_{\pi}^2) \ge 0$
- $P_{\ell}(z) \ge 1$ for $z \ge 1$ for all $\ell \Rightarrow$ If $t \ge 0$ & $s \ge 4$ m_{π}^2 then $z \ge 1$ Im $T'(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1)s\beta(s) \sigma_{\ell}'(s)P_{\ell}\left(1+\frac{2t}{s-4m_{\pi}^2}\right) \ge 0$

Motivations	$\pi \ \pi$ scattering
SU(2)	Fixed t dispersion relations & positivity conditions
SU(3)	Bounds on chiral LECs and the Linear Sigma Model
Conclusions	Equivalence with Pennington & Portoles

Positivity conditions

- Partial wave expansion $T'(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f'_{\ell}(s) P_{\ell} \left(1 + \frac{2t}{s-4m_{\perp}^2}\right)$
- Optical theorem $\Rightarrow \operatorname{Im} f_{\ell}^{\prime}(s) = s \beta(s) \sigma_{\ell}^{\prime}(s) \theta(s m_{\pi}^2) \geq 0$
- $P_{\ell}(z) \ge 1$ for $z \ge 1$ for all $\ell \Rightarrow$ If $t \ge 0$ & $s \ge 4 m_{\pi}^2$ then $z \ge 1$ Im $T'(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1)s\beta(s) \sigma'_{\ell}(s)P_{\ell}\left(1+\frac{2t}{s-4m_{\pi}^2}\right) \ge 0$
- For certain $\sum a_I T^I$ with $a_I \ge 0 \rightarrow \sum a_I C_u^{IJ} T_J = \sum_K b_K T_K$ with $b_K \ge 0$ They correspond to physical processes with equal initial and final state.

Motivations	$\pi \ \pi$ scattering
SU(2)	Fixed t dispersion relations & positivity conditions
SU(3)	Bounds on chiral LECs and the Linear Sigma Model
Conclusions	Equivalence with Pennington & Portoles

Positivity conditions

- Partial wave expansion $T'(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1) f'_{\ell}(s) P_{\ell} \left(1 + \frac{2t}{s-4m_{\perp}^2}\right)$
- Optical theorem $\Rightarrow \operatorname{Im} f'_{\ell}(s) = s \beta(s) \sigma'_{\ell}(s) \theta(s m_{\pi}^2) \ge 0$
- $P_{\ell}(z) \ge 1$ for $z \ge 1$ for all $\ell \Rightarrow$ If $t \ge 0$ & $s \ge 4 m_{\pi}^2$ then $z \ge 1$ Im $T'(s,t) = \sum_{\ell=0}^{\infty} (2\ell+1)s\beta(s) \sigma'_{\ell}(s)P_{\ell}\left(1+\frac{2t}{s-4m_{\pi}^2}\right) \ge 0$
- For certain $\sum a_I T^I$ with $a_I \ge 0 \rightarrow \sum a_I C_u^{IJ} T_J = \sum_K b_K T_K$ with $b_K \ge 0$ They correspond to physical processes with equal initial and final state.

Positivity conditions :

Inside the region $\mathcal{A} \equiv \{ s \leq 4 \ m_\pi^2 \ , \ 0 \leq t \leq 4 \ m^2 \ \& \ s+t \geq 0 \}$

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} T\left(\pi^0 \pi^0 \to \pi^0 \pi^0\right) \left[(s,t) \in \mathcal{A}\right] \ge 0, \qquad \frac{\mathrm{d}^2}{\mathrm{d}s^2} T\left(\pi^+ \pi^+ \to \pi^+ \pi^+\right) \left[(s,t) \in \mathcal{A}\right] \ge 0,$$

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} T\left(\pi^+ \pi^0 \to \pi^+ \pi^0\right) \left[(s,t) \in \mathcal{A}\right] \ge 0,$$

< □ > < 同 > < 回 > < 回 > < 回 >

ivations	$\pi~\pi$ scattering
SU(2)	Fixed t dispersion relations & positivity conditions
SU(3)	Bounds on chiral LECs and the Linear Sigma Model
clusions	Equivalence with Pennington & Portoles

Outline

- $\pi \pi$ scattering
- Fixed t dispersion relations & positivity conditions
- Bounds on chiral LECs and the Linear Sigma Model
- Equivalence with Pennington & Portoles

Mot

Conc

- 3 SU(
 - $SU(3)_V$ limit
 - Symmetry breaking
 - Results
- 4 Conclusions

A B > < B >

 Motivations
 π π scattering

 SU(2)
 Fixed t dispersion relations & positivity conditions

 SU(3)
 Bounds on chiral LECs and the Linear Sigma Model

 Conclusions
 Equivalence with Pennington & Portoles

Bounds on chiral LECs

In the region \mathcal{A} we can apply χPT at $\mathcal{O}(p^4)$ to obtain $\left[\frac{d^2}{ds^2}\mathcal{O}(p^2)=0\right]$

$$\sum_{i=1}^{2} \alpha_{ji} \, \bar{l}_{i} - f_{j}[(s,t) \in \mathcal{A}] \geq 0 \quad \Longrightarrow \quad \sum_{i=1}^{2} \alpha_{ji} \, \bar{l}_{i} \geq \left. f_{j}[(s,t) \in \mathcal{A}] \right|_{\max}$$

 Motivations
 π π scattering

 SU(2)
 Fixed t dispersion relations & positivity conditions

 SU(3)
 Bounds on chiral LECs and the Linear Sigma Model

 Conclusions
 Equivalence with Pennington & Portoles

Bounds on chiral LECs

In the region \mathcal{A} we can apply χPT at $\mathcal{O}(p^4)$ to obtain $\left[\frac{d^2}{ds^2}\mathcal{O}(p^2)=0\right]$

$$\sum_{i=1}^{2} \alpha_{ji} \overline{l}_{i} - f_{j}[(s,t) \in \mathcal{A}] \geq 0 \implies \sum_{i=1}^{2} \alpha_{ji} \overline{l}_{i} \geq f_{j}[(s,t) \in \mathcal{A}]|_{\max}$$

Process	LECs combination	Bound	Experimental value
$\pi^0\pi^0 \to \pi^0\pi^0$	$ar{l}_1 + 2ar{l}_2$ [1,2]	$\geq \frac{157}{40} = 3.925$	8.2 ± 0.6
$\pi^+\pi^0 \to \pi^+\pi^0$	<i>l</i> ₂ [1,2]	$\geq \frac{27}{20} = 1.350$	$\textbf{4.3}\pm\textbf{0.1}$
$\pi^+\pi^+ \to \pi^+\pi^+$	$ar{l}_1+3ar{l}_2$ [3]	\geq 5.604	$\textbf{12.5}\pm\textbf{0.7}$

