

Super-K: Gd Project Tracking Supernova Relic Neutrinos with a Gd-loaded water Cerenkov detector

Guillaume Pronost

Kamioka Observatory, ICRR, The University of Tokyo

Seminar LAL, September 27th 2016

(Supported by KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas 26104008)

OUTLINE

- 1 Neutrino Physics
- 2 Super-Kamiokande
- 3 Supernova Neutrinos
- 4 Supernova Relic Neutrinos
- 5 Super-Kamiokande Gd
- 6 EGADS

Neutrino physics

Quarks

- **Standard Model** of particle physics:
- ► 3 classes of particles:
 - Quarks & Leptons, matter's component.
 - Bosons, force carriers that mediate the fundamental Interactions.

(electromagnetic, weak, and strong nuclear interactions)

- ► In the Lepton class: The **Neutrinos**
 - ▷ **3 flavors** of Neutrino (ν_e , ν_μ , ν_τ).
 - Neutral particles.
 - \triangleright Very low interaction in the matter.
 - Neutrino oscillations
 - \rightarrow demonstrated by Super-K and SNO (Nobel prize 2015)

Н

Higgs boson Forces

- Neutrino physics is an active research field with open questions:
 - \triangleright What are the value of the ν oscillation parameters?
 - \triangleright What is the CP violation in the leptonic sector?
 - \triangleright What is the ν mass hierarchy?
 - \triangleright Is ν its own anti-particle? i.e. is it a Majorana or a Dirac particle?
 - \triangleright What are the ν masses?
 - \triangleright Are there sterile ν 's?

Neutrino sources

We need powerful and innovative experiments to detect them

Super-Kamiokande

Super-K

► International collaboration ~ countries

- ▶ Build in 1996
- Underground detector 1km under the Ikeno mount (Ikenoyama): \rightarrow Overburden: ~ 2780 m.w.e.
- ▶ 50 000 tons of pure water Cerenkov detector
- Analysis and hardware regularly improved since the construction

n \sim	120 colla	aborat	ors in 7	differ	ent	Viad Bnag	ivostok Ивосток	Sapporo 札幌 o	r.
OD						San Hi Fukur (For Solar I	Mer du Japon roshima Osaka o Nagoya 広島 2 Coshima 大阪 o 名古屋 の noshima cosaka o Nagoya 大阪 o 名古屋 の の の の の の の の の の の の の	Sendai 仙台。 Tōtkyo 東京	
			charged	Phase	Period	Livetime (days)	Fiducial vol. (kton)	# of PMTs	Energy thr.(MeV)
			particle	SK-I	1996.4 ~ 2001.7	1496	22.5	11146 (40%)	4.5
		\otimes	ð	SK-II	2002.10 ~ 2005.10	791	22.5	5182 (20%)	6.5
				SK-III	2006.7 ~ 2008.8	548	22.5 (>5.5MeV) 13.3 (<5.5MeV)	11120	4.5
		Ceren	kov light	SK-IV	2008.9 ~	1669	22.5 (>5.5MeV) 13.3 (4.5 <e<5.5) 8.8 (<4.5MeV)</e<5.5) 	(40%)	3.5
							(coverage)	(Kinetic energy)

Main neutrino sources used in Super-K

Main neutrino sources used in Super-K

Supernova Neutrinos

- Core-collapse supernovae occur when massive stars burned all their combustibles (Helium, Carbon, Neon, Oxygen and Silicon)
- $\triangleright \nu_e$ are produced through electron-capture on nuclei and release the energy of the incoming supernova (1)
- ▷ High density of ν_e leads ν_e to have continuous interactions with e^- (2):
 - Build up of a degenerate ν sea, producing all the 6 types of ν and $\overline{\nu}$
- More than 99% of the supernova energy is released by ν

G. G. Raffelt, "Stars as laboratories for fundamental physics" (University of Chicago Press, 1996)

How Supernovae neutrino would be detected in Super-K?

