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Binary black-hole event GW150914 [LIGO/VIRGO collaboration 2016]
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Binary black-hole event GW150914 [LIGO/VIRGO collaboration 2016]
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Binary black-hole event GW150914 [LIGO/VIRGO collaboration 2016]

GW

~ 2000 kmmerger
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Three gravitational events [LIGO/VIRGO collaboration 2016]
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100 years of gravitational radiation [Einstein 1916]

⇐= small perturbation of
Minkowski’s metric
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100 years of gravitational radiation [Einstein 1918]

Einstein's quadrupole formula
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100 years of gravitational radiation [Einstein 1918]

factor 1/80 should be 1/40

Einstein's quadrupole formula
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Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

1 First quadrupole formula

hTT
ij =

2G

c4D

{
d2Qij

dt2

(
t− D

c

)
+O

(v
c

)}TT

+O
(

1

D2

)
2 Einstein quadrupole formula

(
dE

dt

)GW

=
G

5c5

{
d3Qij

dt3
d3Qij

dt3
+O

(v
c

)2}
3 Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

F reac
i = − 2G

5c5
ρ xj

d5Qij
dt5

+O
(v
c

)7
which is a 2.5PN ∼ (v/c)5 effect in the source’s equations of motion
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The quadrupole formula works for the binary pulsar
[Taylor & Weisberg 1982]

Ṗ = −192π

5c5
ν

(
2πGM

P

)5/3 1 + 73
24e

2 + 37
96e

4

(1− e2)7/2
≈ −2.4× 10−12

[Peters & Mathews 1963, Esposito & Harrison 1975, Wagoner 1975, Damour & Deruelle 1983]
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The quadrupole formula works also for GW150914 !

1 The GW frequency is given in terms of the chirp mass M = µ3/5M2/5 by

f =
1

π

[
256

5

GM5/3

c5
(tf − t)

]−3/8
2 Therefore the chirp mass is directly measured as

M =

[
5

96

c5

Gπ8/3
f−11/3ḟ

]3/5
which gives M = 30M� thus M > 70M�

3 The GW amplitude is predicted to be

heff ∼ 4.1× 10−22
(M
M�

)5/6(
100 Mpc

D

)(
100 Hz

fmerger

)−1/6
∼ 1.6× 10−21

4 The distance D = 400 Mpc is measured from the signal itself
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Total energy radiated by GW150914
1 The ADM energy of space-time is constant and reads (at any t)

EADM = (m1 +m2)c2 − Gm1m2

2r
+

G

5c5

∫ t

−∞
dt′
(
Q

(3)
ij

)2
(t′)

2 Initially EADM = (m1 +m2)c2 while finally (at time tf)

EADM = Mfc
2 +

G

5c5

∫ tf

−∞
dt′
(
Q

(3)
ij

)2
(t′)

3 The total energy radiated in GW is

∆EGW = (m1 +m2 −Mf)c
2 =

G

5c5

∫ tf

−∞
dt′
(
Q

(3)
ij

)2
(t′) =

Gm1m2

2rf

4 The measured power released is

PGW ∼ 3M�c
2

0.2 s
∼ 1049 W ∼ 10−3

c5

G
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The 1PN equations of motion [Lorentz & Droste 1917]

Obtain the equations of motion of N bodies at the 1PN ∼ (v/c)2 order and
even derive the 1PN Lagrangian!

This work published in Dutch has been largely unrecognized untill an English
translation was published in 1937
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The 1PN equations of motion [Einstein, Infeld & Hoffmann 1938]

d2rA
dt2

= −
∑
B 6=A

GmB

r2AB
nAB

[
1− 4

∑
C 6=A

GmC

c2rAC
−
∑
D 6=B

GmD

c2rBD

(
1− rAB · rBD

r2BD

)

+
1

c2

(
v2
A + 2v2

B − 4vA · vB −
3

2
(vB · nAB)2

)]
+
∑
B 6=A

GmB

c2r2AB
vAB [nAB · (3vB − 4vA)]− 7

2

∑
B 6=A

∑
D 6=B

G2mBmD

c2rABr3BD
nBD
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Relativistic effects in binary pulsars [e.g. Stairs 2003]

