EuroFlavour07 Orsay November 2007

WG2 summary

Coordinators: Patrica Ball (Durham) and Ulrich Nierste (Karlsruhe)

Overview

The WG2 parallel session contained four presentations:

- 1. Sascha Turczyk (U Siegen): Inclusive semi–leptonic B decays to order $1/m_b^4$
- 2. Sven Faller (U Siegen): $B \rightarrow D^{(*)}$ form factors from QCD sum rules with B meson distribution amplitudes
- **3**. Robert Feger (U Siegen): Testing the left-handedness of the $b \rightarrow c$ transitions
- 4. Benoît Blossier (DESY Zeuthen) 1/2 vs 3/2 puzzle in $B \rightarrow X_c \ell \nu_\ell$

1. Sascha Turczyk: Inclusive semi–leptonic B decays to order $1/m_b^4$

OPE for inclusive semi-leptonic $B \rightarrow X_c e \bar{\nu}_e$ decays:

$$\Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left(\hat{\Gamma}^{(0)} + \frac{\hat{\Gamma}^{(2)}}{m_b^2} + \frac{\hat{\Gamma}^{(3)}}{m_b^3} + \frac{\hat{\Gamma}^{(4)}}{m_b^4} + \dots \right) \,.$$

New matrix elements at order $1/m_b^4$:

$$2M_B \ s_1 = \langle B(p) | \overline{b}_v i D_\rho (ivD)^2 i D^\rho b_v | B(p) \rangle$$

$$2M_B \ s_2 = \langle B(p) | \overline{b}_v i D_\rho (iD)^2 i D^\rho b_v | B(p) \rangle$$

$$2M_B \ s_3 = \langle B(p) | \overline{b}_v ((iD)^2)^2 b_v | B(p) \rangle$$

$$2M_B \ s_4 = \langle B(p) | \overline{b}_v i D_\mu (iD)^2 i D_\nu (-i\sigma^{\mu\nu}) b_v | B(p) \rangle$$

$$2M_B \ s_5 = \langle B(p) | \overline{b}_v i D_\rho i D_\mu i D_\nu i D^\rho (-i\sigma^{\mu\nu}) b_v | B(p) \rangle$$

Using "guesstimates" for s_{1-5} Turczyk et al. calculated moments of the charged lepton energy and of the hadronic invariant mass spectrum. The impact of the $1/m_b^4$ terms on the total rate (and the determination of $|V_{cb}|$) is

$$\frac{\delta^{(4)}\Gamma}{\Gamma} \approx 0.25\%.$$

2. Sven Faller: $B \rightarrow D^{(*)}$ form factors from QCD sum rules with B meson distribution amplitudes

Calculation of $B \to D^{(*)}$ form factors with Light–cone sum rules. Method applied previously to $B \to \pi, K$ and $B \to \rho, K^*$ [Khodjamirian et al. (2007)]. Framework: Heavy Quark Effective Theory for B meson distribution amplitudes and form factors:

$$\frac{\langle D(p)|V^{\mu}|\bar{B}(p+q)\rangle}{\sqrt{m_B m_D}} = h_+(w)(v+v')^{\mu} + h_-(w)(v-v')^{\mu}$$
$$\frac{\langle D^*(v',\epsilon)|V^{\mu}|\bar{B}(v)\rangle}{\sqrt{m_B m_D^*}} = h_V(w)\epsilon^{\mu\nu\alpha\beta} \ \epsilon^*_{\nu} \ v'_{\alpha}v_{\beta}$$

Isgur-Wise limit $m_{b,c} \to \infty$, $\frac{m_c}{m_b} = \kappa^2 = const.$.

Result:

$$h_{+,V}^{BD,IW}(w) = \frac{\tilde{f}_B}{\tilde{f}_{D^{(*)}}} \int_0^{\beta_0/w} d\omega \exp\left\{\frac{\omega}{\tau} \left(\frac{\kappa^2}{2} - w\right) + \frac{\bar{\Lambda}}{\tau}\right\} \cdot \left[\frac{1}{2w}\phi_-^B(\omega) + \left(1 - \frac{1}{2w}\right)\phi_+^B(\omega)\right]$$

and

 $h_{-}^{BD,IW}(w) \equiv 0$

where $\tilde{f}_{B,D^{(*)}} = \sqrt{m_{b,c}} f_{B,D^{(*)}}$, $\beta_0 = (s_0^{D^{(*)}} - m_c^2)/m_c$ and $\bar{\Lambda} = m_B - m_b$, ϕ_-^B and ϕ_+^B are the B meson LCDAs and $M^2 = 2m_c\tau$ is the Borel parameter.