- Due to interaction cross-sections and neutrino energies, a water Cerenkov detector will not detect ν in the same proportions than their production:
 - (IBD)

 $\sim 88\%$ will be $\overline{\nu}_e$ via Inverse β Decay $\sim 3\%$ will be ν_{χ} through elastic scattering

Last galactic supernova was SN1987A whose neutrinos were detected by Kamiokande II, IMB and Baksan

With a rate of about 1 galactic supernova / 30 years (model dependent), the next one can be expected in the next decades

Last galactic supernova was SN1987A whose neutrinos were detected by Kamiokande II, IMB and Baksan

With a rate of about 1 galactic supernova / 30 years (model dependent), the next one can be expected in the next decades

However:

 $\sim 10^{11}$ stars/galaxy $\times 10^{11}$ galaxies $\times 0.3\%$ (chance to become SNe) $\rightarrow \sim O(10^{19})$ SNe in the universe past

 \rightarrow We could look at the neutrinos produced by these **past Supernovae**

- Neutrinos from past SNe are called the "Diffuse Supernova Neutrino Background" or "Supernova Relic Neutrino" (SRN)
- Predicted in 1984 by L. M. Krauss, S. L. Glashow and D. N. Schramm Nature 310, 191 (1984)
- ► Theoretical flux prediction : $0.3 \sim 1.5 \ /cm^2/s$ (17.3MeV threshold)

from Phys Rev D 79 083013 (2009)

 T_{eff} effective temperature of the SN neutrino flux

from Phys Rev D 79 083013 (2009)

Super-K already performed several SRN analyses and set the **current best limits** on the SRN flux

Neutron tag in Super-K: Hydrogen neutron capture

Neutron tagging analysis with Hydrogen neutron captures

H-n capture: only one γ of 2.2 MeV

- Huge accidental background
- Spatial reconstruction difficult

- H-n allowed to reduce the SRN analysis threshold from 17.3 MeV to 13.3 MeV
- \blacktriangleright H-n allows only a $\sim 20\%$ neutron tagging efficiency
 - \triangleright Poor statistics
 - \rightarrow No improvement of the SRN limits

Gd in Super-K water: improved neutron tagging

- Proposed in 2004 by Beacom and Vagins PRL93,171101 (2004)
- $\blacktriangleright \sim 90\%$ capture efficiency with 0.1% Gd
- Finite Gd-n: γ cascade (total E \sim 8 MeV)
 - $\triangleright \sim 80\%$ of neutron tagging efficiency

Number of hit PMT (Nhit) distributions

SRN expectation with Gd in 10 years

Dependance on the typical SN emission spectrum

In events/10years

Significance is determined with 2 energy bins

* Horiuchi, Beacom and Dwek, Phys Rev D 79 083013 (2009) ► Main target of Gd-loading: Detection of Supernova relic neutrino (SRN)

Gd-neutron tagging can lead to other analysis improvements / possibilities:

Improvement of the pointing accuracy for galactic supernova

Detection of pre-Supernova Si-burning neutrinos

Reduction of the proton decay background

▶ Neutrino/anti-neutrino discrimination (Long-baseline and atmospheric ν)

Other like detection of reactor neutrinos, black hole formation, etc.

- ▶ v_e elastic scattering provide good directionality indication
- \blacktriangleright Currently, SN direction can be determined with an accuracy of 4 \sim 5 degree.
- Neutron tagging allow to separate ν_e and $\overline{\nu}_e$ signals
 - \rightarrow Improvement of the directionality accuracy

Evolutionary stage	Average neutrino luminosity [erg/s]	Duration of a stage	Total energy radiated as neutrinos [ergs]
С	$3.8 imes 10^{38}$	22000 years	$2.6 imes 10^{50}$
Ne	1.8×10^{41}	32 years	$1.8 imes 10^{50}$
0	8.4×10^{42}	3.7 years	9.7×10^{50}
Si	2.6×10^{44}	16 days	3.6×10^{50}
Si-shell	2.2×10^{45}	12.7 hours	1.0×10^{50}
Pre-collapse	8.4×10^{45}	1 hour	0.3×10^{50}

utrino-coole	I stage	of the	15 x	M _{sun}	star
utimo-coole	i slaye			10 X	I O X IVI _{SUN}

- During the Si-burning phase, massive star emits v-v pair to balance the energy production
- Detection of these v-v could allow to predict an incoming SN several hours before the neutrino burst

In case of Betelgeuse Supernova:

Detector	Target mass	Min. \bar{v}_e energy	Events 48-24 hours before collapse	Events 24-0 hours before collapse	Events 3-0 hours before collapse
Super-K	32 kt	5 MeV	0.6	173	158
GADZOOKS!	22.5 kt	3.8(1.8) MeV	9 (204)	442 (1883)	345 (1130)
Borexino KamLAND	0.3 kt 1 kt	2 MeV 2 MeV	2 11	22 108	13 65

from A. Odrzywolek, M. Misiaszek and M. Kutschera, AIP Conf. Proc. 944, 109 (2007)

Physics target: Proton Decay

 $P
ightarrow e^+ + \pi^0 \ \mathrm{MC}$

Atmospheric ν BG

- Current background level: 0.58 events /10 years
- ► With neutron tagging: 0.098 events /10 years
- For one event in 10 years the BG probability will decrease from 44% to 9%

