Event generators for the LHC: status and perspectives

Emanuele Re
CERN \& LAPTh Annecy

ᄂAjJT

LAL Orsay, 22 November 2016

LHC Run I \& II, so far

Standard Model Production Cross Section Measurements

LHC Run I \& II, so far

ATLAS SUSY Searches* - 95\% CL Lower Limits
ATLAS Preliminary

LHC Run I \& II, so far

ATLAS SUSY Searches* - 95\% CL Lower Limits
ATLAS Preliminary

but LHC is a discovery machine

- so far no sign of new Physics at the TeV scale from direct searches
- Higgs couplings have started to be measured: SM-like values, within 20-30 \%
- BSM hints might eventually be found in:

LHC Run I \& II

- so far no sign of new Physics at the TeV scale from direct searches
- Higgs couplings have started to be measured: SM-like values, within 20-30 \%
- BSM hints might eventually be found in:
detection of small deviations from SM backgrounds

LHC Run I \& II

- so far no sign of new Physics at the TeV scale from direct searches
- Higgs couplings have started to be measured: SM-like values, within 20-30 \%
- BSM hints might eventually be found in:

. accurate measurement of Higgs couplings
. extraction of SM parameters

LHC Run I \& II

- so far no sign of new Physics at the TeV scale from direct searches
- Higgs couplings have started to be measured: SM-like values, within 20-30 \%
- BSM hints might eventually be found in:

. accurate measurement of Higgs couplings
. extraction of SM parameters

important also in presence of new discovery

LHC Run I \& II

- so far no sign of new Physics at the TeV scale from direct searches
- Higgs couplings have started to be measured: SM-like values, within 20-30 \%
- BSM hints might eventually be found in:

require accurate understanding of signals and backgrounds:
衡 "precision Physics"

accurate measurement of Higgs couplings

extraction of SM parameters

precise predictions and MC: an example

measuring the $H W W$ coupling

. higher-order corrections:

- relevant when they are large or if experimental precision is extremely high.
- relevant also to have reliable theoretical uncertainties.

precise predictions and MC: an example

$\underline{\text { measuring the } H W W \text { coupling }}$

. higher-order corrections:

- relevant when they are large or if experimental precision is extremely high.
- relevant also to have reliable theoretical uncertainties.
. S/B optimized using cuts/BDT
- jet-binned cross sections: here jet veto at $25-30 \mathrm{GeV}$

precise predictions and MC: an example

measuring the $H W W$ coupling

. higher-order corrections:

- relevant when they are large or if experimental precision is extremely high.
- relevant also to have reliable theoretical uncertainties.
. S/B optimized using cuts/BDT
- jet-binned cross sections: here jet veto at $25-30 \mathrm{GeV}$

precise predictions and MC: an example

measuring the $H W W$ coupling

. higher-order corrections:

- relevant when they are large or if experimental precision is extremely high.
- relevant also to have reliable theoretical uncertainties.
. S/B optimized using cuts/BDT
- jet-binned cross sections: here jet veto at $25-30 \mathrm{GeV}$

precise predictions and MC: an example

measuring the $H W W$ coupling

. higher-order corrections:

- relevant when they are large or if experimental precision is extremely high.
- relevant also to have reliable theoretical uncertainties.
. S/B optimized using cuts/BDT
- jet-binned cross sections: here jet veto at $25-30 \mathrm{GeV}$
- widely separated scales: large logs arise, resummation often needed.

precise predictions and MC: an example

$\underline{\text { measuring the } H W W \text { coupling }}$

. higher-order corrections:

- relevant when they are large or if experimental precision is extremely high.
- relevant also to have reliable theoretical uncertainties.
. S/B optimized using cuts/BDT
- jet-binned cross sections: here jet veto at $25-30 \mathrm{GeV}$
- widely separated scales: large logs arise, resummation often needed.
\Rightarrow NLO + PS event generators include both effects and allow for flexible and fully differential simulations.