1PN order

 ω̇ relativistic advance of periastron
γ gravitational red-shift and second-order Doppler effect
r and s range and shape of the Shapiro time delay

2.5PN order
{
Ṗ secular decrease of orbital period
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Methods to compute GW templates
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Methods to compute GW templates
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Methods to compute GW templates
[Buonanno & Damour 1998]
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Inspiralling binaries require high-order PN modelling
[Caltech “3mn paper” 1992; Blanchet & Schäfer 1993]

 m 1

2m

observer

orbital plane

i

φ(t) = φ0−
M

µ

(
GMω

c3

)−5/3
︸ ︷︷ ︸

quadrupole formalism

{
1 +

1PN

c2
+

1.5PN

c3
+ · · ·+ 3PN

c6
+ · · ·︸ ︷︷ ︸

needs to be computed with 3PN precision at least

}

Here 3PN means 5.5PN as a radiation reaction effect !
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The intermediate binary black hole problem

An alternative solution is to extend the region of validity of the PN
approximation by using Padé approximants [Damour, Iyer & Sathyaprakash 1998]

However the accuracy of the PN approximation for comparable masses turned
out to be rather good far into the strong field region [Blanchet 2001]
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The gravitational chirp of compact binaries

merger phase

inspiralling phase
post-Newtonian theory

numerical relativity

ringdown phase
perturbation theory

Effective methods such as EOB that interpolate between the PN and NR are very
important notably for the data analysis
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Isolated matter system in general relativity

wave zone

x

t

isolated matter 
       system

inner zone

exterior zone
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Isolated matter system in general relativity

wave zone

x

t

F

h ij

isolated matter 
       system

radiation field observed 
     at large distances

radiation reaction
inside the source

reac

inner zone

exterior zone
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Conformal picture [Penrose 1963]

J+

J -

I

+

-

I

I

I

0 0
spatial infinity

future null infinity

past null infinity

past infinity

future infinity

spatial infinity

matter
source

J+

J -
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Asymptotic structure of space-time

1 What is the struture of space-time far away from an isolated matter system?

2 Does a general radiating space-time satisfy rigourous definitions [Penrose 1963,

1965] of asymptotic flatness in general relativity?

3 How to relate the asymptotic structure of space-time [Bondi et al. 1962; Sachs 1962]

to the matter variable and dynamics of an actual source?

4 How to impose rigourous boundary conditions on the edge of space-time
appropriate to an isolated system?
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No-incoming radiation condition

J -

I

+

-

I

I

I

0 0
matter
source

J -

J+

    no-incoming
radiation condition
     imposed at
  past null infinity

t+  =constr
c-

J+

lim
r→+∞

t+ r
c
=const

(
∂

∂r
+

∂

c∂t

)(
rhαβ

)
= 0
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Hypothesis of stationarity in the remote past

T stationary field
       when 

t - r < - Tc
GW source

In practice all GW sources observed in
astronomy (e.g. a compact binary
system) will have been formed and
started to emit GWs only from a finite
instant in the past −T
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Post-Minkowskian expansion [e.g. Bertotti & Plebanski 1960]

Appropriate for weakly self-gravitating isolated matter sources

γPM ≡
GM

c2a
� 1

{
M mass of source
a size of source

gαβ = ηαβ +

+∞∑
n=1

Gn hαβ(n)︸ ︷︷ ︸
G labels the PM expansion

�hαβ(n) =
16πG

c4
|g|Tαβ(n) +

know from previous iterations︷ ︸︸ ︷
Λαβ(n)[h(1), · · · , h(n−1)]

∂µh
αµ
(n) = 0

Very difficult approximation to implement in practice for general sources at high
PM orders [Thorne & Kovàcs 1975]
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Linearized multipolar vacuum solution [Thorne 1980]

General solution of linearized vacuum field equations in harmonic coordinates

�hαβ(1) = ∂µh
αµ
(1) = 0

h00(1) = − 4

c2

+∞∑
`=0

(−)`

`!
∂L

(
1

r
ML(u)

)

h0i(1) =
4

c3

+∞∑
`=1

(−)`

`!

