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e+ target for Ecm = 250 … 500GeV 

Ecm and luminosity determine energy deposition in target 
Ø = 1m; 2000rpm, 0.4X0 Ti6Al4V                                             (Pe+ ≤30%) 
 

 

 

 

 

 

 

 
 

 

Edep ≤ 7kW  cooling by thermal radiation is an option 
 
 

Polarization upgrade:  
– higher peak load  higher peak temperatures  

– higher average temp in target  
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Ebeam [GeV] Edep [kW] DTmax/pulse 

[K] 

dpa Edep [kW] DTmax/pulse 

[K] 

Nominal luminosity High luminosity 

120 5.0  66 0.035 - - 

175    (ILC EDMS) 3.9 125 0.06 - - 

250    (ILC EDMS) 2.0 130 4.1 195 

250  2.3  85 0.05 4.6 128 
A. Ushakov,  

Update 2015 

A. Ushakov,  

 2015 
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Radiative cooling 

model so far 

• e+ target located close to FC 

• Rotating wheel consists of Ti rim 
(e+ target) and Cu (radiator) 

• Heat path:   
– thermal conduction Ti   Cu  

– Thermal radiation from  Cu  to 
stationary water cooled coolers  

• Target, radiator and cooler are  
in vacuum  

• Radiating area is  adjusted by 
fins  

 

Goal:  

keep target temperature 

below limit for failure  

of Ti6Al4V 

  

Reliable fatigue limit at  

elevated temperatures? 

 Felix Dietrich 
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Temperature development in target (+radiator) 

 

 

 

• FEM to calculate temperature evolution in real model; here ‘estimation by hand’ 

• Material parameters c, l, e depend on temperature and long-term load 
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energy deposition 
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K.C. Mills, 2002,  

Recommended Values of  

Thermophysical Properties  

For Selected Commercial  

Alloys, p. 217, 

referenced by J. Yang 
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Temperature development in target (+radiator) 

 

 
 

• FEM to calculate temperature evolution in real model; here ‘estimation by hand’ 

• Material parameters c, l, e depend on temperature and long-term load 
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Boivineau et al., Int. Journ.  

of Thermophysics, 

Vol. 27, No.2 March 2006 
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Heating to equilibrium 

• Neglect heat conduction and thermal radiation  average T in 

material increases 

 

 

 

• Assume 2.3kW at target  

– target rim height  h =     2cm      (4cm)  

                          Vrim ~ 924cm3 (1.8dm3)  

– Average rim temperature Tave = 300C (DT=270K) reached after    

254sec (~4.2min) for h=2cm; 

497sec (~8.3min) for h=4cm  

– Heating of rim+radiator takes correspondingly longer 
 

• Taking into account thermal radiation and time for heat transfer to 

radiator, few hours needed to achieve equilibrium (see our talks at 

POSIPOL14+15 and LCWS15 and Felix’ talk)  
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Thermal radiation 
 

 

 

 

 

 

 

 

 

 

 

 

So far, we concentrated in our T4 cooling models on radiation from radiator 
by optimizing the design towards a large area with fins, but there is also 
substantial thermal radiation off the rim  

– low heat conductivity of Ti  high average temperature of rim 

– despite small rim area substantial cooling by thermal radiation off the target rim 
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Consider radiation off target rim only,  

r = 0.5m, h=2cm, d=1.5cm 

A ~ 0.17m2, e = 0.6 

2.3kW  Ttarget (ave)~530C  
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cool
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Heat transfer target to radiator 

• Spinning target ~6.5s between load cycles  

– Heat moves 𝜆𝑡/𝜌𝑐 ~ 0.5cm  in 6.5sec 

  accumulation of heat in the target 

• Temperature flow to radiator depends                                                                     
on s 
– Average heat transfer through rim 

 
 

 

 
                              Acontact ~470cm2, l~10W/(m K)  

 

     dQ/dt = 2.3kW: Tmax-ave (Ti) – Tcontact ~ 100K (s=1.5cm) 

                                                              ~ 150K (s=2.5cm)  

– Additional cyclic temperature rise by pulse (80…200K) 

• Cyclic peak temperatures in target can exceed 500˚C, in particular for large s   
 need design with short heat transfer path through Ti rim to keep the average Ttarget 

as low as possible 

 for high power deposition ( high lumi) even average temperature could be >500C 
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Estimated average temperature in T rim and Cu radiator 

Consider thermal radiation from rim and radiator  
– Case (1): rim 0.082m2 + radiator 1m2 

– Case (2): rim 0.082m2 + radiator  2m2 

– Case (3): Only rim, 0.16m2; no radiator 

– Emissivity e=0.6 

 

 

 

 

 
 

 

 

 

 
– Estimates give the principal behavior and only approximate temp values. 