Event generators: what they are?
ideal world: high-energy collision and detection of elementary particles

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

- collide non-elementary particles
- we detect e, μ, γ, hadrons, "missing energy"

[sherpa's artistic view]

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

- collide non-elementary particles
- we detect e, μ, γ, hadrons, "missing energy"
- we want to predict final state
- realistically
- precisely
- from first principles
\Rightarrow full event simulation needed to:
- compare theory and data
- estimate how backgrounds affect signal region
- test/build analysis techniques
soner or later, at some point a MC is used...

[sherpa's artistic view]

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

hard scattering
$\Lambda_{\mathrm{QCD}} \ll \mu \approx Q$
perturbation theory
parton shower
$\Lambda_{\mathrm{QCD}}<\mu<Q$

hierarchy of scales
resummation of large logarithms

```
hadronisation
\(\mu \approx \Lambda_{\mathrm{QCD}}\)
```


non-perturbative model,
[sherpa's artistic view]

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

non-perturbative model,
[sherpa's artistic view] tuned on $e^{+} e^{-}$data

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

hard scattering
$\Lambda_{\mathrm{QCD}} \ll \mu \approx Q$
perturbation theory
parton shower
$\Lambda_{\mathrm{QCD}}<\mu<Q$

hierarchy of scales
resummation of large logarithms

. non-perturbative model,
[sherpa's artistic view] tuned on $e^{+} e^{-}$data

- in practice: momenta of all outgoing leptons and hadrons:

IHEP	ID	IDPDG IST MO1	MO2 DA1	DA2	$\mathrm{P}-\mathrm{X}$	$\mathrm{P}-\mathrm{Y}$	$\mathrm{P}-\mathrm{Z}$	ENERGY			
31	NU_E	12	1	29	22	0	0	60.53	$37.24-1185.0$	1187.1	
32	E+	-11	1	30	22	0	0	-22.80	2.59	-232.4	233.6
148	K+	321	1	109	9	0	0	-1.66	1.26	1.3	2.5
151	PIO	111	1	111	9	0	0	-0.01	0.05	11.4	11.4
152	PI	211	1	111	9	0	0	-0.19	-0.13	2.0	2.0
153	PI-	-211	1	112	9	0	0	0.84	-1.07	1626.0	1626.0
154	K+	321	1	112	9	0	0	0.48	-0.63	945.7	945.7
155	PIO	111	1	113	9	0	0	-0.37	-1.16	64.8	64.8
156	PI-	-211	1	113	9	0	0	-0.20	-0.02	3.1	3.1
158	PIO	111	1	114	9	0	0	-0.17	-0.11	0.2	0.3
159	PIO	111	1	115	18	0	0	0.18	-0.74	-267.8	267.8
160	PI-	-211	1	115	18	0	0	-0.21	-0.13	-259.4	259.4
161	N	2112	1	116	23	0	0	-8.45	-27.55	-394.6	395.7
162	NBAR	-2112	1	116	23	0	0	-2.49	-11.05	-154.0	154.4
163	PIO	111	1	117	23	0	0	-0.45	-2.04	-26.6	26.6
164	PIO	111	1	117	23	0	0	0.00	-3.70	-56.0	56.1
167	K+	321	1	119	23	0	0	-0.40	-0.19	-8.1	8.1
186	PBAR	-2212	1	130	9	0	0	0.10	0.17	-0.3	1.0

1. quickly review how these tools work
2. discuss how their accuracy can be improved
3. show "NNLO matched to parton showers" results (NNLOPS)

parton showers and fixed order

Parton showers I

- connect the hard scattering $\left(\mu \approx Q\right.$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QcD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate
3. soft-collinear emissions are ennhanced:

$$
\frac{1}{\left(p_{1}+p_{2}\right)^{2}}=\frac{1}{2 E_{1} E_{2}(1-\cos \theta)}
$$

4. in soft-collinear limit, factorization properties of QCD amplitudes

$$
\begin{aligned}
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \rightarrow\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} & \frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{d t}{t} P_{q, q g}(z) d z \frac{d \varphi}{2 \pi} \\
z=k^{0} /\left(k^{0}+l^{0}\right) & \text { quark energy fraction } \\
t=\left\{(k+l)^{2}, l_{T}^{2}, E^{2} \theta^{2}\right\} & \text { splitting hardness } \\
P_{q, q g}(z)=C_{\mathrm{F}} \frac{1+z^{2}}{1-z} & \text { AP splitting function }
\end{aligned}
$$