{
∂L−1

(
1

r
M

(1)
iL−1(u)

)
+

`

`+ 1
εiab∂aL−1

(
1

r
SbL−1(u)

)}

hij(1) = − 4

c4

+∞∑
`=2

(−)`

`!

{
∂L−2

(
1

r
M

(2)
ijL−2(u)

)
+

2`

`+ 1
∂aL−2

(
1

r
εab(iS

(1)
j)bL−2(u)

)}

multipole moments ML(u) and SL(u) arbitrary functions of u = t− r/c
mass M = const, center-of-mass position Xi ≡Mi/M = const, linear

momentum Pi ≡M (1)
i = 0, angular momentum Si = const
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Multipolar-post-Minkowskian expansion
[Blanchet & Damour 1986, 1988, 1992; Blanchet 1987, 1993, 1998]

1 The linearized solution is the starting point of an explicit MPM algorithm

hαβMPM =

+∞∑
n=1

Gn hαβ(n)

2 Hierarchy of perturbation equations is solved by induction over n

�hαβ(n) = Λαβ(n)[h(1), h(2), . . . , h(n−1)]

∂µh
αµ
(n) = 0

3 A regularization is required in order to cope with the divergency of the
multipolar expansion when r → 0
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Multipolar-post-Minkowskian expansion
[Blanchet & Damour 1986, 1988, 1992; Blanchet 1987, 1993, 1998]

Theorem 1:
The MPM solution is the most general solution of Einstein’s vacuum equations
outside an isolated matter system

Theorem 2:
The general structure of the PN expansion is

hαβPN(x, t, c) =
∑
p>2
q>0

(ln c)q

cp
hαβp,q(x, t)

Theorem 3:
The MPM solution is asymptotically simple at future null infinity in the sense of
Penrose [1963, 1965] and agrees with the Bondi-Sachs [1962] formalism

MB(u)︸ ︷︷ ︸
Bondi mass

= M︸︷︷︸
ADM mass

− G

5c5

∫ u

−∞
dτM

(3)
ij (τ)M

(3)
ij (τ)

+ higher multipoles and higher PM computable to any order
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The MPM-PN formalism

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched
to a general post-Newtonian (PN) expansion in the near zone

near zone

PN source

wave zone

exterior zone
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The MPM-PN formalism

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched
to a general post-Newtonian (PN) expansion in the near zone

near zone

PN source

wave zone

matching zone

exterior zone
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The matching equation

1 This is a variant of the theory of matched asymptotic expansions
[Kates 1980; Anderson et al. 1982; Blanchet 1998]

match

 the multipole expansion M(hαβ) ≡ hαβMPM

with

the PN expansion h̄αβ ≡ hαβPN

M(hαβ) =M(h̄αβ)

Left side is the NZ expansion (r → 0) of the exterior MPM field
Right side is the FZ expansion (r → ∞) of the inner PN field

2 The matching equation has been implemented at any post-Minkowskian
order in the exterior field and any PN order in the inner field

3 It gives a unique (formal) multipolar-post-Newtonian solution valid
everywhere inside and outside the source
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The matching equation

h

r

exterior zone

near zone

GW150914
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The matching equation

actual solution

h

r

exterior zone

near zone

GW150914
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The matching equation

multipole expansion

actual solution

h

r

exterior zone

near zone

GW150914
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The matching equation

PN expansion

multipole expansion

actual solution

h

r

exterior zone

near zone

GW150914
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The matching equation

PN expansion

multipole expansion

actual solution

h

r

exterior zone

near zone

matching zone

GW150914
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General solution for the multipolar field [Blanchet 1995, 1998]

M(hµν) = FP�−1retM(Λµν) +

+∞∑
`=0

∂L

{
Mµν
L (t− r/c)

r

}
︸ ︷︷ ︸

homogeneous retarded solution

where Mµν
L (t) = FP

∫
d3x x̂L

∫ 1

−1
dz δ`(z) τ̄µν(x, t− zr/c)︸ ︷︷ ︸

PN expansion of the pseudo-tensor

The FP procedure plays the role of an UV regularization in the non-linearity
term but an IR regularization in the multipole moments

