

KEK-Experiment Conversite And Granular target temperature measurement during channeling experiment

X.Artru, I.Chaikovska, R.Chehab, M.Chevallier, K.Furukawa, H.Guler, T.Kamitani, F.Miyahara, M.Satoh, P.Sievers, T.Suwada, K.Umemori Presented by H. GULER (LAL)

Outline

- Data taking timeline
- Experimental setup
- Filtering the data
- Measurements
 - 25 Hz Pattern beam
 - 1 Hz beam
 - 25Hz continuous beam
- Evaluate the time constants

Data taking timeline

- Different beam repetition rates and beam pattern:
 - 1Hz
 - 25Hz continuous
 - 25Hz pattern : [1s ON , 5s OFF]

Experimental setup

- Automatically switch between different targets
 - Without stopping the beam and have an access
 - Different thickness (2,4,6 or 8) Layers

- > Thermocouple disposition
 - > 9 placed on **the back surface** of each granular target
 - > 1 placed on the table to measure **ambient temperature**

Data structure : 50H noise

14/09/2016

H. GULER, POSIPOL 2016

Method to cleanup (filter) the data

- 50Hz noise in the data is visible
- Temperature signal mostly at low frequency (<10Hz)
- Try to perform a low pass filter to eliminate the high frequency noise
 - See how the filtering is depending on the upper frequency cut

Filtering upper cut study

Best filtering upper frequency cut : 30 to 40 Hz

Measurements

1Hz data :

Need filtering to see temperature jump

1Hz data : raw temperature jump

The maximum temperature jump around 0.1°C for the sensors 3 and 7. **Rise time** around 0.15s

25Hz pattern beam :

25 Hz beam pattern [1s ON, 5s OFF] data

Data Fitting :

1Hz data → Compare with the last article
25H Pattern fitting
25 continuous data fitting

Long term data taking (10/12/2015 from 19h34)

15

25 Hz pattern analysis \rightarrow fitting shape

- Decrease shape compatible with exponential law with constant time on plot below.
- Increase shape in compatible with **linear function**.
 - Rise time for 1Hz ~ 0.15s
 - @25 Hz beam, temperature has no time to decrease, so rise keep linear until saturation.

End of 25 Hz region : Beam switched OFF

Temperature decrease depends on the sphere position. It seems to decrease faster for central sphere. But also from a sphere with higher initial temperature. 14/09/2016 H. GULER, POSIPOL 2016

25 Hz continuous data taking – Decrease part \rightarrow FITS

Fitting with sum of 2 exponentials:

14/02/2006 down constant time are seen : around 10s and around 2000sosiany 2016 reason for that ?

1Hz Data : 10/11/2015 : 14h11

1Hz Data : 10/11/2015 : 14h11

Fitting : $a_1.exp(t/\tau_1)+a_2.exp(t/\tau_2)$

- Rise time between 50 and 100 ms
- Decay time between 250 and 500 ms
- All varying during the data taking

1Hz Data : 10/11/2015 : 14h11

Compact vs Granular

- Temperature jump is **3 times less** for the granular target (hottest sphere) than for the compact (8mm) target.
- Temperature rise time is much longer for granular target than for the compact one
- Temperature decay take also more time for the granular target

Results of the temperature rise measurement. Each property corresponds to a parameter in the fitting function.

Target scheme	Thickness (mm)	a: Temperature rise (°C)	τ_1 : Decay time (ms)	τ_2 : Rise time (ms)
Conventional	18	1.071 ± 0.003	332 ± 3	8 ± 1
	8	0.373 ± 0.003	116 ± 1	3 ± 1
Hybrid axis on	¹⁸ Article data	0.419 ± 0.002	537 ± 1	10 ± 1
	8	0.300 ± 0.002	178 ± 2	2 ± 1
Hybrid axis off	18	0.197 ± 0.004	542 ± 3	7 ± 1
-	8	0.095 ± 0.001	144 ± 4	3 ± 1
11/00/0010			4.0	

Conclusions and ideas for the next experiment

- Temperature measurements on granular target during channeling experiment
 - different beam modes have been tried (1Hz, 25Hz continuous, 25Hz pattern)
 - only the 4 layer target was useful (thermocouple cabled)
 - Unterpretended by the second se
- Next measurements should include :
 - All the different target (4 granular target) and also compact (reference) target
 - To get the data in the same conditions
 - Think about the origin of the 50Hz noise / Or perform an online noise reduction to better see the data changing with the beam conditions
- Simulation side :
 - GEANT4 → Deposited energy into spheres (quite well understood)
 - ANSYS simulations are still needed to simulate the temperature behavior and have a comprehensive picture of the heat transfers.

Thank you -----

Backup slides

End of 25 Hz pattern region : Beam switched OFF Fitting the shape.

- We expect an exponential drop or 2 additional exponential corresponding to different regimes in the temperature drop.
- In our case the beam OFF appear around 23s in our graph (little discontinuity in the curve).
- Fitting parameter :
 - Time constant for the exp is consistent with the data shape.
 - Single exponential was not sufficient.
 - Addition of second exponential shaped used for the fit but has not physical meaning (parameters are negative for B and t1 ...)

25 Hz continuous data taking – Increase part

- 25 Hz continuous :
 - Plateau (equilibrium) appear at different time (25 to 60 and more) depending on the sphere position.
 - Increase part compatible with exponential fit (sum of 2 exponentials)

H. GULER, POSIPOL 2016

25 Hz continuous data taking – Increase part \rightarrow FITS