э

ヘロン 人間 とくほとくほど

 Motivations
 π π scattering

 SU(2)
 Fixed t dispersion relations & positivity conditions

 SU(3)
 Bounds on chiral LECs and the Linear Sigma Model

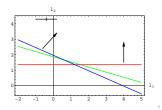
 Conclusions
 Equivalence with Pennington & Portoles

Bounds on chiral LECs

In the region \mathcal{A} we can apply χPT at $\mathcal{O}(p^4)$ to obtain $\left[\frac{d^2}{ds^2}\mathcal{O}(p^2)=0\right]$

$$\sum_{i=1}^{2} \alpha_{ji} \overline{l}_{i} - f_{j}[(s,t) \in \mathcal{A}] \geq 0 \implies \sum_{i=1}^{2} \alpha_{ji} \overline{l}_{i} \geq f_{j}[(s,t) \in \mathcal{A}]|_{\max}$$

Process	LECs combination	Bound	Experimental value
$\pi^0\pi^0 o \pi^0\pi^0$	$ar{l}_1 + 2ar{l}_2$ [1,2]	$\geq \frac{157}{40} = 3.925$	8.2 ± 0.6
$\pi^+\pi^0 \to \pi^+\pi^0$	<i>l</i> ₂ [1,2]	$\geq \frac{27}{20} = 1.350$	$\textbf{4.3}\pm\textbf{0.1}$
$\pi^+\pi^+ \to \pi^+\pi^+$	$ar{l}_1+3ar{l}_2$ [3]	\geq 5.604	$\textbf{12.5}\pm\textbf{0.7}$



э

Vicent Mateu Bounds in $\pi \pi$ scattering from dispersion relations

Is the Linear Sigma Model consistent?

♦ Functional integration of σ particle $\implies \overline{l}_1$ and \overline{l}_2 in LSM : (at one-loop) $\overline{l}_1 = \frac{24\pi^2}{g} + \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{35}{6}$, $\overline{l}_2 = \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{11}{6}$ Gasser et al '84

Is the Linear Sigma Model consistent?

♦ Functional integration of σ particle $\implies \overline{l}_1$ and \overline{l}_2 in LSM : (at one-loop) $\overline{l}_1 = \frac{24\pi^2}{g} + \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{35}{6}$, $\overline{l}_2 = \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{11}{6}$ Gasser et al '84 ♦ Plugging into the second bound $\log\left(\frac{m_{\sigma}}{m}\right) \ge \frac{191}{60}$ violated for $m_{\sigma} \le 24 m_{\pi}$!!!

∃ ► < ∃ ►</p>

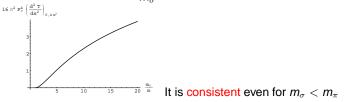
Is the Linear Sigma Model consistent?

- ♦ Functional integration of σ particle $\implies \overline{l}_1$ and \overline{l}_2 in LSM : (at one-loop) $\overline{l}_1 = \frac{24\pi^2}{g} + \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{35}{6}$, $\overline{l}_2 = \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{11}{6}$ Gasser et al '84
- Plugging into the second bound log $\left(\frac{m_{\sigma}}{m}\right) \geq \frac{191}{60}$ violated for $m_{\sigma} \leq 24 m_{\pi} \parallel$
- But LSM consistent if $m_{\sigma} \geq \sqrt{3} m_{\pi}$. Apply directly positivity conditions.

→ ∃ → < ∃</p>

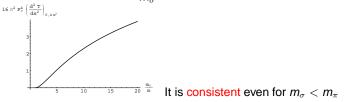
Is the Linear Sigma Model consistent?

- ♦ Functional integration of σ particle $\implies \overline{l}_1$ and \overline{l}_2 in LSM : (at one-loop) $\overline{l}_1 = \frac{24\pi^2}{g} + \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{35}{6}$, $\overline{l}_2 = \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{11}{6}$ Gasser et al '84
- Plugging into the second bound log $\left(\frac{m_{\sigma}}{m}\right) \geq \frac{191}{60}$ violated for $m_{\sigma} \leq 24 m_{\pi} \parallel$
- But LSM consistent if $m_{\sigma} \geq \sqrt{3} m_{\pi}$. Apply directly positivity conditions.
- Integration of σ tantamount to $\frac{1}{m^2}$ expansion. To all orders we have :



Is the Linear Sigma Model consistent?

- ♦ Functional integration of σ particle $\implies \overline{l}_1$ and \overline{l}_2 in LSM : (at one-loop) $\overline{l}_1 = \frac{24\pi^2}{g} + \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{35}{6}$, $\overline{l}_2 = \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{11}{6}$ Gasser et al '84
- Plugging into the second bound log $\left(\frac{m_{\sigma}}{m}\right) \geq \frac{191}{60}$ violated for $m_{\sigma} \leq 24 m_{\pi} \parallel$
- But LSM consistent if $m_{\sigma} \geq \sqrt{3} m_{\pi}$. Apply directly positivity conditions.
- Integration of σ tantamount to $\frac{1}{m^2}$ expansion. To all orders we have :

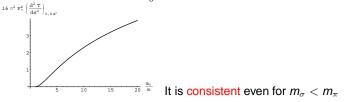


 \hookrightarrow But the non–Linear Sigma Model is inconsistent for $m_{\sigma} < 24m_{\pi}$

÷

Is the Linear Sigma Model consistent?

- ♦ Functional integration of σ particle $\implies \overline{l}_1$ and \overline{l}_2 in LSM : (at one-loop) $\overline{l}_1 = \frac{24\pi^2}{g} + \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{35}{6}$, $\overline{l}_2 = \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{11}{6}$ Gasser et al '84
- Plugging into the second bound log $\left(\frac{m_{\sigma}}{m}\right) \geq \frac{191}{60}$ violated for $m_{\sigma} \leq 24 m_{\pi} \parallel$
- But LSM consistent if $m_{\sigma} \geq \sqrt{3} m_{\pi}$. Apply directly positivity conditions.
- Integration of σ tantamount to $\frac{1}{m^2}$ expansion. To all orders we have :



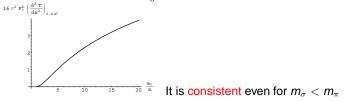
 \ominus But the non–Linear Sigma Model is inconsistent for $m_{\sigma} < 24m_{\pi}$

↔ Caveat! For those who integrate ρ (as I do) for estimating chiral LECs . $m_ρ/m_\pi \ll 25$ (!).

