EuroFlavour07
November 2007
Orsay

## WG2 summary

Coordinators: Patrica Ball (Durham) and Ulrich Nierste (Karlsruhe)

## Overview

The WG2 parallel session contained four presentations:

1. Sascha Turczyk (U Siegen): Inclusive semi-leptonic B decays to order $1 / m_{b}^{4}$
2. Sven Faller (U Siegen): $B \rightarrow D^{(*)}$ form factors from QCD sum rules with $B$ meson distribution amplitudes
3. Robert Feger (U Siegen): Testing the left-handedness of the $b \rightarrow c$ transitions
4. Benoît Blossier (DESY Zeuthen) $1 / 2$ vs $3 / 2$ puzzle in $B \rightarrow X_{c} \ell_{\ell}$
5. Sascha Turczyk: Inclusive semi-leptonic B decays to order $1 / m_{b}^{4}$

OPE for inclusive semi-leptonic $B \rightarrow X_{c} e \bar{\nu}_{e}$ decays:

$$
\Gamma=\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{c b}\right|^{2}\left(\hat{\Gamma}^{(0)}+\frac{\hat{\Gamma}^{(2)}}{m_{b}^{2}}+\frac{\hat{\Gamma}^{(3)}}{m_{b}^{3}}+\frac{\hat{\Gamma}^{(4)}}{m_{b}^{4}}+\ldots\right) .
$$

New matrix elements at order $1 / m_{b}^{4}$ :

$$
\begin{aligned}
& 2 M_{B} s_{1}=\langle B(p)| \bar{b}_{v} i D_{\rho}(i v D)^{2} i D^{\rho} b_{v}|B(p)\rangle \\
& 2 M_{B} s_{2}=\langle B(p)| \bar{b}_{v} i D_{\rho}(i D)^{2} i D^{\rho} b_{v}|B(p)\rangle \\
& 2 M_{B} s_{3}=\langle B(p)| \bar{b}_{v}\left((i D)^{2}\right)^{2} b_{v}|B(p)\rangle \\
& 2 M_{B} s_{4}=\langle B(p)| \bar{b}_{v} i D_{\mu}(i D)^{2} i D_{\nu}\left(-i \sigma^{\mu \nu}\right) b_{v}|B(p)\rangle \\
& 2 M_{B} s_{5}=\langle B(p)| \bar{b}_{v} i D_{\rho} i D_{\mu} i D_{\nu} i D^{\rho}\left(-i \sigma^{\mu \nu}\right) b_{v}|B(p)\rangle
\end{aligned}
$$

Using "guesstimates" for $s_{1-5}$ Turczyk et al. calculated moments of the charged lepton energy and of the hadronic invariant mass spectrum. The impact of the $1 / m_{b}^{4}$ terms on the total rate (and the determination of $\left|V_{c b}\right|$ ) is

$$
\frac{\delta^{(4)} \Gamma}{\Gamma} \approx 0.25 \%
$$

2. Sven Faller: $B \rightarrow D^{(*)}$ form factors from QCD sum rules with $B$ meson distribution amplitudes

Calculation of $B \rightarrow D^{(*)}$ form factors with Light-cone sum rules. Method applied previously to $B \rightarrow \pi, K$ and $B \rightarrow \rho, K^{*}$ [Khodjamirian et al. (2007)].

Framework: Heavy Quark Effective Theory for B meson distribution amplitudes and form factors:

$$
\begin{aligned}
& \frac{\langle D(p)| V^{\mu}|\bar{B}(p+q)\rangle}{\sqrt{m_{B} m_{D}}}=h_{+}(w)\left(v+v^{\prime}\right)^{\mu}+h_{-}(w)\left(v-v^{\prime}\right)^{\mu} \\
& \frac{\left\langle D^{*}\left(v^{\prime}, \epsilon\right)\right| V^{\mu}|\bar{B}(v)\rangle}{\sqrt{m_{B} m_{D}^{*}}}=h_{V}(w) \epsilon^{\mu \nu \alpha \beta} \epsilon_{\nu}^{*} v_{\alpha}^{\prime} v_{\beta}
\end{aligned}
$$

Isgur-Wise limit $m_{b, c} \rightarrow \infty, \frac{m_{c}}{m_{b}}=\kappa^{2}=$ const..

Result:

$$
\begin{aligned}
h_{+, V}^{B D, I W}(w)=\frac{\tilde{f}_{B}}{\tilde{f}_{D^{(*)}}} & \int_{0}^{\beta_{0} / w} d \omega \exp \left\{\frac{\omega}{\tau}\left(\frac{\kappa^{2}}{2}-w\right)+\frac{\bar{\Lambda}}{\tau}\right\} \\
& {\left[\frac{1}{2 w} \phi_{-}^{B}(\omega)+\left(1-\frac{1}{2 w}\right) \phi_{+}^{B}(\omega)\right] }
\end{aligned}
$$

and

$$
h_{-}^{B D, I W}(w) \equiv 0
$$

where $\tilde{f}_{B, D^{(*)}}=\sqrt{m_{b, c}} f_{B, D^{(*)}}, \beta_{0}=\left(s_{0}^{D^{(*)}}-m_{c}^{2}\right) / m_{c}$ and $\bar{\Lambda}=m_{B}-m_{b}$, $\phi_{-}^{B}$ and $\phi_{+}^{B}$ are the B meson LCDAs and $M^{2}=2 m_{c} \tau$ is the Borel parameter.
3. Robert Feger: Testing the left-handedness of the $b \rightarrow c$ transition