From this one obtains the multipole moments of the source at any PN order
solving the wave generation problem

This is a formal PN solution i.e. a set of rules for generating the PN series
regardless of the exact mathematocal nature of this series
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General solution for the inner PN field
[Poujade & Blanchet 2002; Blanchet, Faye & Nissanke 2004]

h̄µν = FP�−1ret τ̄
µν +

+∞∑
`=0

∂L

{
RµνL (t− r/c)−RµνL (t+ r/c)

r

}
︸ ︷︷ ︸

homogeneous antisymmetric solution

where RµνL (t) = FP

∫
d3x x̂L

∫ ∞
1

dz γ`(z) M(τµν)(x, t− zr/c)︸ ︷︷ ︸
multipole expansion of the pseudo-tensor

The radiation reaction effects starting at 2.5PN order appropriate to an
isolated system are determined to any order

In particular nonlinear radiation reaction effects associated with tails are
contained in the second term and start at 4PN order
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Radiative moments at future null infinity

Correct for the logarithmic deviation of retarded time in harmonic coordinates
with respect to the actual null coordinate

T − R

c︸ ︷︷ ︸
radiative coordinates

= t− r

c︸ ︷︷ ︸
harmonic coordinates

− 2GM

c3
ln

(
r

cτ0

)
+O

(
1

r

)

Asymptotic waveform is parametrized by radiative moments UL and VL [Thorne 1980]

hTT
ij =

1

R

∞∑
`=2

NL−2 UijL−2(T −R/c)︸ ︷︷ ︸
mass-type

+εab(iNaL−1 Vj)bL−2(T −R/c)︸ ︷︷ ︸
current-type

+O
(

1

R2

)
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The 3PN radiative quadrupole moment

Uij(t) = M
(2)
ij (t) +

2GM

c3

∫ +∞

0

dτM
(4)
ij (t− τ)

[
ln

(
τ

2τ0

)
+

11

12

]
︸ ︷︷ ︸

1.5PN tail integral

+
G

c5

{
−2

7

∫ +∞

0

dτM
(3)
a<iM

(3)
j>a(t− τ)︸ ︷︷ ︸

2.5PN memory integral

+instantaneous terms

}

+
2G2M2

c6

∫ +∞

0

dτM
(5)
ij (t− τ)

[
ln2

(
τ

2τ0

)
+

57

70
ln

(
τ

2τ0

)
+

124627

44100

]
︸ ︷︷ ︸

3PN tail-of-tail integral

+O
(

1

c7

)
The tail-of-tail-of-tail effect arises at 4.5PN order and has been recently
computed [Marchand, Blanchet & Faye 2016]
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Tails of gravitational waves [Bonnor 1959; Blanchet & Damour 1988, 1992]

Tails are produced by backscatter
of GWs on the curvature induced by
the matter source’s total mass M 4PN

1.5PN

matter source

field point

δhtailij =
4G

c4r

GM

c3

∫ t

−∞
dt′Mij(t

′) ln

(
t− t′
τ0

)
︸ ︷︷ ︸

The tail is dominantly a 1.5PN effect

+ · · ·
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Application to compact binary inspiral

1 Apply the previous PN solution to systems of point particles

Tµν(x) =
∑
A

∫ +∞

−∞
dτA p

(µ
A u

ν)
A

δ(4)(x− yA)√−gA
+ (spin contributions)

2 Suplement the calculation by a self-field regularization

Hadamard’s regularization
Dimensional regularization

3 The self-field regularization should be applied conjointly with the FP
regularization, say in the multipole moments

FPB→0

{
ACd→3

∫
ddx

`0d−3

( |x|
r0

)B
F (x)

}
4 The IR scale r0 and UV scale `0 should disappear at the end of the calculation
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Dimensional regularization [t’Hooft & Veltman 1972]

1 Einstein’s field equations are solved in d spatial dimensions (with d ∈ C) with
distributional sources. In Newtonian approximation