• • = • • = •

Is the Linear Sigma Model consistent?

- ♦ Functional integration of σ particle $\implies \overline{l}_1$ and \overline{l}_2 in LSM : (at one-loop) $\overline{l}_1 = \frac{24\pi^2}{g} + \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{35}{6}$, $\overline{l}_2 = \log\left(\frac{m_{\sigma}}{m_{\pi}}\right) - \frac{11}{6}$ Gasser et al '84
- Plugging into the second bound log $\left(\frac{m_{\sigma}}{m}\right) \geq \frac{191}{60}$ violated for $m_{\sigma} \leq 24 m_{\pi} \parallel$
- But LSM consistent if $m_{\sigma} \geq \sqrt{3} m_{\pi}$. Apply directly positivity conditions.
- Integration of σ tantamount to $\frac{1}{m^2}$ expansion. To all orders we have :



 \ominus But the non–Linear Sigma Model is inconsistent for $m_{\sigma} < 24m_{\pi}$

↔ Caveat! For those who integrate ρ (as I do) for estimating chiral LECs . $m_ρ/m_π \ll 25$ (!). But in this case LECs are generated at tree level.

Notivations	$\pi \ \pi$ scattering
SU(2)	Fixed t dispersion relations & positivity conditions
SU(3)	Bounds on chiral LECs and the Linear Sigma Model
onclusions	Equivalence with Pennington & Portoles

Outline

- $\pi \pi$ scattering
- Fixed t dispersion relations & positivity conditions
- Bounds on chiral LECs and the Linear Sigma Model
- Equivalence with Pennington & Portoles
- 3 SU
 - $SU(3)_V$ limit
 - Symmetry breaking
 - Results
- 4 Conclusions

 π π scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Model Equivalence with Pennington & Portoles

Equivalence with Pennington & Portoles[2]

Scattering lengths

$$a'_{\ell} \equiv \lim_{s \to 4} {}_{m^2} {f'_{\ell}(s) \over ({s \over 4} - m^2)^{\ell}}$$
 and Bose symmetry implies $a^1_{2k} \equiv 0$

 π π scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Model Equivalence with Pennington & Portoles

Equivalence with Pennington & Portoles[2]

Scattering lengths

$$a_{\ell}^{l} \equiv \lim_{s \to 4 \, m^2} \frac{f_{\ell}^{l}(s)}{\left(\frac{s}{4} - m^2\right)^{\ell}}$$
 and Bose symmetry implies $a_{2k}^{1} \equiv 0$
P & P [2] quote $a_{2}^{0} + 2 a_{2}^{2} \ge 0$, $a_{2}^{0} - a_{2}^{2} \ge 0$ (1)

 π π scattering Fixed t dispersion relations & positivity conditions Bounds on chiral LECs and the Linear Sigma Model Equivalence with Pennington & Portoles

Equivalence with Pennington & Portoles[2]

Scattering lengths

$$\begin{aligned} a_{\ell}' &\equiv \lim_{s \to 4} \frac{f_{\ell}'(s)}{(\frac{s}{4} - m^2)^{\ell}} & \text{and Bose symmetry implies} \quad a_{2k}^1 \equiv 0 \\ P & P & [2] \quad \text{quote} \quad a_2^0 + 2 a_2^2 \ge 0 , \quad a_2^0 - a_2^2 \ge 0 \quad (1) \\ \text{But in fact} \quad a_{\ell}' &= \frac{4^{\ell} \ell !}{(2 \ell + 1)} C_{\ell}'' \frac{d^{\ell} \mathcal{F}'(s, 4 m^2)}{d s^{\ell}} \Big|_{s=0} \quad [3] \end{aligned}$$

Equivalence with Pennington & Portoles[2]

Scattering lengths

$$\begin{aligned} a_{\ell}^{\prime} &\equiv \lim_{s \to 4} \frac{f_{\ell}^{\prime}(s)}{\left(\frac{s}{4} - m^{2}\right)^{\ell}} & \text{and Bose symmetry implies} \quad a_{2k}^{1} \equiv 0 \\ P \& P [2] \text{ quote } \quad a_{2}^{0} + 2 a_{2}^{2} \ge 0, \quad a_{2}^{0} - a_{2}^{2} \ge 0 \quad (1) \\ \text{But in fact } \quad a_{\ell}^{\prime} &= \frac{4^{\ell} \ell !}{\left(2\ell + 1\right)} C_{t}^{\prime\prime\prime} \left. \frac{d^{\ell} F^{\prime\prime}(s, 4 m^{2})}{d s^{\ell}} \right|_{s=0} \quad [3] \\ \text{Since } (s = 0, t = 4 m^{2}) \in \mathcal{A} \text{ appropriate linear combinations } \rightarrow \quad (1) \end{aligned}$$

Equivalence with Pennington & Portoles[2]

Scattering lengths

$$\begin{aligned} a_{\ell}^{\prime} &\equiv \lim_{s \to 4} \frac{t_{\ell}^{\prime}(s)}{\left(\frac{s}{4} - m^{2}\right)^{\ell}} & \text{and Bose symmetry implies} \quad a_{2k}^{1} \equiv 0 \\ P \& P [2] \text{ quote } \quad a_{2}^{0} + 2 a_{2}^{2} \ge 0, \quad a_{2}^{0} - a_{2}^{2} \ge 0 \quad (1) \\ \text{But in fact } \quad a_{\ell}^{\prime} &= \frac{4^{\ell} \ell !}{\left(2 \ell + 1\right)} C_{t}^{\prime \prime \prime} \left. \frac{d^{\ell} F^{\prime \prime}(s, 4 m^{2})}{d s^{\ell}} \right|_{s=0} \quad [3] \\ \text{Since } (s = 0, t = 4 m^{2}) \in \mathcal{A} \text{ appropriate linear combinations } \rightarrow \quad (1) \end{aligned}$$

They only consider a single point in A → less general, no necessarily the most stringent. No way to find third bound.

