Quantum effects in production of gammas for positrons

Eugene Bulyak, Nikolay Shul'ga

NSC KIPT, Kharkov Ukraine

PosiPol 2016

E.Bulyak, N.Shul'ga Quantum effects in production of gammas

problem setup

- periodic force with given envelop undulator, laser pulse
- radiation: statistically independent photons, given spectra
- recoils decrease electrons' energy
- goal:evolution of initially given electron spectrum along the field special attention – front end of the field

motivation

- ILC positron source: effect of the undulator on the beam parameters
- ILC alternative Compton positron source – performance
- lack of analytic description for small average number of photons emitted
- drawbacks of the diffusive approximation

System of units: $m_e = c = \hbar = 1$, initial distribution $f_0(\gamma) \equiv f(z = 0, \gamma)$

$$\frac{\partial}{\partial z}f(z,\gamma) = \int \left[f(z,\gamma+\omega)W(z,\gamma+\omega,\omega) - f(z,\gamma)W(z,\gamma,\omega)\right] \,\mathrm{d}\omega$$

where $W(z, \gamma, \omega)$ is the probability density Approximation: $\gamma \gg 1$, $\omega_{\max} \ll \gamma$, $W(z, \gamma, \omega) = \psi(z)w(\gamma, \omega) \approx \psi(z)w(\omega)$ Kinetic equation casts into

$$f'_{x} = f \star w - f$$

with $f \star w \equiv \int f(\gamma + \omega)w(\omega)d\omega$ cross correlation; $x = \int_0^z \psi(z') dz'$ number of emitted photons.

Kinetic equation: solution and moments (rigorous) E.Bulyak, N.Shulga (2016), submitted to EPL

Fourier transform of electron spectrum evolution then the inverse

$$\hat{f} = \sum_{n=0}^{\infty} \frac{\mathrm{e}^{-x} x^n}{n!} \left(\hat{f}_0 \breve{w}^n \right)$$

$$f(x,\gamma) = \sum_{n=0}^{\infty} \frac{\mathrm{e}^{-x} x^n}{n!} F_n(\gamma) \, \bigg| \, ,$$

with $F_0(\gamma) = f_0(\gamma) = f(x = 0, \gamma)$ the initial distribution (spectrum),

$$F_n(\gamma) = \int F_{n-1}(\gamma + \omega) w(\omega) \,\mathrm{d}\omega$$

mean energy $\overline{\gamma}$ variance $\overline{(\gamma - \overline{\gamma})^2}$ skewness $\overline{(\gamma - \overline{\gamma})^3} \Rightarrow$ linear of x $\overline{\gamma}(x) = \overline{\gamma_0} - x \,\overline{\omega}$; $\operatorname{Var}[\gamma](x) = \operatorname{Var}[\gamma_0] + x \,\overline{\omega^2}$; $\operatorname{Sk}[\gamma](x) = \operatorname{Sk}[\gamma_0] - x \,\overline{\omega^3}$

Relation with distance along the axis: $z \rightarrow x(z) = \int_0^z \psi(z') dz'$.

- Contribution of the initial distribution, f_0 , decays as e^{-x}
- Mean energy decreases linearly with x
- Variance (spread) increases linearly
- Tail on the left (negative skewness)
- Asymmetry $\sim 1/\sqrt{x}$

Gamma Sources: Analytic vs. Simulation $f_0 = \delta(\gamma - \gamma_0)$ not included

E.Bulyak, N.Shul'ga Quantum effects in production of gammas

Dipole harmonic Compton source, 1 GeV + 1 eV

E.Bulyak, N.Shul'ga Quantum effects in production of gammas

Simulations – ILC undulator: K = 0.92 vs K = 0.46 at 150 GeV $f_0 = \delta(\gamma - \gamma_0)$, 15 000 particles

 $\begin{array}{l} \mbox{mean} = - \ 0.019; \ \mbox{st.dev} = 1.29\mbox{E-3}; \\ \mbox{min} = -0.024; \ \mbox{max} = -0.014 \\ \mbox{min} = \mbox{mean} - 0.005; \ \mbox{max} = \mbox{mean} + 0.005 \end{array}$

 $\begin{array}{l} mean = - \ 0.0046; \ st.dev = 6.48E\text{-}4; \\ min = -0.0077; \ max = -0.0023 \\ min = mean - 0.0031; \ max = mean + 0.0023 \end{array}$

-0.004 -0.003 -0.002

Where tails matter: Quantum lifetime in Compton rings

longitudinal phase space

- electrons escape the separatrix downward, in the 'tail direction' separatrix cuts out the tail
- rate of losses \propto bunch density \times laser density
- red band width \propto tail length $\times synchrotron$ period

We proposed to mitigate quantum losses via the asymmetric cooling

Asymmetric (Fast) Cooling E.Bulyak, J.Urakawa, F.Zimmermann 2011–2013

Model setup Laser radiation field exists at $z \ge 0$

Spread vs. # scatterings

Table: Results of simulation dependence on crossing angle ϕ (3.0 mm dispersion at CP, 2 m beta function).

run	ϕ , rad	shift, μ m	yield $ imes 10^{-5}$	lifetime, turn	yield×I.t.
14j20p	0.0	+30	31.90	19857	6.33
14j20	0.0	0	41.30	12872	5.31
14j20m	0.0	-30	58.00	7 689	4.46
13j20pp	0.03	+30	1.88	2 422 370	45.54
13j20p	0.03	0	1.58	1 649 434	26.06
13j20m	0.03	-30	1.75	1447969	25.30
12j20p	0.13963	+30	1.35	20 582 321	277.86
12j20	0.13963	0	1.26	13 081 740	164.83
12j20m	0.13963	-30	1.28	12 248 299	156.78

summary

- Kinetic equation for electron spectra in gamma-sources solved
- Spectrum substantially differs from the diffusion model at small number of photons, converging to that when many photons emitted
- For Compton sources account for asymmetry of the electron spectrum is important
- Diffusion model sufficient for the undulator-based gamma sources

discussion

- Diffusion model sufficient for the undulator-based gamma sources
- For Compton sources (both ring- and ERL-based) account for asymmetry of the electron spectrum is important
- Quantum effects may reduce or limit performance of gamma– and hard x–ray sources
- Quantum recoils affect beam dynamics