Atmospheric neutrino 1-ning e-like sample $L \in [0.5, 0.7]$ dev

▶ Gd neutron tagging allow a $\overline{\nu}_e$ ID with ~ 70% of efficiency (30% ν_e miss-ID)

- Keep Gd water transparency at a similar level than current SK water transparency
- Study the effect of Gd on the detector materials
- ► Study the effect of Gd on the physics analysis
- ► Fix the leaks in the detector

To perform these studies, we have build of a SK-Gd prototype: EGADS

EGADS

Evaluating Gadolinium's Action on Detector Systems

EGADS Detector

- ▶ 200 m³ tank
- ► 240 PMTs
- Main goal is to test SK materials behavior in Gd water:
- The detector fully mimics SK:
 Same stainless steel frame, PMTs and PMT cases, black sheets, etc.
- ► Detector completed in 2013
- Gd was progressively added in the water from November 2014 to May 2015

Gd-neutron tagging confirmation

Prompt-delayed Δt

 $\begin{array}{l} \blacktriangleright \text{ Mean Prompt-delayed } \Delta t: \\ \Delta t = 29.89 \pm 0.33 \ \mu \text{s (Data)} \\ \Delta t = 30.05 \pm 1.14 \ \mu \text{s (MC)} \end{array}$

Confirmation that we are seeing Gd neutron capture

EGADS transparency

4

- Keep Gd water transparency at a similar level than current SK water transparency
- Study the effect of Gd on the detector materials
- ► Study the effect of Gd on the physics analysis
- ► Fix the leaks in the detector

Tests of materials behavior in Gd water

- Each materials used in Super-K have been soaked in Gd water
- \blacktriangleright Soaking time \sim 3 months
- Transparency measurement with a spectrometer at different time interval
- Effect of material on the transparency found to be negligible
 - Transparency with material sample determined to be > 90% for almost all materials
 - Except for rubber... but it is used in EGADS without trouble and also demonstrated the same impact on transparency in pure water

ID PMT end-cap

- Keep Gd water transparency at a similar level than current SK water transparency
- \blacktriangleright Study the effect of Gd on the detector materials \checkmark
- Study the effect of Gd on the physics analysis
- ► Fix the leaks in the detector

Effects on Physics Analysis: High Energy I

e MC, detected

 π^0 MC, remaining

true (MeV/c)	Pure water	Gd water	true (MeV/c)	Pure water	Gd water
250	$92.9\pm2.1\%$	$91.9\pm2.1\%$	250	$1.7\pm0.2\%$	$1.9\pm0.2\%$
500	$89.3\pm2.0\%$	$88.4\pm2.0\%$	500	$4.7\pm0.3\%$	$6.1\pm0.4\%$
1000	$75.7 \pm 1.8\%$	$77.7 \pm 1.8\%$	1000	$15.8\pm0.7\%$	$16.7\pm0.7\%$

Effects on Physics Analysis: High Energy II

	Pure water	Gd water				
Momentui	Momentum resolution					
electron (500 MeV)	4.9%	4.9%				
muon (500 MeV)	2.5%	2.5%				
Mis	s-PID					
muon (500 MeV) $ ightarrow$ e-like	$0.59\pm0.12\%$	$1.00\pm0.15\%$				
$\pi^{0}~(ext{500 MeV}) ightarrow ext{1-ring e}$	$4.7\pm0.3\%$	$6.1\pm0.4\%$				
Number of T2K event	Number of T2K events (ν -mode 3.9 \times 10 ²¹ POT)					
Appearance signal	98.5	97.7				
Appearance BG	24.6	25.2				
Disappearance signal	622.2	623.8				
Disappearance BG	45.6	48.6				

 \rightarrow Numbers relatively close, except for Miss-PID, impact acceptable

► A little worse resolution, but acceptable for the current Low Energy analysis

Solar neutrino spectrum

Th and Ra are a BG for the solar analysis, dominant below 5 MeV

Spontenous fission will be a BG for the SRN analysis

Тур	Typical $Gd_2(SO_4)_3$ on the market				
Chain	Main sub-chain	Radioactive			
	isotope	Concentration			
²³⁸ U	²³⁸ U	50 mBq/kg			
	²²⁶ Ra	5 mBq/kg			
²³² Th	²²⁸ Ra	10 mBq/kg			
	²²⁸ Th	100 mBq/kg			
²³⁵ U	²³⁵ U	32 mBq/kg			
	$^{227}Ac/^{227}Th$	300 mBq/kg			