< □ > < 同 > < 回 > < 回 > < 回 >

Equivalence with Pennington & Portoles[2]

Scattering lengths

$$\begin{aligned} a_{\ell}^{\prime} &\equiv \lim_{s \to 4} \frac{f_{\ell}^{\prime}(s)}{\left(\frac{s}{4} - m^{2}\right)^{\ell}} & \text{and Bose symmetry implies} \quad a_{2k}^{1} \equiv 0 \\ P \& P [2] \text{ quote } \quad a_{2}^{0} + 2 a_{2}^{2} \geq 0, \quad a_{2}^{0} - a_{2}^{2} \geq 0 \quad (1) \\ \text{But in fact } \quad a_{\ell}^{\prime} &= \frac{4^{\ell} \ell !}{\left(2 \ell + 1\right)} C_{t}^{ll'} \left. \frac{d^{\ell} F^{l'}(s, 4 m^{2})}{d s^{\ell}} \right|_{s=0} \quad [3] \\ \text{Since } (s = 0, t = 4 m^{2}) \in \mathcal{A} \text{ appropriate linear combinations } \rightarrow \quad (1) \end{aligned}$$

- They only consider a single point in $\mathcal{A} \rightarrow$ less general, no necessarily the most stringent. No way to find third bound.
- We remind that in Ref. [1] only the Mandelstam triangle was taken into account. No way to find third bound.

< □ > < 同 > < 回 > < 回 > < 回 >

Equivalence with Pennington & Portoles[2]

Scattering lengths

$$\begin{aligned} a_{\ell}^{I} &\equiv \lim_{s \to 4} m^{2} \frac{f_{\ell}^{I}(s)}{\left(\frac{s}{4} - m^{2}\right)^{\ell}} & \text{and Bose symmetry implies} \quad a_{2k}^{1} \equiv 0 \\ P \& P [2] \text{ quote} \quad a_{0}^{0} + 2 a_{2}^{2} \ge 0, \quad a_{0}^{0} - a_{2}^{2} \ge 0 \quad (1) \\ \text{But in fact} \quad a_{\ell}^{I} &= \frac{4^{\ell} \ell !}{\left(2 \ell + 1\right)} C_{t}^{II'} \left. \frac{d^{\ell} F^{I'}(s, 4 m^{2})}{d s^{\ell}} \right|_{s=0} \quad [3] \\ \text{Since } (s = 0, t = 4 m^{2}) \in \mathcal{A} \text{ appropriate linear combinations } \rightarrow \quad (1) \end{aligned}$$

- They only consider a single point in $\mathcal{A} \rightarrow$ less general, no necessarily the most stringent. No way to find third bound.
- We remind that in Ref. [1] only the Mandelstam triangle was taken into account. No way to find third bound.
- *m_K*/*m_π* ~ 3.5 ≪ 24 Integrate K in SU(3) → SU(2)? Yes... bad results for *l*_{1,2} but within bounds

< ロ > < 同 > < 回 > < 回 > .

Equivalence with Pennington & Portoles[2]

Scattering lengths

$$\begin{aligned} a_{\ell}^{\prime} &\equiv \lim_{s \to 4} m^2 \frac{f_{\ell}^{\prime}(s)}{\left(\frac{s}{4} - m^2\right)^{\ell}} & \text{and Bose symmetry implies} \quad a_{2k}^1 \equiv 0 \\ P \& P [2] \text{ quote} \quad a_{0}^{0} + 2 a_{2}^{2} \ge 0, \quad a_{0}^{0} - a_{2}^{2} \ge 0 \quad (1) \\ \text{But in fact} \quad a_{\ell}^{\prime} &= \frac{4^{\ell} \ell !}{\left(2 \ell + 1\right)} C_{t}^{\prime \prime} \frac{d^{\ell} F^{\prime \prime}(s, 4 m^2)}{d s^{\ell}} \Big|_{s=0} \quad [3] \\ \text{Since } (s = 0, t = 4 m^2) \in \mathcal{A} \text{ appropriate linear combinations } \rightarrow \quad (1) \end{aligned}$$

- They only consider a single point in A → less general, no necessarily the most stringent. No way to find third bound.
- We remind that in Ref. [1] only the Mandelstam triangle was taken into account. No way to find third bound.
- *m_K*/*m_π* ~ 3.5 ≪ 24 Integrate K in SU(3) → SU(2)? Yes...
 bad results for *l*_{1,2} but within bounds
- SU(3) χ PT ? Consistent with axiomatic principles?

< □ > < 同 > < 回 > < 回 > < 回 >

SU(3)_V limit Symmetry breaking Results

Outline

- 2 SU(2
 - $\pi \pi$ scattering
 - Fixed t dispersion relations & positivity conditions
 - Bounds on chiral LECs and the Linear Sigma Model
 - Equivalence with Pennington & Portoles

3 SU(3)

• $SU(3)_V$ limit

- Symmetry breaking
- Results
- 4 Conclusions

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (LECs independent of m_q)

Octet-to-octet scattering

Missmatch Clebsch-Gordan ↔ tensor analysis

 $8\otimes 8 \hspace{.1in} = \hspace{.1in} 27 \oplus 10 \oplus 10^* \oplus 8_1 \oplus 8_2 \oplus 1$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (LECs independent of m_q)

Octet-to-octet scattering

Missmatch Clebsch-Gordan ↔ tensor analysis

 $8\otimes 8 \hspace{.1in} = \hspace{.1in} 27 \oplus 10 \oplus 10^* \oplus 8_1 \oplus 8_2 \oplus 1$

$$\begin{aligned} \mathsf{T}(\mathsf{ab} \to \mathsf{cd}) &= \mathsf{A}_1(\mathsf{s}, t, u) \, \delta^{\mathsf{ab}} \delta^{\mathsf{cd}} + \mathsf{A}_2(\mathsf{s}, t, u) \, \delta^{\mathsf{ac}} \delta^{\mathsf{bd}} + \mathsf{A}_3(\mathsf{s}, t, u) \, \delta^{\mathsf{ad}} \delta^{\mathsf{bc}} \\ &+ \mathsf{B}_1(\mathsf{s}, t, u) \, d^{\mathsf{abe}} d^{\mathsf{cde}} + \mathsf{B}_2(\mathsf{s}, t, u) \, d^{\mathsf{ace}} d^{\mathsf{bde}} \end{aligned}$$

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (LECs independent of m_q)

Octet-to-octet scattering

Missmatch Clebsch-Gordan ↔ tensor analysis

 $8\otimes 8 \hspace{.1in} = \hspace{.1in} 27 \oplus 10 \oplus 10^* \oplus 8_1 \oplus 8_2 \oplus 1$

$$\begin{aligned} T(ab \rightarrow cd) &= A_1(s,t,u) \, \delta^{ab} \delta^{cd} + A_2(s,t,u) \, \delta^{ac} \delta^{bd} + A_3(s,t,u) \, \delta^{ad} \delta^{bc} \\ &+ B_1(s,t,u) \, d^{abe} d^{cde} + B_2(s,t,u) \, d^{ace} d^{bde} \end{aligned}$$