Real temperatures need simulations, they depend on radiator design and Ti-
Cu contact 
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Percentage of power radiated by target rim 

• Case (1): rim 0.082m2 + radiator 1m2 

• Case (2): rim 0.082m2 + radiator  2m2 

 Depending on energy deposition, target rim size and radiator 
area, thermal radiation off the rim is efficient and can reach 
35% of Edep  
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• Due to low thermal conductivity of Ti6Al4V, peak and average 
temperatures in target are substantially determined by target 
dimension (height) 

• Ti-Cu contact as well as radiator surface are important to 
remove the heat   

• However   
– we need a heavy wheel (>100kg) to provide a radiator area of ~2m2    
– A lower radiating surface of 1m2 increases the average temperature 

in the target by only ~70K.  
– Reduction of # of fins by factor 2 reduces wheel weight by ~20kg 

 

• Idea: Are higher target rim temperatures acceptable? 
– After our first target material tests we feel encouraged to accept 

higher target temperatures.  

– Similar approach is followed by M. Breidenbach 

• Stress resistivity at elevated temperatures?? 
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Target studies at SLAC (M.  Breidenbach, M. Oriunno) 

(See also Marty’s talk at LCWS15) 

Approach:  

use high T material Ti-SF61 

 

Study for P = 7.74kW 

1312 pulses with 10Hz 

 

 

 

 

 

 

 

 

                      Transient with emissivity 0.4 
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l (W.m-1.K-1) e  0.4 e  0.6 

21 894 (621) 814 (541) 

8 984 (711) 904 (631) 

Private communication after LCWS15 



Stress in target and radiator 

• Depends on: 

– design 

– Load by pulse  Instantaneous and average heating 

– Rotation 

– Eddy current 

– Imbalances (ignored so far) 

 

• Stress resistivity at elevated temperatures?? 

– Thermal and mechanical stress limits for target and 

radiator material at high temperatures, under 

irradiation 
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Stress due to heating 

• Instantaneous heating 

– Pulse  DT = 80K … 200K 

– Ti rim  ~ 100…260MPa 

– ILC e+ target:  ~2×106 loads per year (4000h)    

– fatigue stress limit for Ti alloy ~600MPa at room temperature but 
considerably lower at elevated temprature 
 

• Average heating 

– Depends on design   

– Heated rim and radiator:   

• Hoop stress in ring: H = E a DT if expansion is prevented  

                            Ti rim @ 500C   H would be ~420MPa 

• Expansion of rim + radiator is not restricted    increase of rim circumference u,   

                                                                                         Du =  1.3cm (Dr = 2mm) 

– Spatial expansion Vrim(heated) = g·V20˚C·DT     
                                                             

        Ti:    DV ~ 1.2% for DT=500K  (~ 2%  for 850K) 

        Cu:  DV ~ 6.6% for DT=200K  (~ 11.5%   for 350K) 
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Cu 

Further stress load 

• Rotation  tangential and radial forces 
– thin ring approximation for target rim:  t ~ rr2w2 = 50MPa 

– Assuming sliced target, (~40 pieces for nominal lumi),  

         height ~2cm (3cm)  Fc=mrw2 ~2.2kN (3.3kN) 

         With connecting area A~12cm2   ~2MPa (3MPa)   

                                                              no problem 
 

 Sliced target  
– minimizes stress in (non-uniformly heated)  target rim and radiator  

– Main stress contribution from cyclic energy deposition by photon beam 
 

• Ti-Cu contact 
– must work well for all temperatures 

– Calculation of stress at the contact Ti to                                                                       
radiator needs FEM methods 

– Possibilities considered   
• Peter’s proposal: use bolts + plate springs 

• Felix’ (also Marty Breidenbach’s) proposal: use                                                                         
multiple dovetail connection for tight connection                                                         
between Ti and Cu 