Ansatz: "Michel parameters" to parameterise New Physics in semi-leptonic $b \rightarrow c$ transitions:

$$
\begin{aligned}
J_{h, \mu}= & c_{L} \bar{c} \gamma_{\mu} P_{L} b+c_{R} \bar{c} \gamma_{\mu} P_{R} b \\
& +g_{L} \bar{c} \frac{i D_{\mu}}{m_{b}} P_{L} b+g_{R} \bar{c} \frac{i D_{\mu}}{m_{b}} P_{R} b \\
& +d_{L} \frac{i \partial^{\nu}}{m_{b}}\left(\bar{c} i \sigma_{\mu \nu} P_{L} b\right)+d_{R} \frac{i \partial^{\nu}}{m_{b}}\left(\bar{c} i \sigma_{\mu \nu} P_{R} b\right),
\end{aligned}
$$

$c_{L / R}$ : left/right-handed vector current $g_{L / R}$ : left/right-handed scalar current $d_{L / R}$ : left/right-handed tensor current

Standard model: $c_{L}=1$ and $c_{R}=g_{L}=g_{R}=d_{L}=d_{R}=0$ Sizeable effects possible.

Tree-level coefficient functions of the lepton energy spectrum $\left(y=2 E_{\ell} / m_{b}\right)$ :


Heavy Quark Limit: The angular momentum $j_{l}$ of the light degrees of freedom in a charm-flavoured meson is a good quantum number.
$D: J^{P}=0^{-}$and $j_{l}^{P}=\frac{1}{2}^{-}$
$D^{*}: J^{P}=1^{-}$and $j_{l}^{P}=\frac{1}{2}^{-}$
$D_{0}^{*}: J^{P}=0^{+}$and $j_{l}^{P}=\frac{1}{2}^{+}$
$D_{1}^{*}: J^{P}=1^{+}$and $j_{l}^{P}=\frac{1}{2}^{+}$
$D_{1}: J^{P}=1^{+}$and $j_{l}^{P}=\frac{3}{2}^{+}$
$D_{2}^{*}: J^{P}=2^{+}$and $j_{l}^{P}=\frac{3}{2}^{+}$

- The composition of the final state $X_{c}$ in $\bar{B} \rightarrow X_{c} l \bar{\nu}$ has received some attention since 10 years, see e.g. I. Bigi et al in arXiv:0708.1621.
- Theoretically, it is expected that the odd-parity states $D, D^{*}$ and the 4 first parity-even $D^{* *}$ states do not saturate the total width.
- Covariant quark models, the Uraltsev sum rule (extracted from the OPE in
the $m_{Q} \rightarrow \infty$ limit of the Heavy Quark Expansion) and an exploratory lattice QCD computation lead to the conclusion that $\left[\Gamma\left(\bar{B} \rightarrow D\left(\frac{1}{2}\right)^{+} l \bar{\nu}\right)<\Gamma\left(\bar{B} \rightarrow D\left(\frac{3}{2}\right)^{+} l \bar{\nu}\right)\right]^{\mathrm{TH}}$.
- Experimentally, it was found at LEP that the total width is saturated by $D, D^{*}$ and the broad $D / D^{*} \pi$ component of the $D^{* *}$ distribution mass; it leads to the conclusion that
$\left[\Gamma\left(\bar{B} \rightarrow D\left(\frac{1}{2}\right)_{\text {broad }}^{+} l \bar{\nu}\right)>\Gamma\left(\bar{B} \rightarrow D\left(\frac{3}{2}\right)_{\text {narrow }}^{+} l \bar{\nu}\right)\right]^{\mathrm{EXP}}$ if one interprets
$\left[D / D^{*} \pi\right]_{\text {broad }}$ as $D\left(\frac{1}{2}\right)_{\text {broad }}^{+}$.
- That conflict between theoretical expectations and experimental measurements received the name of " $1 / 2$ vs. $3 / 2$ " puzzle. However, from CDF, Belle and BABAR analyses, it seems that the experimental verdict is not clear yet.
- An important experimental effort is demanded, in particular to have a better knowledge of the quantum numbers of those broad states.
- The answer will have an impact on the theoretical control over QCD nonperturbative dynamics of the heavy-light systems.
- On the theoretical side, taking account of $1 / m_{Q}$ corrections is crucial, either in the analytical treatement of QCD (OPE, quark models) or in its numerical one (lattice).


## Summary

The WG2 session has covered

- $1 / m_{b}^{4}$ corrections to inclusive $B \rightarrow X_{c} \ell \nu \ell$ decays,
- $B \rightarrow D^{(*)}$ form factors from QCD sum rules,
- a model-independent analysis of left-handed currents in semileptonic $b \rightarrow c$ transitions, and
- the " $1 / 2$ vs. $3 / 2$ " puzzle in $\bar{B} \rightarrow X_{c} l \bar{\nu}$.