Crossing symmetry \Rightarrow $T_{10}(s, t) = T_{10*}(s, t)$

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (LECs independent of m_q)

Octet-to-octet scattering

Missmatch Clebsch-Gordan ↔ tensor analysis

$$\begin{array}{lll} 8\otimes 8 & = & 27\oplus 10\oplus 10^*\oplus 8_1\oplus 8_2\oplus 1\\ T(ab\rightarrow cd) & = & A_1(s,t,u)\,\delta^{ab}\delta^{cd} + A_2(s,t,u)\,\delta^{ac}\delta^{bd} + A_3(s,t,u)\,\delta^{ad}\delta^{bc} \\ & & + B_1(s,t,u)\,d^{abe}d^{cde} + B_2(s,t,u)\,d^{ace}d^{bde} \end{array}$$

Crossing symmetry \Rightarrow $T_{10}(s, t) = T_{10*}(s, t)$

Analogously to SU(2) $I, J = 1, 8_1, 8_2, 10, 27$ (no isospin!)

$$\frac{d^2}{ds^2}T'(s,t) = \frac{2}{\pi}\int_{4m^2}^{\infty} dx \left[\frac{\delta''}{(x-s)^3} + \frac{C_u''}{(x-u)^3}\right] \operatorname{Im} T''(x+i\epsilon,t)$$

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (LECs independent of m_q)

Octet-to-octet scattering

Missmatch Clebsch-Gordan ↔ tensor analysis

$$\begin{array}{lll} 8 \otimes 8 & = & 27 \oplus 10 \oplus 10^* \oplus 8_1 \oplus 8_2 \oplus 1 \\ T(ab \rightarrow cd) & = & A_1(s,t,u) \, \delta^{ab} \delta^{cd} + A_2(s,t,u) \, \delta^{ac} \delta^{bd} + A_3(s,t,u) \, \delta^{ad} \delta^{bc} \\ & & + B_1(s,t,u) \, d^{abe} d^{cde} + B_2(s,t,u) \, d^{ace} d^{bde} \end{array}$$

Crossing symmetry \Rightarrow $T_{10}(s, t) = T_{10*}(s, t)$

Analogously to SU(2) $I, J = 1, 8_1, 8_2, 10, 27$ (no isospin!)

$$\frac{d^{2}}{ds^{2}}T'(s,t) = \frac{2}{\pi} \int_{4m^{2}}^{\infty} dx \left[\frac{\delta^{ll'}}{(x-s)^{3}} + \frac{C_{ll}^{ll'}}{(x-u)^{3}} \right] \operatorname{Im} T''(x+i\epsilon,t)$$

$$\frac{d^{2}}{ds^{2}}T(\pi^{+}\pi^{+} \to \pi^{+}\pi^{+}) [(s,t) \in \mathcal{A}] \ge 0, \quad \frac{d^{2}}{ds^{2}}T(\pi^{0}\pi^{0} \to \pi^{0}\pi^{0}) [(s,t) \in \mathcal{A}] \ge 0,$$

$$\frac{d^{2}}{ds^{2}}T(\pi^{+}\pi^{0} \to \pi^{+}\pi^{0}) [(s,t) \in \mathcal{A}] \ge 0, \quad \frac{d^{2}}{ds^{2}}T(\pi\eta \to \pi\eta) [(s,t) \in \mathcal{A}] \ge 0,$$

$$\frac{d^{2}}{ds^{2}}T(K\eta \to K\eta) [(s,t) \in \mathcal{A}] \ge 0, \quad \frac{d^{2}}{ds^{2}}T(K\pi^{+} \to K\pi^{+}) [(s,t) \in \mathcal{A}] \ge 0, \quad \text{for } t \in \mathcal{A} = 0$$

Vicent Mateu

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (II)

Remarks :

• In χ PT we addopt $\mu = m_{\pi} = m_{K} \equiv m$

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (II)

- In χ PT we addopt $\mu = m_{\pi} = m_{K} \equiv m$
- $\alpha_{1i} L_1^r(m^2) + \alpha_{2i} L_2^r(m^2) + \alpha_{3i} L_3^r \ge f_i[(s, t) \in \mathcal{A}]|_{\max}$

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (II)

- In χ PT we addopt $\mu = m_{\pi} = m_{K} \equiv m$
- $\alpha_{1i} L_1^r(m^2) + \alpha_{2i} L_2^r(m^2) + \alpha_{3i} L_3^r \ge f_i[(s, t) \in \mathcal{A}]|_{\max}$
- Experimental values for $L_{1,2}(m_{\rho}) \Rightarrow$ run down to $\mu = m$

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (II)

- In χ PT we addopt $\mu = m_{\pi} = m_{K} \equiv m$
- $\alpha_{1i} L_1^r(m^2) + \alpha_{2i} L_2^r(m^2) + \alpha_{3i} L_3^r \ge f_i[(s, t) \in \mathcal{A}]|_{\max}$
- Experimental values for $L_{1,2}(m_{\rho}) \Rightarrow \text{run down to } \mu = m$
- Which physical mass corresponds to m? m_{π} ? m_{K} ? We take both.

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (II)

- In χ PT we addopt $\mu = m_{\pi} = m_{K} \equiv m$
- $\alpha_{1i} L_1^r(m^2) + \alpha_{2i} L_2^r(m^2) + \alpha_{3i} L_3^r \ge f_i[(s, t) \in \mathcal{A}]|_{\max}$
- Experimental values for $L_{1,2}(m_{\rho}) \Rightarrow \text{run down to } \mu = m$
- Which physical mass corresponds to m? m_{π} ? m_{K} ? We take both.
- $m = m_{\pi}$ not very stringent :-(.

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (II)

- In χ PT we addopt $\mu = m_{\pi} = m_{K} \equiv m$
- $\alpha_{1i} L_1^r(m^2) + \alpha_{2i} L_2^r(m^2) + \alpha_{3i} L_3^r \ge f_i[(s, t) \in \mathcal{A}]|_{\max}$
- Experimental values for $L_{1,2}(m_{\rho}) \Rightarrow \text{run down to } \mu = m$
- Which physical mass corresponds to m? m_{π} ? m_{K} ? We take both.
- $m = m_{\pi}$ not very stringent :-(.
- *m* = *m_K* severely violates bounds !