∆U = −4π
2(d− 2)

d− 1
Gρ

2 For two point-particles ρ = m1δ(d)(x− y1) +m2δ(d)(x− y2) we get

U(x, t) =
2(d− 2)k

d− 1

(
Gm1

|x− y1|d−2
+

Gm2

|x− y2|d−2
)

with k =
Γ
(
d−2
2

)
π

d−2
2

3 Computations are performed when <(d) is a large negative number, and the
result is analytically continued for any d ∈ C except for isolated poles

4 Dimensional regularization is then followed by a renormalization of the
worldline of the particles so as to absorb the poles ∝ (d− 3)−1
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Checking the PN machinery with GSF

m
1

m
2

r

log
10

(m
2 
/m

1
)
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Looking at the conservative part of the dynamics

K
K K1

u
1



 

particle's trajectories

light cylinder

uµ1 = ut1K
µ where ut1 =

(
− (gµν)1︸ ︷︷ ︸

regularized metric

vµ1 v
ν
1

c2

)−1/2
[Detweiler 2008]
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Standard PN theory agrees with GSF calculations

utSF = −y − 2y2 − 5y3 +

(
−121

3
+

41

32
π2

)
y4

+

(
−1157

15
+

677

512
π2 − 128

5
γE −

64

5
ln(16y)

)
y5

−956

105
y6 ln y−13696π

525
y13/2 − 51256

567
y7 ln y +

81077π

3675
y15/2

+
27392

525
y8 ln2 y +

82561159π

467775
y17/2 − 27016

2205
y9 ln2 y

− 11723776π

55125
y19/2 ln y − 4027582708

9823275
y10 ln2 y

+
99186502π

1157625
y21/2 ln y +

23447552

165375
y11 ln3 y + · · ·

1 Integral PN terms such as 3PN permit checking dimensional regularization
[Blanchet, Detweiler, Le Tiec & Whiting 2010]

2 Half-integral PN terms starting at 5.5PN order permit checking the
non-linear tail (and tail-of-tail) terms [Blanchet, Faye & Whiting 2014]
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3.5PN energy flux of compact binaries
[BDIWW 1995; B 1996, 1998; BFIJ 2002; BDEI 2006]

F =
32c5

5G
ν2x5

{
1 +

1PN︷ ︸︸ ︷(
−1247

336
− 35

12
ν

)
x+

1.5PN tail︷ ︸︸ ︷
4πx3/2

+

(
−44711

9072
+

9271

504
ν +

65

18
ν2
)
x2 +

2.5PN tail︷ ︸︸ ︷(
−8191

672
− 583

24
ν

)
πx5/2

+

[
6643739519

69854400
+

3PN tail-of-tail︷ ︸︸ ︷
16

3
π2 − 1712

105
γE −

856

105
ln(16x)

+

(
−134543

7776
+

41

48
π2

)
ν − 94403

3024
ν2 − 775

324
ν3
]
x3

+

(
−16285

504
+

214745

1728
ν +

193385

3024
ν2
)
πx7/2︸ ︷︷ ︸

3.5PN tail

+O
(

1

c8

)}

The 4.5PN coefficient has been obtained recently [Marchand, Blanchet & Faye 2016]
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Measurements of PN parameters [LIGO/VIRGO collaboration 2016]

0PN 0.5PN 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN
PN order

10−1

100

101
|δϕ̂
|

GW150914
GW151226
GW151226+GW150914
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3.5PN dominant gravitational wave modes
[BIWW 1995; ABIQ 2004; BFIS 2008; FBI 2014]

h22 =
2Gmν x

R c2

√
16π

5
e−2iψ

{
1 + x

(
−107

42
+

55ν

42

)
+ 2πx3/2

+ x2
(
−2173

1512
− 1069ν

216
+

2047ν2

1512

)
+ [· · · ] x5/2︸ ︷︷ ︸

2.5PN

+ [· · · ] x3︸ ︷︷ ︸
3PN

+ [· · · ] x7/2︸ ︷︷ ︸
3.5PN

+O
(
x4
)}

h33 = · · ·
h31 = · · ·

Tail contributions in this expression are factorized out in the phase variable

ψ = φ− 2GMω

c3
ln

(
ω

ω0

)
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4PN spin-orbit effects in the orbital frequency
[Marsat, Bohé, Faye, Blanchet & Buonanno 2013]

