Target material tests with the electron beam at the microtron in Mainz

Felix Dietrich, <u>Alexandr Ignatenko</u>, Gudrid Moortgat-Pick, Sabine Riemann, Andriy Ushakov

POSIPOL2016 Orsay, France, September 14–16, 2016

Overview

- Introduction / Motivation
- Mainz Microtron (MAMI)
- Material for the tests
- Simulations results
- > Material after the tests
- > Summary

Introduction / Motivation

- Encouraging results for Ti and Ti alloys for KEKB. No tests to long-term cyclic load
- Idea to expose to high cyclic load the material for the ILC components
- Tests using injector of MAMI
- Ti alloy for the positron conversion target high cyclic load
- What target thickness is better?

Mainz Microtron

Mainz Microtron

The Mainz Microtron (MAMI) is an accelerator for electron beams run by the Institute for Nuclear Physics of the University of Mainz used for hadron physics experiments

```
cw e<sup>-</sup> beams > 20 \muA (polarized) or up to 100 \muA (unpolarized)
```

In our tests:

14 MeV e⁻, 10 μ A average beam current, Gaussian beam 200 μ m rms radius

Collaborators in Mainz

Kurt Aulenbacher

Philipp Heil

Valery Tioukine

+ Marco Dehn et al. (operators of MAMI)

Material for the tests

Assembly with the targets

Material of targets:

Grade 5 Ti – Ti6Al4V

Target	#1	#2	#3
Thickness	1 mm	1 mm	2 mm
Surface	Rough	Rough	Smooth
Fixation	Not fixed	Fixed	Fixed
Cooling	Radiation	Radiation + contact to the holder	Radiation

Diagnostics: temperature and current measurement for target #1

#1

#2

#3

Front view to the target assembly

Side view to the target assembly

Targets

Rough surface, produced by erosion process from a thicker bar

Target #3

"Smooth" surface, milled

Program

Target	Hit point	Regime	Beam time	Load cycles	Years of ILC operation*
#1	1	100 Hz, 2 ms, 10 μA average	18 h 28 min	6.82·10 ⁶	2.46
#1	2	67 Hz, 3 ms, 10 μA average	5h 4 min	$1.24 \cdot 10^{6}$	0.45
#2	1	67 Hz, 3 ms, 10 μA average	5h 4 min	$1.24 \cdot 10^{6}$	0.45
#3	1	100 Hz, 2 ms, 10 μA average	14 h 22 min	5.17·10 ⁶	1.87

*1 year of ILC operation: 5000 h, 5 Hz, each point is irradiated every 6.5 s

Simulations results

GEANT4 and FLUKA simulations, targets #1 & #2

Number e^{-} per bunch = $2.55 \cdot 10^{5}$

Number of bunches per pulse = $4.9 \cdot 10^6 (2 \text{ ms})$ or $7.35 \cdot 10^6 (3 \text{ ms})$

* GEANT4.10.02, physics list FTFP_BERT

Simulation, target #3

XZ @ Y=0

 $PEDD = 4.74 \text{ GeV}/(e^{-} \text{ cm}^{3}) = 4.37 \cdot 10^{-5} \text{ J}/(g \cdot \text{bunch}) (FLUKA)$

Number e^{-} per bunch = 2.55 $\cdot 10^{5}$

Number of bunches per pulse = $4.9 \cdot 10^6 (2 \text{ ms})$ or $7.35 \cdot 10^6 (3 \text{ ms})$

ANSYS simulation, target #1

Target	#1	
Thickness	1 mm	
Surface	Rough	
Fixation	Not fixed	
Cooling	Radiation	

Neglect low thermal conductivity to the holder via ceramics etc Consider cooling by radiation from the surface only

Max. average $T = 691 \text{ }^{\circ}\text{C}$

Max. T rise / pulse (@ 700 °C) = 82 °C

Max. T in target #1: 691 + 82 °C

- * Here and later:
- Ambient $T = 22 \degree C$
- Ti6Al4V properties according to

K.C. Mills, 2002, Recommended Values of Thermophysical Properties For Selected Commercial Alloys, p. 217, as referenced by J. Yang

ANSYS simulation, target #3

Target	#3	
Thickness	2 mm	
Surface	Smooth	
Fixation	Fixed	
Cooling	Radiation	

Neglect thermal conductivity to the holder via ceramics and fixation screws

Consider cooling by radiation from the surface only

 $\varepsilon = 0.5$

Max. average T = 787 °C

Max. T rise / pulse (@ 760 °C) = 88 °C

Max. T in target #3: 787 + 88 °C

Although, if $\varepsilon = 0.1$:

Max. average T = $1105 \circ C$

Material after the tests

Targets after testbeam

Holder with targets, entrance side

Irradiation spots

Holder with targets, exit side

Target #1, entrance side, surface investigation

Surface investigation with 3D laser scan microscope VK-X100/X200 series

Before

After

Color change observed, no major changes to the surface

Target #1, entrance side, surface investigation

300,0 µm

250,0

200,0

150,0

100,0

50,0

³μm

Before

Flat surface observed before and after irradiation, no major changes

4000.0

Target #1, exit side, surface investigation

Before

After

Color change observed, no major changes to the surface

Target #1, exit side, surface investigation

Flat surface observed before and after irradiation, no major changes

Target #3, surface investigation, entrance side

Before

After

Beam spot clearly seen, major changes

Target #3, surface investigation, entrance side

Before

Flat surface observed before irradiation

Plastic deformation after irradiation, 1 peak and 2 deeps observed in the beam spot: $\sim 35 \ \mu m$ from the bottom of the deep to the top of the peak

Target #3, entrance side

Surface of target #3

Surface of a Ti6Al4V plate heated by laser beam *

C

Heated up to 1660 °C?

* J. Yang et al., Journal of Materials Processing Technology 210 (2010) 2215-2222

Alexandr Ignatenko | POSIPOL 2016 | September 14 - 16, 2016 | Page 24

1660°C

Target #3, surface investigation, exit side

Plastic deformation after irradiation, 1 peak observed in the beam spot: $\sim 25~\mu m$ from the surrounding to the top of the peak

Target #3, SEM image (Yegor Tamashevich)

Target #3, SEM image (Yegor Tamashevich)

Surface outside beam spot

Point 1 – Beam spot area Point 2 – Un-irradiated area

Beam spot area

Ablation and condensation process ?

Summary

- Ti6Al4V targets survived high cyclic load of up to $6.82 \cdot 10^6$ cycles heated to at least 690 °C
- No major damage to the material after the tests at the temperature of at least $690 \,^{\circ}\text{C}$
- Noticeable changes only for the material (plastic deformation, surface change) exposed to the temperatures >780 °C
- Next steps:
 - further tests at 14 MeV
 - tests at 3.5 MeV: material for target & for the dump vacuum window

Thank you for your attention!