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate
3. soft-collinear emissions are ennhanced:

$$
\frac{1}{\left(p_{1}+p_{2}\right)^{2}}=\frac{1}{2 E_{1} E_{2}(1-\cos \theta)}
$$

4. in soft-collinear limit, factorization properties of QCD amplitudes

$$
\begin{aligned}
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \rightarrow\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} & \frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{d t}{t} P_{q, q g}(z) d z \frac{d \varphi}{2 \pi} \\
z=k^{0} /\left(k^{0}+l^{0}\right) & \text { quark energy fraction } \\
t=\left\{(k+l)^{2}, l_{T}^{2}, E^{2} \theta^{2}\right\} & \text { splitting hardness } \\
P_{q, q g}(z)=C_{\mathrm{F}} \frac{1+z^{2}}{1-z} & \text { AP splitting function }
\end{aligned}
$$

probabilistic interpretation! [notice: $\alpha_{S} L^{2}$]

Parton showers II

5. dominant contributions for multiparticle production due to strongly ordered emissions

$$
t_{1}>t_{2}>t_{3} \ldots
$$

6. at any given order, we also have virtual corrections: include them with the same approximation

- LL virtual contributions: Sudakov form factor for each internal line:

$$
\Delta_{a}\left(t_{i}, t_{i+1}\right)=\exp \left[-\sum_{(b c)} \int_{t_{i+1}}^{t_{i}} \frac{d t^{\prime}}{t^{\prime}} \int \frac{\alpha_{s}\left(t^{\prime}\right)}{2 \pi} P_{a, b c}(z) d z\right]
$$

- Δ_{a} corresponds to the probability of having no resolved emission between t_{i} and t_{i+1} off a line of flavour a
nesummation of collinear logarithms
[very soft/collinear emissions are suppressed - all order effect!]

Parton showers II

5. dominant contributions for multiparticle production due to strongly ordered emissions

$$
t_{1}>t_{2}>t_{3} \ldots
$$

6. at any given order, we also have virtual corrections: include them with the same approximation

- LL virtual contributions: Sudakov form factor for each internal line:

$$
\Delta_{a}\left(t_{i}, t_{i+1}\right)=\exp \left[-\sum_{(b c)} \int_{t_{i+1}}^{t_{i}} \frac{d t^{\prime}}{t^{\prime}} \int \frac{\alpha_{s}\left(t^{\prime}\right)}{2 \pi} P_{a, b c}(z) d z\right]
$$

- Δ_{a} corresponds to the probability of having no resolved emission between t_{i} and t_{i+1} off a line of flavour a
resummation of collinear logarithms
[very soft/collinear emissions are suppressed - all order effect!]
- PS formulated probabilistically:
- shapes change, but overall normalization fixed: it stays LO (unitarity)
- they are only LO+LL accurate (whereas we want (N)NLO QCD corrections)

Next-to-Leading Order

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order NLO: Next-to-Leading Order

Next-to-Leading Order

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order NLO: Next-to-Leading Order

$$
d \sigma=d \Phi_{n}\{\underbrace{B\left(\Phi_{n}\right)}_{\text {LO }}
$$

$\frac{\alpha_{s}}{2 \pi}[\underbrace{V\left(\Phi_{n}\right)+R\left(\Phi_{n+1}\right) d \Phi_{r}}_{\text {NLO }}]$

Next-to-Leading Order

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order NLO: Next-to-Leading Order

Why NLO is important?

- first order where rates are reliable
- shapes are, in general, better described
- possible to attach sensible theoretical uncertainties [done typically by changing ren. and fac. scales]

Next-to-Leading Order

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order NLO: Next-to-Leading Order

Whe WLO is important?

- first order where rates are reliable
- shapes are, in general, better described
- possible to attach sensible theoretical uncertainties [done typically by changing ren. and fac. scales]

When NNLO is needed?