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (II)

Remarks :

- In χ PT we addopt $\mu = m_{\pi} = m_{K} \equiv m$
- $\alpha_{1i} L_1^r(m^2) + \alpha_{2i} L_2^r(m^2) + \alpha_{3i} L_3^r \ge f_i[(s, t) \in \mathcal{A}]|_{\max}$
- Experimental values for $L_{1,2}(m_{\rho}) \Rightarrow \text{run down to } \mu = m$
- Which physical mass corresponds to m? m_{π} ? m_{K} ? We take both.
- $m = m_{\pi}$ not very stringent :-(.
- *m* = *m_K* severely violates bounds !

By including SU(3)_V symmetry breaking :

The ambiguity disappears.

(日)

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (II)

Remarks :

- In χ PT we addopt $\mu = m_{\pi} = m_{K} \equiv m$
- $\alpha_{1i} L_1^r(m^2) + \alpha_{2i} L_2^r(m^2) + \alpha_{3i} L_3^r \ge f_i[(s,t) \in \mathcal{A}]|_{\max}$
- Experimental values for $L_{1,2}(m_{\rho}) \Rightarrow$ run down to $\mu = m$
- Which physical mass corresponds to m? m_{π} ? m_{K} ? We take both.
- $m = m_{\pi}$ not very stringent :-(.
- m = m_K severely violates bounds !

By including SU(3)_V symmetry breaking :

- The ambiguity disappears.
- 2 Bounds tighten

(日)

SU(3)_V limit Symmetry breaking Results

$SU(3)_V$ limit (II)

Remarks :

- In χ PT we addopt $\mu = m_{\pi} = m_{K} \equiv m$
- $\alpha_{1i} L_1^r(m^2) + \alpha_{2i} L_2^r(m^2) + \alpha_{3i} L_3^r \ge f_i[(s,t) \in \mathcal{A}]|_{\max}$
- Experimental values for $L_{1,2}(m_{\rho}) \Rightarrow \text{run down to } \mu = m$
- Which physical mass corresponds to m? m_{π} ? m_{K} ? We take both.
- $m = m_{\pi}$ not very stringent :-(.
- m = m_K severely violates bounds !

By including SU(3)_V symmetry breaking :

- The ambiguity disappears.
- Bounds tighten

but...need to reconsider the positivity conditions

ヘロト 人間 ト ヘヨト ヘヨト

SU(3)_V limit Symmetry breaking Results

Outline

- 2 SU(2
 - $\pi \pi$ scattering
 - Fixed t dispersion relations & positivity conditions
 - Bounds on chiral LECs and the Linear Sigma Model
 - Equivalence with Pennington & Portoles

3 SU(3)

- $SU(3)_V$ limit
- Symmetry breaking
- Results

SU(3)_V limit Symmetry breaking Results

Symmetry breaking

Analytic region

Consider the process $a + b \rightarrow a + b$ (Im $f_{\ell} \ge 0$) $m_a = M, m_b = m$

SU(3)_V limit Symmetry breaking Results

Symmetry breaking

Analytic region

Consider the process $a + b \rightarrow a + b$ (Im $f_{\ell} \ge 0$) $m_a = M, m_b = m$

If $a + b \rightarrow c + d$, $a + \overline{b} \rightarrow e + f$ and $a + \overline{a} \rightarrow g + h$ exist analytic in

 $s \leq (m_c + m_d)^2, t \leq (m_e + m_f)^2, s + t \geq 2(m^2 + M^2) - (m_g + m_h)^2$

SU(3)_V limit Symmetry breaking Results

Symmetry breaking

Analytic region

Consider the process $a + b \rightarrow a + b$ (Im $f_{\ell} \ge 0$) $m_a = M, m_b = m$

If $a + b \rightarrow c + d$, $a + \bar{b} \rightarrow e + f$ and $a + \bar{a} \rightarrow g + h$ exist analytic in

$$s \leq (m_c + m_d)^2, \ t \leq (m_e + m_f)^2, \ s + t \geq 2 (m^2 + M^2) - (m_g + m_h)^2$$

Dispersion relation

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} T(s,t) = \frac{2}{\pi} \int_{(m_c+m_d)^2}^{\infty} \mathrm{d}x \, \frac{\mathrm{Im} \, T(x+i\epsilon,t)}{(x-s)^3} + \frac{2}{\pi} \int_{(m_g+m_h)^2}^{\infty} \mathrm{d}x \, \frac{\mathrm{Im} \, T_u(x+i\epsilon,t)}{(x-u)^3}$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・ 国

SU(3)_V limit Symmetry breaking Results

Symmetry breaking

Analytic region

Consider the process $a + b \rightarrow a + b$ (Im $f_{\ell} \ge 0$) $m_a = M, m_b = m$

If $a + b \rightarrow c + d$, $a + \overline{b} \rightarrow e + f$ and $a + \overline{a} \rightarrow g + h$ exist analytic in

$$s \leq (m_c + m_d)^2, \ t \leq (m_e + m_f)^2, \ s + t \geq 2 (m^2 + M^2) - (m_g + m_h)^2$$

Dispersion relation

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} T(s,t) = \frac{2}{\pi} \int_{(m_c+m_d)^2}^{\infty} \mathrm{d}x \, \frac{\mathrm{Im} \, T(x+i\epsilon,t)}{(x-s)^3} + \frac{2}{\pi} \int_{(m_g+m_h)^2}^{\infty} \mathrm{d}x \, \frac{\mathrm{Im} \, T_u(x+i\epsilon,t)}{(x-u)^3}$$

Denominators positive for $s \leq (m_c + m_d)^2$, $s + t \geq 2 (m^2 + M^2) - (m_g + m_h)^2$

$$P_{\ell}\left[1 + \frac{st}{(s + m^2 - M^2)^2 - 4m^2s}\right] \ge 0 \text{ in the two integrals}$$

イロト イポト イヨト イヨト 三日

SU(3)_V limit Symmetry breaking Results

Symmetry breaking

Analytic region

Consider the process $a + b \rightarrow a + b$ (Im $f_{\ell} \ge 0$) $m_a = M, m_b = m$

If $a + b \rightarrow c + d$, $a + \overline{b} \rightarrow e + f$ and $a + \overline{a} \rightarrow g + h$ exist analytic in

$$s \leq (m_c + m_d)^2, \ t \leq (m_e + m_f)^2, \ s + t \geq 2 (m^2 + M^2) - (m_g + m_h)^2$$