3. Robert Feger: Testing the left-handedness of the $b \rightarrow c$ transition

Ansatz: "Michel parameters" to parameterise New Physics in semi–leptonic $b \rightarrow c$ transitions:

$$\begin{split} J_{h,\mu} &= c_L \bar{c} \,\gamma_\mu P_L b + c_R \,\bar{c} \,\gamma_\mu P_R b \\ &+ g_L \bar{c} \,\frac{i D_\mu}{m_b} P_L b + g_R \,\bar{c} \,\frac{i D_\mu}{m_b} P_R b \\ &+ d_L \frac{i \partial^\nu}{m_b} (\bar{c} \,i \sigma_{\mu\nu} P_L b) + d_R \frac{i \partial^\nu}{m_b} (\bar{c} \,i \sigma_{\mu\nu} P_R b), \end{split}$$

 $c_{L/R}$: left/right-handed vector current $g_{L/R}$: left/right-handed scalar current $d_{L/R}$: left/right-handed tensor current

Standard model: $c_L = 1$ and $c_R = g_L = g_R = d_L = d_R = 0$ Sizeable effects possible.

Tree-level coefficient functions of the lepton energy spectrum $(y = 2E_{\ell}/m_b)$:

4. Benoît Blossier: "1/2 vs. 3/2" puzzle in $\overline{B} \to X_c l \bar{\nu}$

Heavy Quark Limit: The angular momentum j_l of the light degrees of freedom in a charm-flavoured meson is a good quantum number.

D:
$$J^P = 0^-$$
 and $j_l^P = \frac{1}{2}^-$
 D^* : $J^P = 1^-$ and $j_l^P = \frac{1}{2}^-$
 D_0^* : $J^P = 0^+$ and $j_l^P = \frac{1}{2}^+$
 D_1^* : $J^P = 1^+$ and $j_l^P = \frac{1}{2}^+$
 D_1^* : $J^P = 1^+$ and $j_l^P = \frac{3}{2}^+$
 D_2^* : $J^P = 2^+$ and $j_l^P = \frac{3}{2}^+$

- The composition of the final state X_c in $\overline{B} \to X_c l \overline{\nu}$ has received some attention since 10 years, see e.g. I. Bigi *et al* in arXiv:0708.1621.
- Theoretically, it is expected that the odd-parity states D, D^* and the 4 first parity-even D^{**} states do not saturate the total width.
- Covariant quark models, the Uraltsev sum rule (extracted from the OPE in

the $m_Q \to \infty$ limit of the Heavy Quark Expansion) and an exploratory lattice QCD computation lead to the conclusion that $[\Gamma(\bar{B} \to D(\frac{1}{2})^+ l\bar{\nu}) < \Gamma(\bar{B} \to D(\frac{3}{2})^+ l\bar{\nu})]^{\mathrm{TH}}.$

- Experimentally, it was found at LEP that the total width is saturated by D, D* and the broad D/D*π component of the D** distribution mass; it leads to the conclusion that
 [Γ(B→D(1/2))⁺/_{broad} lν) > Γ(B→D(3/2))⁺/_{narrow} lν)]^{EXP} if one interprets
 [D/D*π]_{broad} as D(1/2)⁺/_{broad}.
- That conflict between theoretical expectations and experimental measurements received the name of "1/2 vs. 3/2" puzzle. However, from CDF, Belle and BABAR analyses, it seems that the experimental verdict is not clear yet.
- An important experimental effort is demanded, in particular to have a better knowledge of the quantum numbers of those broad states.
- The answer will have an impact on the theoretical control over QCD nonperturbative dynamics of the heavy-light systems.

• On the theoretical side, taking account of $1/m_Q$ corrections is crucial, either in the analytical treatement of QCD (OPE, quark models) or in its numerical one (lattice).

The WG2 session has covered

- $1/m_b^4$ corrections to inclusive $B \to X_c \ell \nu \ell$ decays,
- $B \rightarrow D^{(*)}$ form factors from QCD sum rules,
- a model-independent analysis of left-handed currents in semileptonic $b \rightarrow c$ transitions,

and

• the "1/2 vs. 3/2" puzzle in $\overline{B} \to X_c l \bar{\nu}$.