- NLO corrections large
- very high-precision needed

\Rightarrow Drell-Yan, Higgs, $t \bar{t}$ production

NLO

\checkmark precision
\checkmark nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

\checkmark realistic + flexible tools
\checkmark widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)
nal can we merge them and build an NLOPS generator?

Problem:

NLO

\checkmark precision
\checkmark nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

\checkmark realistic + flexible tools
\checkmark widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)

衡 can we merge them and build an NLOPS generator?
Problem: overlapping regions!

NLO

\checkmark precision
\checkmark nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

\checkmark realistic + flexible tools
\checkmark widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)

衡 can we merge them and build an NLOPS generator?
Problem: overlapping regions!
NLO:

NLO

\checkmark precision
\checkmark nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

\checkmark realistic + flexible tools
\checkmark widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)
n웅 can we merge them and build an NLOPS generator?
Problem: overlapping regions!

\checkmark many proposals, 2 well-established methods available to solve this problem:

matching NLO and PS

- POWHEG (POsitive Weight Hardest Emission Generator)

NLOPS: POWHEG I

$$
d \sigma_{\mathrm{LOPS}}=d \Phi_{n} \quad B\left(\Phi_{n}\right) \quad\left\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) \frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}\right\}
$$

NLOPS: POWHEG I

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \quad \bar{B}\left(\Phi_{n}\right) \quad\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
$$

NLOPS: POWHEG I

$$
B\left(\Phi_{n}\right) \Rightarrow \bar{B}\left(\Phi_{n}\right)=B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int R\left(\Phi_{n+1}\right) d \Phi_{r}\right]
$$

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \quad \bar{B}\left(\Phi_{n}\right) \quad\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
$$

NLOPS: POWHEG I

$$
\begin{aligned}
& B\left(\Phi_{n}\right) \Rightarrow \bar{B}\left(\Phi_{n}\right)=B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int R\left(\Phi_{n+1}\right) d \Phi_{r}\right] \\
& d \sigma_{\mathrm{POW}}=d \Phi_{n} \quad \bar{B}\left(\Phi_{n}\right)\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
\end{aligned}
$$

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \bar{B}\left(\Phi_{n}\right)\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
$$

[$+p_{\mathrm{T}}$-vetoing subsequent emissions, to avoid double-counting]

- inclusive observables: @NLO
- first hard emission: full tree level ME

This is "NLOPS"

- (N)LL resummation of collinear/soft logs
- extra jets in the shower approximation

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \bar{B}\left(\Phi_{n}\right)\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
$$

[$+p_{\mathrm{T}}$-vetoing subsequent emissions, to avoid double-counting]

- inclusive observables: @NLO
- first hard emission: full tree level ME

This is "NLOPS"

- (N)LL resummation of collinear/soft logs
- extra jets in the shower approximation

POWHEG BOX

[Alioli,Nason,Oleari,ER '10]

- large library of SM processes, (largely) automated
- used by LHC collaborations and other theorists [together with similar tools as MG5_aMC@NLO, Herwig7 and Sherpa]
- lot achieved, but important developments still happening . for instance full $W^{+} W^{-} b b @$ NLOPS available only since few months

NLOPS: POWHEG II

- lot achieved, but important developments still happening for instance full $W^{+} W^{-} b b @$ NLOPS available only since few months

NLO + PS merging and NNLO + PS

NLOPS merging \& BSM

- ME+PS merging is particularly important to model " $S+$ jets" processes, where:
. $S=$ hard system $=\{\ell, \nu, V, t\}$
. jets are from QCD emissions (as opposed to jets from SUSY cascades)
- it becomes crucial to model kinematics regions characterized by variable number of jets:
- cuts on $H_{T}=\ldots+\sum_{\text {all jets }}\left|\vec{p}_{T, j}\right|$ and/or tails of p_{T} distributions

NLOPS merging \& BSM

- ME+PS merging is particularly important to model " $S+$ jets" processes, where:
- it becomes crucial to model kinematics regions characterized by variable number of jets:
- rest of the talk: NLO+PS merging is at the core of all approaches aiming for NNLO+PS accuracy

NNLO+PS: why and where?

NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO "K-factor"
[as in Higgs Physics]
2. very high precision needed
[e.g. Drell-Yan, top pairs]

- last couple of years: huge progress in NNLO

NNLO+PS: why and where?

NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO "K-factor" [as in Higgs Physics]
2. very high precision needed
[e.g. Drell-Yan, top pairs]

- last couple of years: huge progress in NNLO

[Anastasiou et al., '03]

NNLO+PS: why and where?

NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO "K-factor" [as in Higgs Physics]
2. very high precision needed
[e.g. Drell-Yan, top pairs]

- last couple of years: huge progress in NNLO

Q: can we merge NNLO and PS?

[Anastasiou et al., '03]

NNLO+PS: why and where?

NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO "K-factor" [as in Higgs Physics]
2. very high precision needed [e.g. Drell-Yan, top pairs]

- last couple of years: huge progress in NNLO

Q: can we merge NNLO and PS?
[Anastasiou et al., '03]
낭ㅇ realistic event generation with state-of-the-art perturbative accuracy !
[4 important for precision studies for several processes

- method presented here: based on POWHEG+MinLO, used so far for
- Higgs production
- neutral \& charged Drell-Yan
- associated WH production
[Hamilton,Nason,ER,Zanderighi, 1309.0017]
[Karlberg,ER,Zanderighi, 1407.2940]
[Astill,Bizon,ER,Zanderighi, 1603.01620]

towards NNLO+PS

- what do we need and what do we already have?

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
H @ NLOPS	NLO	LO	shower
HJ @ NLOPS	$/$	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

towards NNLO+PS

- what do we need and what do we already have?

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
H @ NLOPS	NLO	LO	shower
HJ @ NLOPS	$/$	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

啹 a merged H-HJ@NLOPS generator is "almost" OK

towards NNLO+PS

- what do we need and what do we already have?

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\mathrm{H} @$ NLOPS	NLO	LO	shower
HJ @ NLOPS	$/$	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

喁 a merged H-HJ@NLOPS generator is "almost" OK

- many of the multijet NLO+PS merging approaches work by combining 2 (or more) NLO+PS generators, introducing a merging scale (except Geneva)*
- POWHEG + MiNLO [Multiscale Improved NLO].
[Hamilton et al. '12]
No need of merging scale: it extends the validity of a NLO+PS computation with jets in the final state to phase-space regions where jets become unresolved

[^0]Higgs at NNLO:

\# loops: $\begin{array}{lll}0 & 1 & 2\end{array}$

\# loops: 01

\# loops: 0

POWHEG \rightarrow MiNLO \rightarrow NNLO+PS

Higgs at NNLO:

\# loops: $0 \quad 1 \quad 2$

\# loops: 01

(a) 1 and 2 jets: POWHEG $\mathrm{H}+1 \mathrm{j}$

POWHEG \rightarrow MiNLO \rightarrow NNLO+PS

Higgs at NNLO:

(b) - integrate down to $q_{T}=0$ with MiNLO

- "Improved MiNLO" allows to build a H-HJ @ NLOPS generator
(a) 1 and 2 jets: POWHEG $\mathrm{H}+1 \mathrm{j}$

POWHEG \rightarrow MiNLO \rightarrow NNLO+PS

Higgs at NNLO:

(b) - integrate down to $q_{T}=0$ with MiNLO

- "Improved MiNLO" allows to build a H-HJ @ NLOPS generator
(a) 1 and 2 jets: POWHEG $\mathrm{H}+1 \mathrm{j}$
- original goal: method to a-priori choose scales in multijet NLO computation
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

MiNLO (Multiscale Improved NLO)

- original goal: method to a-priori choose scales in multijet NLO computation
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)
- for each point sampled, build the "more-likely" shower history that would have produced that kinematics (can be done by clustering kinematics with k_{T}-algo, then, by undoing the clustering, build "skeleton")
- "correct" original NLO à la CKKW:
$\rightarrow \alpha_{\mathrm{S}}$ evaluated at nodal scales
\rightarrow Sudakov FFs

MiNLO (Multiscale Improved NLO)

- original goal: method to a-priori choose scales in multijet NLO computation
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
$$