Dispersion relation

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} T(s,t) = \frac{2}{\pi} \int_{(m_c+m_d)^2}^{\infty} \mathrm{d}x \, \frac{\mathrm{Im} \, T(x+i\epsilon,t)}{(x-s)^3} + \frac{2}{\pi} \int_{(m_g+m_h)^2}^{\infty} \mathrm{d}x \, \frac{\mathrm{Im} \, T_u(x+i\epsilon,t)}{(x-u)^3}$$

Denominators positive for $s \leq (m_c + m_d)^2$, $s + t \geq 2 (m^2 + M^2) - (m_g + m_h)^2$

$$P_{\ell}\left[1+\frac{s\,t}{(s+m^2-M^2)^2-4\,m^2\,s}\right] \ge 0 \text{ in the two integrals}$$

 $\frac{s t}{(s + m^2 - M^2)^2 - 4 m^2 s} \ge 0 \qquad \text{for } s \ge (m_c + m_d)^2 [(m_g + m_h)^2] \quad \boxed{\text{laviA}}_{net}$

SU(3)_V limit Symmetry breaking Results

Symmetry breaking (II)

• *t* must be positive (if $s \rightarrow \infty$ back to symmetric case)

SU(3)_V limit Symmetry breaking Results

Symmetry breaking (II)

- *t* must be positive (if $s \rightarrow \infty$ back to symmetric case)
- $P_{\ell} \ge 0$ only for $(M m)^2 \ge s \ge (M + m)^2$

SU(3)_V limit Symmetry breaking Results

Symmetry breaking (II)

• *t* must be positive (if $s \rightarrow \infty$ back to symmetric case)

•
$$P_{\ell} \ge 0$$
 only for $(M-m)^2 \ge s \ge (M+m)^2$

Theorem

Positivity conditions hold for processes of the type $a + b \rightarrow a + b$ such that the lightest pair of particles that can arise off the scattering a + b is precisely a + b, and analogously for $a + \overline{b}$.

< □ > < 同 > < 回 > < 回 >

SU(3)_V limit Symmetry breaking Results

Symmetry breaking (II)

• *t* must be positive (if $s \rightarrow \infty$ back to symmetric case)

•
$$P_{\ell} \ge 0$$
 only for $(M - m)^2 \ge s \ge (M + m)^2$

Theorem

Positivity conditions hold for processes of the type $a + b \rightarrow a + b$ such that the lightest pair of particles that can arise off the scattering a + b is precisely a + b, and analogously for $a + \overline{b}$.

$$\begin{aligned} \frac{d^2}{ds^2} T \left(\pi^+ \pi^+ \to \pi^+ \pi^+ \right) [(s,t) \in \mathcal{A}] \ge 0 \,, & \frac{d^2}{ds^2} T (\pi^0 \pi^0 \to \pi^0 \pi^0) [(s,t) \in \mathcal{A}] \ge 0 \,, \\ \frac{d^2}{ds^2} T (\pi^+ \pi^0 \to \pi^+ \pi^0) [(s,t) \in \mathcal{A}] \ge 0 \,, & \frac{d^2}{ds^2} T (\pi \eta \to \pi \eta) [(s,t) \in \mathcal{A}] \ge 0 \,, \\ \frac{d^2}{ds^2} T (\mathcal{K} \pi^+ \to \mathcal{K} \pi^+) [(s,t) \in \mathcal{A}] \ge 0 \,, & \boxed{\frac{1}{net}} \end{bmatrix} \end{aligned}$$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

SU(3)_V limit Symmetry breaking Results

Outline

- 2 SU(2
 - $\pi \pi$ scattering
 - Fixed t dispersion relations & positivity conditions
 - Bounds on chiral LECs and the Linear Sigma Model
 - Equivalence with Pennington & Portoles

3 SU(3)

- $SU(3)_V$ limit
- Symmetry breaking
- Results

Conclusions

Motivations	
SU(2)	SU(3
SU(3)	Symr
Conclusions	Resu

lts

Results

	$10^3 imes L_1^r(\mu)$	$10^3 imes L^r_2(\mu)$	$10^3 imes L_3$
$\mu = m_{ ho}$	$\textbf{0.43}\pm\textbf{0.12}$	$\textbf{0.43}\pm\textbf{0.12}$	-2.35 ± 0.37
$\mu = m_K$	$\textbf{0.69} \pm \textbf{0.12}$	$\textbf{1.26} \pm \textbf{0.12}$	-2.35 ± 0.37
$\mu = m_{\pi}$	$\textbf{2.78} \pm \textbf{0.12}$	$\textbf{1.26} \pm \textbf{0.12}$	-2.35 ± 0.37

Motivations	011(2)
SU(2)	SU(3) _V
SU(3)	Symmet Results
Conclusions	Results

Results

	$10^3 imes L_1^r(\mu)$	$10^3 \times L$	$r_{2}(\mu)$	$10^3 imes L_3$				
$\mu = m_{ ho}$	$\textbf{0.43} \pm \textbf{0.12}$	0.43 ± 0	0.12	-2.35 ± 0.37				
$\mu = m_K$	$\textbf{0.69} \pm \textbf{0.12}$	1.26 ± 0.12		-2.35 ± 0.37				
$\mu = m_{\pi}$	$\textbf{2.78} \pm \textbf{0.12}$	1.26 ± 0	0.12	-2.35 =	± 0.37			
Process	$10^3 \alpha_i L^i$	(μ) μ		$= m_{\pi}$	$\mu = m_K$		$m_{\pi}=m_{K}$	$m_{\pi} \neq m_{K}$
$\pi^0\pi^0$	$2L_{1}^{r}(\mu) + 2L_{2}^{r}$	$(\mu) + L_3$	$\textbf{6.20}\pm\textbf{0.5}$		1.6 ± 0.5		\geq 2.27	≥ 2.28
$\pi^+\pi^0$	$L_2^r(\mu)$		2.8	1 ± 0.12	$\textbf{1.26} \pm \textbf{0.12}$		\geq 0.75	\geq 0.95
$\pi^+\pi^+$	$2L_1^r(\mu) + 3L_2^r(\mu) + L_3$		9.0	9.0±0.6		± 0.6	\geq 3.32	≥ 3.91
$K\eta$	$12L_{2}^{r}(\mu) + L_{3}$		31.4	1.4 ± 1.5 12		± 1.5	\geq 8.6	-
$\pi \eta$	$3L_2^r(\mu) + L_3$		6.1	1 ± 0.5	1.4 =	± 0.5	\geq 2.51	≥ 6.00
$K^+ \pi^+$	$4L_2^r(\mu)+L_3$		8.9	9 ± 0.6	2.7 ± 0.6		\geq 3.50	≥ - 5.55