• Status and more details in Felix’ talk 

S. Riemann  POSIPOL 2016:  Status radiative thermal e+ target cooling 16 

Ti 



  
 

• Eddy currents 
– See talks at ALCW15, POSIPOl15  

– no problem for 5Hz, tpulse~1ms,  and 0.5T at target 

– Pulsed braking power  intermittent force on the                                                                                    
target shaft and bearings (P. Sievers: ~100N in 1ms) 
      tight control of the wheel velocity,  motor torque 

      vibrations have to be studied 
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Expected target load in the first years 
• Running scenarioH-20 start with Ecm=500GeV (500fb-1), followed by 

Ecm=350GeV (200fb-1); and 250GeV (500fb-1); 1326 bunches per pulse during 
the first years. 

 

 

 

 

 

 

 

 
 

• Average E deposition: 2.3kW (500GeV),  3.9kW (350GeV), 5kW (250GeV) 
 Estimated peak temperatures  for 2m2 (1m2) radiator area:   

~400C (500C) at 500GeV 

~450C (550C) at 350GeV 

~470C (570C) at 200GeV, 5Hz, 230m undulator length  

• Cyclic load stress due to g beam ≤200MPa (nominal L, no e+ pol upgrade) 

• Beam test studies at microtron in Mainz show that Ti6Al4V should stand this 
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Ti alloy parameters at high temperatures 

• Ti6Al4V (http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP642 ) 

• Ti-SF61(Ti-5.9Al-2.7Sn-4Zr-0.45Mo-0.35Si-0.22Y),  see also http://amt-

advanced-materials-technology.com/materials/titanium-high-temperature/ : 

“This Titanium alloy could be used up to 620°C for long service times. …highest creep 

resistance  … The fatigue strength is very high up to 820°C…”  
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Ti-SF61 4.56 6.7 8.3 1650 120 1068 1050 11 195@760C 

600C 

  752 655 16 

Room temp 

Ti6Al4V 4.43 8 1604 113.4 950 880 14 510 unn. 
240n. 

980  
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Thoughts for improvements 

• Assuming radiator surface of 1m2,  
– at least 20-40% of the deposited power are radiated from the target rim 

– average target temperature increases  less than 100K in comparison to 2m2 radiator 

area 

• Ti6Al4V seems stable up to T~700C average temperatures (see our material tests at 

MAMI, Alexandr’s talk) 

• Use Ti alloy developed for high temperature applications ? (M. Breidenbach: Ti-SF61) 

• High temperature Ti alloy + lower radiator area  Optimization of target shape?    

Increase radiating target area by factor 2 or ~1.5 
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(Rough sketches, no technical drawings!) 

1. Split target in 2 parts and add a stationary cooler fin 
between them  outside the beam area 

        Lower e+ yield due to larger effective distance to  
           FC (but this could help to increase e+ polarization) 

       A. Ushakov estimate: Yield reduction by ~10% for  
                                          10mm gap between target parts 
 
 
2. Do not touch beam path region but increase outer target  
       surface 



Summary 
• Radiative cooling will work 

– Under study: 
• Efficient contact between target rim and radiator   

• Optimize target+radiator surface + material  

• Mechanical issues  

• Polarized positrons   

– Realistic undulator spectrum (see Khaled’s and Ian’s talks) 

– Polarization upgrade 
• PEDD and target design 

• photon collimation?  

• Polarization measurement at the e+source  

• Cyclic load tests at MAMI (see also Alexandr’s talk) 
– Check target material properties  at high temperatures and high load 

• Target and exit window material 

• Photon dump 
– … was not subject of this talk 

– ‘Extrapolation’ of photon collimator studies (see http://arxiv.org/abs/1412.2498 ) show 
that a graphite dump is possible, but should be either moved (as the dump window)  
or consist of cooled rods   
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        Thank you! 
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Temperature distribution at the target rim 

• adjust revolution frequency to distribute energy 

deposition almost uniformly over rim 

• for example:  

– bunch train occupies angular range qpulse 

– frev = 1922rpm instead of 2000rpm  

 pattern:  1st second:    0,               144,    288,    72,      216,  

                   2nd second:   0 + qpulse   …., 

                   3rd second:   0 + 2qpulse   …. 

after ~7s the rim is                                                                         

almost uniformly heated 

unbalances due to non-uniform heating                                                     

are avoided                      
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