MiNLO (Multiscale Improved NLO)

- original goal: method to a-priori choose scales in multijet NLO computation
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\begin{gathered}
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right] \\
\bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}^{2}\left(m_{h}\right) \alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{g}^{2}\left(q_{T}, m_{h}\right)\left[B\left(1-2 \Delta_{g}^{(1)}\left(q_{T}, m_{h}\right)\right)+\alpha_{\mathrm{S}} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
\end{gathered}
$$

MiNLO (Multiscale Improved NLO)

- original goal: method to a-priori choose scales in multijet NLO computation
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\begin{gathered}
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right] \\
\bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}^{2}\left(m_{h}\right) \alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{g}^{2}\left(q_{T}, m_{h}\right)\left[B\left(1-2 \Delta_{g}^{(1)}\left(q_{T}, m_{h}\right)\right)+\alpha_{\mathrm{S}} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
\end{gathered}
$$

鹵 Sudakov FF included on $H+j$ Born kinematics

- MiNLO-improved HJ yields finite results also when 1 st jet is unresolved $\left(q_{T} \rightarrow 0\right)$
- $\bar{B}_{\text {MiNLO }}$ ideal to extend validity of HJ-POWHEG [called "HJ-MiNLo" hereafter]

"Improved" MiNLO \& NLOPS merging

- untill this point: no claim about accuracy!

"Improved" MiNLO \& NLOPS merging

- untill this point: no claim about accuracy!
- formal accuracy of HJ-MiNLO for inclusive observables carefully investigated
[Hamilton et al., 1212.4504]
- HJ-MinLO describes inclusive observables at order α_{S}
- to reach genuine NLO when fully inclusive $\left(\mathrm{NLO}^{(0)}\right)$, "spurious" terms must be of relative order α_{S}^{2}, i.e.

$$
O_{\mathrm{HJ}-\mathrm{MiNLO}}=O_{\mathrm{H} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+2}\right) \quad \text { if } O \text { is inclusive }
$$

- "Original MinLO" contains ambiguous " $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+1.5}\right)$ " terms

"Improved" MiNLO \& NLOPS merging

- untill this point: no claim about accuracy!
- formal accuracy of HJ-MiNLO for inclusive observables carefully investigated
[Hamilton et al., 1212.4504]
- HJ-MinLO describes inclusive observables at order α_{S}
- to reach genuine NLO when fully inclusive $\left(\mathrm{NLO}^{(0)}\right)$, "spurious" terms must be of relative order α_{S}^{2}, i.e.

$$
O_{\mathrm{HJ}-\mathrm{MiNLO}}=O_{\mathrm{H} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+2}\right) \quad \text { if } O \text { is inclusive }
$$

- "Original MinLO" contains ambiguous " $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+1.5}\right)$ " terms
- Possible to improve HJ-MiNLO such that inclusive NLO is recovered $\left(\mathrm{NLO}^{(0)}\right)$, without spoiling NLO accuracy of $H+j\left(\mathrm{NLO}^{(1)}\right)$.
- accurate control of subleading small- p_{T} logarithms is needed (scaling in low- p_{T} region is $\alpha_{\mathrm{S}} L^{2} \sim 1$, i.e. $L \sim 1 / \sqrt{\alpha_{\mathrm{S}}}$!)

Effectively as if we merged $\mathrm{NLO}^{(0)}$ and $\mathrm{NLO}^{(1)}$ samples, without merging different samples (no merging scale used: there is just one sample).

"Improved" MiNLO \& NLOPS merging: details

- Resummation formula can be written as

$$
\begin{gathered}
\frac{d \sigma}{d q_{T}^{2} d y}=\sigma_{0} \frac{d}{d q_{T}^{2}}\left\{\left[C_{g a} \otimes f_{a}\right]\left(x_{A}, q_{T}\right) \times\left[C_{g b} \otimes f_{b}\right]\left(x_{B}, q_{T}\right) \times \exp S\left(q_{T}, Q\right)\right\}+R_{f} \\
S\left(q_{T}, Q\right)=-2 \int_{q_{T}^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}} \frac{\alpha_{\mathrm{S}}\left(q^{2}\right)}{2 \pi}\left[A_{f} \log \frac{Q^{2}}{q^{2}}+B_{f}\right]
\end{gathered}
$$