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Motivations SU(2)	SU(3
SU(3)	Symi
SU(3)	Resu

Results

	$10^3 imes L_1^r(\mu)$	$10^3 \times L_{2}$	(μ) 10 ³ ×		: L ₃			
$\mu = m_{ ho}$	$\textbf{0.43}\pm\textbf{0.12}$	$\textbf{0.43}\pm\textbf{0.12}$		-2.35 ± 0.37				
$\mu = m_K$	$\textbf{0.69} \pm \textbf{0.12}$	1.26 ± 0.12		-2.35 ± 0.37				
$\mu = m_{\pi}$	$\textbf{2.78} \pm \textbf{0.12}$	1.26 ± 0).12	-2.35 ±	= 0.37			
Process	$10^3 \alpha_i L^i$	(μ) μ		$= m_{\pi}$	$\mu = m_K$		$m_{\pi}=m_{K}$	$m_{\pi} \neq m_{K}$
$\pi^0\pi^0$	$2L_{1}^{r}(\mu) + 2L_{2}^{r}$	$2L_1^r(\mu) + 2L_2^r(\mu) + L_3$		0 ± 0.5	1.6 ± 0.5		≥ 2.27	≥ 2.28
$\pi^+\pi^0$	$L_2^r(\mu)$		2.81	1 ± 0.12	$\textbf{1.26} \pm \textbf{0.12}$		\geq 0.75	\geq 0.95
$\pi^+\pi^+$	$2L_1^r(\mu) + 3L_2^r(\mu) + L_3$		9.0	0 ± 0.6	2.8 ± 0.6		\geq 3.32	≥ 3.91
$K\eta$	$12L_{2}^{r}(\mu) + L_{3}$		31.4	4 ± 1.5	12.8 ± 1.5		\geq 8.6	-
$\pi \eta$	$3L_2^r(\mu) + L_3$		6.1	1 ± 0.5	1.4 ± 0.5		\geq 2.51	≥ 6 .00
$K^+ \pi^+$	$4L_2^r(\mu)+L_3$		8.9	9 ± 0.6	$\textbf{2.7}\pm\textbf{0.6}$		\geq 3.50	≥ - 5.55

lts

The present accuracy of the experimental determinations for L_1 , L_2 and L_3 is not enough to discern whether $SU(3) \chi PT$ at $\mathcal{O}(p^4)$ satisfies the axiomatic net principles

• EFT & axiomatic principles \Rightarrow very interesting results

► < E > < E > ...

Conclusions

- $\textcircled{\ } \textbf{EFT \& axiomatic principles} \Rightarrow \textbf{very interesting results}$
 - Bounds on LECs [as SU(2) and SU(3) χPT]

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) χ PT]
- Only efficient for $\mathcal{O}(p^4)$ LECs

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) χ PT]
- Only efficient for $\mathcal{O}(p^4)$ LECs
- Compare order of magnitude of LECs vs chiral logs

(*) * (*) *)

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) χ PT]
- Only efficient for \$\mathcal{O}(p^4)\$ LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs

★ □ ► ★ □ ►

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) χ PT]
- Only efficient for $\mathcal{O}(p^4)$ LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs

SU(2)

(*) * (*) *)

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) χ PT]
- Only efficient for O(p⁴) LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs
- SU(2)
 - Bounds on I₁ and I₂

(*) * (*) *)

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) χ PT]
- Only efficient for O(p⁴) LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs
- SU(2)
 - Bounds on I₁ and I₂
 - Discard non-linear sigma Model for $m_\sigma < 24 m_\pi$

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) χPT]
- Only efficient for O(p⁴) LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs
- SU(2)
 - Bounds on I₁ and I₂
 - Discard non-linear sigma Model for $m_\sigma < 24 m_\pi$
 - Caveat for resonance saturation

★ □ ► ★ □ ►

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) $\chi {\rm PT}]$
- Only efficient for O(p⁴) LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs
- SU(2)
 - Bounds on I₁ and I₂
 - Discard non-linear sigma Model for $m_{\sigma} < 24 m_{\pi}$
 - Caveat for resonance saturation
 - Generalizes scattering lengths method

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) $\chi {\rm PT}]$
- Only efficient for O(p⁴) LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs
- SU(2)
 - Bounds on I₁ and I₂
 - Discard non-linear sigma Model for $m_\sigma < 24 m_\pi$
 - Caveat for resonance saturation
 - Generalizes scattering lengths method
- SU(3)

• • = • • = •

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) $\chi {\rm PT}]$
- Only efficient for O(p⁴) LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs
- SU(2)
 - Bounds on I₁ and I₂
 - Discard non-linear sigma Model for $m_\sigma < 24 m_\pi$
 - Caveat for resonance saturation
 - Generalizes scattering lengths method
- SU(3)
 - Bounds on L_1 , L_2 and L_3

• • = • • = •

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) $\chi {\rm PT}]$
- Only efficient for O(p⁴) LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs
- SU(2)
 - Bounds on I₁ and I₂
 - Discard non-linear sigma Model for $m_\sigma < 24 m_\pi$
 - Caveat for resonance saturation
 - Generalizes scattering lengths method
- SU(3)
 - Bounds on L_1 , L_2 and L_3
 - Discards $m_u = m_d \equiv m_s$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) $\chi {\rm PT}]$
- Only efficient for O(p⁴) LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs
- SU(2)
 - Bounds on I₁ and I₂
 - Discard non-linear sigma Model for $m_\sigma < 24 m_\pi$
 - Caveat for resonance saturation
 - Generalizes scattering lengths method

SU(3)

- Bounds on *L*₁, *L*₂ and *L*₃
- Discards $m_u = m_d \equiv m_s$
- Consistent with $m_s = m_d \equiv m_u$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Conclusions

• EFT & axiomatic principles \Rightarrow very interesting results

- Bounds on LECs [as SU(2) and SU(3) $\chi {\rm PT}]$
- Only efficient for \$\mathcal{O}(p^4)\$ LECs
- Compare order of magnitude of LECs vs chiral logs
- Permits testing the reliability of EFTs
- SU(2)
 - Bounds on I₁ and I₂
 - Discard non-linear sigma Model for $m_\sigma < 24 m_\pi$
 - Caveat for resonance saturation
 - Generalizes scattering lengths method
- SU(3)
 - Bounds on *L*₁, *L*₂ and *L*₃
 - Discards $m_u = m_d \equiv m_s$
 - Consistent with $m_s = m_d \equiv m_u$
 - Cannot discard/confirm physical situation