ω̇

ω2
=

96

5
ν x5/2

{ non-spin terms︷ ︸︸ ︷
1 + x [· · · ] + x3/2 [· · · ] + x2 [· · · ] + x5/2 [· · · ] + x3 [· · · ]

+ [· · · ] x3/2︸ ︷︷ ︸
1.5PN SO

+ [· · · ] x2︸ ︷︷ ︸
2PN SS

+ [· · · ] x5/2︸ ︷︷ ︸
2.5PN SO

+ [· · · ] x3︸ ︷︷ ︸
3PN SOtail & SS

+ [· · · ] x7/2︸ ︷︷ ︸
3.5PN SO

+ [· · · ] x4︸ ︷︷ ︸
4PN S0tail & SS

+O
(
x4
)}

Leading SO and SS terms due to [Kidder, Will & Wiseman 1993; Kidder 1995]

Many NL SS terms in EOM computed with the ADM Hamiltonian [Hergt,

Steinhoff & Schäfer 2010] and the Effective Field Theory [Porto & Rothstein 2006; Levi 2010]
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The 4PN equations of motion

THE 4PN EQUATIONS OF MOTION
Based on a collaboration with

Laura Bernard, Alejandro Bohé, Guillaume Faye & Sylvain Marsat
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The 4PN equations of motion

4PN equations of motion of compact binaries

dvi1
dt

=− Gm2

r212
ni12

+

1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term︷ ︸︸ ︷
1

c2

{[
5G2m1m2

r312
+

4G2m2
2

r312
+ · · ·

]
ni12 + · · ·

}
+

1

c4
[· · · ]︸ ︷︷ ︸

2PN

+
1

c5
[· · · ]︸ ︷︷ ︸

2.5PN
radiation reaction

+
1

c6
[· · · ]︸ ︷︷ ︸

3PN

+
1

c7
[· · · ]︸ ︷︷ ︸

3.5PN
radiation reaction

+
1

c8
[· · · ]︸ ︷︷ ︸

4PN
conservative & radiation tail

+O
(

1

c9

)

2PN


[Otha, Okamura, Kimura & Hiida 1973, 1974; Damour & Schäfer 1985]

[Damour & Deruelle 1981; Damour 1983]

[Kopeikin 1985; Grishchuk & Kopeikin 1986]

[Blanchet, Faye & Ponsot 1998]

[Itoh, Futamase & Asada 2001]

ADM Hamiltonian

Harmonic coordinates

Extended fluid balls

Direct PN iteration

Surface integral method
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The 4PN equations of motion

4PN equations of motion of compact binaries

dvi1
dt

=− Gm2

r212
ni12

+

1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term︷ ︸︸ ︷
1

c2

{[
5G2m1m2

r312
+

4G2m2
2

r312
+ · · ·

]
ni12 + · · ·

}
+

1

c4
[· · · ]︸ ︷︷ ︸

2PN

+
1

c5
[· · · ]︸ ︷︷ ︸

2.5PN
radiation reaction

+
1

c6
[· · · ]︸ ︷︷ ︸

3PN

+
1

c7
[· · · ]︸ ︷︷ ︸

3.5PN
radiation reaction

+
1

c8
[· · · ]︸ ︷︷ ︸

4PN
conservative & radiation tail

+O
(

1

c9

)

3PN


[Jaranowski & Schäfer 1999; Damour, Jaranowski & Schäfer 2001]

[Blanchet & Faye 2000; de Andrade, Blanchet & Faye 2001]

[Itoh & Futamase 2003; Itoh 2004]

[Foffa & Sturani 2011]

ADM Hamiltonian

Harmonic equations of motion

Surface integral method

Effective field theory

4PN

{
[Jaranowski & Schäfer 2013; Damour, Jaranowski & Schäfer 2014]

[Bernard, Blanchet, Bohé, Faye & Marsat 2015]

ADM Hamiltonian

Fokker Lagrangian
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The 4PN equations of motion

Fokker action of N particles [Fokker 1929]

1 Gauge-fixed action for a system of N point particles

S =
c3

16πG

∫
d4x
√−g

[
R −1

2
gµνΓµΓν︸ ︷︷ ︸

Gauge-fixing term

]