- If $C_{i j}^{(1)}$ included and R_{f} is $\mathrm{LO}^{(1)}$, then upon integration we get $\mathrm{NLO}^{(0)}$
- Minlo formula is not written as a total derivative: "expand" the above expression, then compare with MinLO :

$$
\sim \sigma_{0} \frac{1}{q_{T}^{2}}\left[\alpha_{\mathrm{S}}, \alpha_{\mathrm{S}}^{2}, \alpha_{\mathrm{S}}^{3}, \alpha_{\mathrm{S}}^{4}, \alpha_{\mathrm{S}} L, \alpha_{\mathrm{S}}^{2} L, \alpha_{\mathrm{S}}^{3} L, \alpha_{\mathrm{S}}^{4} L\right] \exp S\left(q_{T}, Q\right)+R_{f} \quad L=\log \left(Q^{2} / q_{T}^{2}\right)
$$

- highlighted terms are needed to reach $\mathrm{NLO}^{(0)}$:

$$
\int^{Q^{2}} \frac{d q_{T}^{2}}{q_{T}^{2}} L^{m} \alpha_{\mathrm{S}}{ }^{n}\left(q_{T}\right) \exp S \sim\left(\alpha_{\mathrm{S}}\left(Q^{2}\right)\right)^{n-(m+1) / 2}
$$

(scaling in low $-p_{T}$ region is $\alpha_{S} L^{2} \sim 1$!)

- if I don't include B_{2} in MinLO Δ_{g}, I miss a term $\left(1 / q_{T}^{2}\right) \boxed{\alpha_{\mathrm{S}}^{2}} B_{2} \exp S$
- upon integration, violate $\mathrm{NLO}^{(0)}$ by a term of relative $\mathcal{O}\left(\alpha_{\mathrm{S}}^{3 / 2}\right)$

MiNLO merging: results

- "H+Pythia": standalone POWHEG $(g g \rightarrow H)+$ PYTHIA (PS level) [7pts band, $\mu=m_{H}$]
- "HJ+Pythia": HJ-MinLO* + PYTHIA (PS level) [7pts band, μ from MinLo]
- very good agreement (both value and band)

낭 Notice: band is $\sim 20-30 \%$

Higgs at NNLO+PS: details

- HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\sqrt{\mathrm{H}-\mathrm{HJ} @ ~ N L O P S}$	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

Higgs at NNLO+PS: details

- HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\sqrt{\mathrm{H}-\mathrm{HJ} @ ~ N L O P S}$	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{HJ}-\mathrm{MiNLO}^{*}}}
$$

- by construction NNLO accuracy on fully inclusive observables ($\sigma_{\text {tot }}, y_{H} ; m_{\ell \ell}, \ldots$) [$\sqrt{ }$]
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region

Higgs at NNLO+PS: details

- HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\sqrt{\mathrm{H}-\mathrm{HJ} @ ~ N L O P S}$	NLO	NLO	LO
$\sqrt{\mathrm{H}}$ @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{HJ}-\mathrm{MiNLO}^{*}}}=\frac{\alpha_{\mathrm{S}}^{2} c_{0}+c_{1} \alpha_{\mathrm{S}}^{3}+c_{2} \alpha_{\mathrm{S}}^{4}}{\alpha_{\mathrm{S}}^{2} c_{0}+c_{1} \alpha_{\mathrm{S}}^{3}+d_{2} \alpha_{\mathrm{S}}^{4}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on fully inclusive observables ($\sigma_{\text {tot }}, y_{H} ; m_{\ell \ell}, \ldots$) [$\left.\sqrt{ }\right]$
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region