Aim to reduce ${\rm Th}/{\rm Ra}$ by 3 orders

Aim to reduce U by 1 order

- Two complementary solutions are investigated:
 - Use ion exchange resine in order to remove the ions like Ra (cation), or U (anion)
 - Work with the companies in order to reduce the contamination in their production method

Removing radioactivity in the Gd powder: Ion exchange resine

- Ion exchange resine:
- Uranium can be removed using Anion exchange resin AJ4400
- Ra can be removed by Cation exchange resign, but a special resine need to be developped to remove since Gd is also a cation in the solution (tests ongoing)
- We developped a special setup to measure Ra removal:
 - Using the same technique as Super-K, we can measure Ra by detecting Rn
 - ▷ Extract Rn from water in air-gas mixer

Removing radioactivity in the Gd powder: Work with companies

Chain	Main sub-chain	Typical	$Gd_2(O_3)$	$Gd_2(O_3)$	$Gd_2(SO_4)_3$	$Gd_2(SO_4)_3$
	isotope	$Gd_2(SO_4)_3$	L236	201512	201512	201508
²³⁸ U	²³⁸ U	50	< 317	< 280	< 139	< 37
	²²⁶ Ra	5	< 8.9	< 4	< 2.1	< 0.8
²³² Th	²²⁸ Ra	10	< 4.39	< 10	2.8 ± 1.9	< 1.1
	²²⁸ Th	100		< 9	1.8 ± 0.9	2.0 ± 0.5
²³⁵ U	²³⁵ U	32	< 52.2	< 7	< 2.4	< 0.6
	$^{227}Ac/^{227}Th$	300		< 11	< 10	11 ± 4
Other	⁴⁰ K		< 44.6	< 11	< 14	< 3
	¹³⁷ Cs		< 1.85	< 0.8	< 0.9	2.6 ± 0.3

Work on-going, radioactivity level seems close to reach our requirement

- Keep Gd water transparency at a similar level than current SK water transparency
- \blacktriangleright Study the effect of Gd on the detector materials \checkmark
- \blacktriangleright Study the effect of Gd on the physics analysis \checkmark
- ► Reduction of the radioactive background in the Gd powder → On-going (Affect only the low energy analysis)
- ► Fix the leaks in the detector

Leaks fix I

- We need to minimize the rejection of Gd in the environment
- Since there is no legislation for Gd rejection, we took the worst case: Mercury
- Reducing the current leak flow by a factor 10 should allow to reach the worst effluent rejection standards

	In front of SK	Jinzu River
	(4.59t/min)	(163.6t/sec)
Hg standard	Effluent	Environmental
	5 ppb	500 ppt
Current leak	30 ppb	10 ppt
1/10 leak	3 ppb	1 ppt

Leaks fix II

- Current scenario is that leak coverage will be done with two layers:
 - Lower layer, BIOS-SEAL 197, which can sneak into small gap
 - Upper layer, a material which allow more displacement (current candidate MineGuard C)
- Candidate selected for low Radon emanation and good mecanical behavior
- Tests ongoing to study the behavior of the material in Gd water

- Keep Gd water transparency at a similar level than current SK water transparency
- \blacktriangleright Study the effect of Gd on the detector materials \checkmark
- \blacktriangleright Study the effect of Gd on the physics analysis \checkmark
- ► Reduction of the radioactive background in the Gd powder → On-going (Affect only the low energy analysis)
- Fix the leaks in the detector \rightarrow On-going

SK Gd timetable

SK collaboration approved the Gadolinium project on June 27, 2015. The schedule of the project, including refurbishment of the tank and Gd-loading will be determined taking into account the T2K schedule.

- ► The Gd project started in 2002 (known as GADZOOKS! at this time)
 - \triangleright The EGADS prototype construction started in 2009
 - \triangleright In 2015, we reached the 0.1% concentration of Gd aimed
 - \triangleright Gd project validated by SK collaboration in June 2015
 - Work to fix leaks and to reduce the radioactivity in Gd powder ongoing and promissing
- ► Gd neutron tagging would allow Super-K to detect SRN within 10 years
- Other physical analysis can also be improved / accessible with Gd neutron tagging
- Let's enjoy Gd neutron tagging physics with Super-K in few years!

Work in the mine

▶ New hall build for the Gd water system, called "Hall G".

Backup

Backup

4

SRN expectation with Gd in 10 years

Dependance on the typical SN emission spectrum

In events/10years

Significance is determined with 2 energy bins

* Horiuchi, Beacom and Dwek, Phys Rev D 79 083013 (2009)

Seminar LAL, September 27th 2016