−
∑
A

mAc
2

∫
dt
√
−(gµν)A v

µ
Av

ν
A/c

2︸ ︷︷ ︸
N point particles

2 Fokker action is obtained by inserting an explicit PN solution of the Einstein
field equations

gµν(x, t) −→ gµν(x;yB(t),vB(t), · · ·)
3 The PN equations of motion of the N particles (self-gravitating system) are

δSF

δyA
≡ ∂LF

∂yA
− d

dt

(
∂LF

∂vA

)
+ · · · = 0
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The 4PN equations of motion

Fokker action in the PN approximation

The Fokker action is split into a PN (near-zone) term plus a contribution
involving the multipole (far-zone) expansion

SgF = FP
B=0

∫
d4x

( r
r0

)B
Lg + FP

B=0

∫
d4x

( r
r0

)B
M(Lg)

The multipole term gives zero for any “instantaneous” term∫
d4x

( r
r0

)B
M(Lg)

∣∣
inst

= 0

thus only “hereditary” terms contribute and they are at least 5.5PN

Finally we obtain

SgF = FP
B=0

∫
d4x

( r
r0

)B
Lg

where the constant r0 represents an IR cut-off scale and plays a crucial role
at the 4PN order
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The 4PN equations of motion

Gravitational wave tail effect at the 4PN order

At 4PN order there is an imprint of gravitational wave tails in the local
(near-zone) dynamics of the source

This leads to a non-local-in-time contribution in the Fokker action

Stail
F =

G2M

5c8
Pf
s0

∫∫
dtdt′

|t− t′| I
(3)
ij (t) I

(3)
ij (t′)

The constant s0 is a priori different from the IR scale r0 but posing

s0 = r0 e
−α

we find that r0 finally cancels out so the result is IR finite

The remaining constant α turns out to be an ambiguity parameter that we
fix by requiring that the energy invariant function for circular orbits agrees
with gravitational self-force (GSF) calculations at 4PN order
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The 4PN equations of motion

The method “n+ 2”

Adopt as basic gravitational variables

h ≡
(
h
00

+ h
ii
, h

0i
, h
ij
)

Suppose that h is known up to order 1/cn+2 thus

h = hn + δhn where δhn = O
(

1

cn+3

)
Expand the Fokker action around the known solution

SF[h] = SF[hn] +

∫
d4x

δSF

δh
[hn] δhn +O(δh

2

n)︸ ︷︷ ︸
is at least of order O(1/c2n+2)

Thus the Fokker action is known up to 1/c2n i.e. nPN order
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The 4PN equations of motion

Conserved energy for circular orbits at 4PN order

The energy for circular orbits at the 4PN order in the small mass ratio limit is
known from self-force calculations of the redshift variable

This permits to fix the ambiguity parameter α and to complete the 4PN
equations of motion

E4PN = −µc
2x

2

{
1 +

(
−3

4
− ν

12

)
x+

(
−27

8
+

19

8
ν − ν2

24

)
x2

+

(
−675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3
)
x3

+

(
−3969

128
+

[
− 123671

5760
+

9037

1536
π2 +

896

15
γE +

448

15
ln(16x)

]
ν

+

[
−498449

3456
+

3157

576
π2

]
ν2 +

301

1728
ν3 +

77

31104
ν4
)
x4
}

(1)
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γE +
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+
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The 4PN equations of motion

Conserved energy for circular orbits at 4PN order

1 We did several computations of the energy function E(Ω). For instance, we
can use the associated Hamiltonian formalism [DJS 2014]

SF =

∫ +∞

−∞

[∑
A

piAv
i
A −H

]
where H tail

F = −Ltail
F

2 With canonical variables r, ϕ, pr, pϕ we have to solve for circular orbits

δH

δr

[
r0, p0r = 0, p0ϕ

]
= 0

δH

δpϕ

[
r0, p0r = 0, p0ϕ

]
= Ω

3 Our end result for the 4PN equations of motion differs from [DJS 2014]

We disagree on their treatment of the non-local action when computing the
energy for circular orbits
We are improving our IR regularization [BBBFM, in progress]
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