Higgs at NNLO+PS: details

- HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\sqrt{\mathrm{H}-\mathrm{HJ} @ ~ N L O P S}$	NLO	NLO	LO
$\sqrt{\mathrm{H}}$ @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{HJ}-\mathrm{MiNLO}^{*}}}=\frac{\alpha_{\mathrm{S}}^{2} c_{0}+c_{1} \alpha_{\mathrm{S}}^{3}+c_{2} \alpha_{\mathrm{S}}^{4}}{\alpha_{\mathrm{S}}^{2} c_{0}+c_{1} \alpha_{\mathrm{S}}^{3}+d_{2} \alpha_{\mathrm{S}}^{4}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on fully inclusive observables ($\sigma_{\mathrm{tot}}, y_{H} ; m_{\ell \ell}, \ldots$) [$\left.\sqrt{ }\right]$
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region
- notice: formally works because no spurious $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+1.5}\right)$ terms in H-HJ @ NLOPS

Higgs at NNLO+PS: details II

- Variants for reweighting $\left(W\left(y_{H}\right), W\left(\Phi_{B}\right)\right)$ are also possible:

$$
\begin{gathered}
W\left(y, p_{T}\right)=h\left(p_{T}\right) \frac{\int d \sigma_{A}^{\mathrm{NNLO}} \delta(y-y(\mathbf{\Phi}))}{\int d \sigma_{A}^{\mathrm{MiNLO}} \delta(y-y(\boldsymbol{\Phi}))}+\left(1-h\left(p_{T}\right)\right) \\
d \sigma_{A}=d \sigma h\left(p_{T}\right), \quad d \sigma_{B}=d \sigma\left(1-h\left(p_{T}\right)\right), \quad h=\frac{\left(\beta m_{H}\right)^{2}}{\left(\beta m_{H}\right)^{2}+p_{T}^{2}}
\end{gathered}
$$

- freedom to distribute "NNLO/NLO K-factor" only over medium-small p_{T} region
- $h\left(p_{T}\right)$ controls where the NNLO/NLO K-factor is distributed (in the high- p_{T} region, there is no improvement in including it)
- β cannot be too small, otherwise resummation spoiled: for Higgs, chosen $\beta=1 / 2$; for DY, $\beta=1$
- in practice, we used

$$
W\left(y, p_{T}\right)=h\left(p_{T}\right) \frac{\int d \sigma^{\operatorname{NNLO}} \delta(y-y(\boldsymbol{\Phi}))-\int d \sigma_{B}^{\mathrm{MiNLO}} \delta(y-y(\boldsymbol{\Phi}))}{\int d \sigma_{A}^{\mathrm{MiNLO}} \delta(y-y(\boldsymbol{\Phi}))}+\left(1-h\left(p_{T}\right)\right)
$$

- one gets exactly $(d \sigma / d y)_{\mathrm{NNLOPS}}=(d \sigma / d y)_{\mathrm{NNLO}}$ (no α_{S}^{5} terms)
- chosen $h\left(p_{T}^{j_{1}}\right)$

H@NNLOPS (fully incl.)

To reweight, use y_{H}

- NNLO with $\mu=m_{H} / 2$, HJ-MiNLO "core scale" m_{H}
[NNLO from HNNLO, Catani,Grazzini]
- $\left(7_{\mathrm{Mi}} \times 3_{\mathrm{NN}}\right)$ pts scale var. in NNLOPS, 7 pts in NNLO

Notice: band is 10% (at NLO would be $\sim 20-30 \%$)
[Until and including $\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)$, PS effects don't affect y_{H} (first 2 emissions controlled properly at $\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)$ by MiNLO+POWHEG)]

W@NNLOPS, PS level

To reweight, use ($y_{\ell \ell}, m_{\ell \ell}, \cos \theta_{\ell}$)

- not the observables we are using to do the NNLO reweighting
- observe exactly what we expect:
$p_{T, \ell}$ has NNLO uncertainty if $p_{T}<M_{W} / 2$, NLO if $p_{T}>M_{W} / 2$
- smooth behaviour when close to Jacobian peak (also with small bins) (due to resummation of logs at small $p_{T, V}$)
- just above peak, DYnNLO uses $\mu=M_{W}$, WJ-MinLO uses $\mu=p_{T, W}$
- here $0 \lesssim p_{T, W} \lesssim M_{W}$ (so resummation region does contribute)

H@NNLOPS (p_{T}^{H})

- HqT: NNLL+NNLO, $\mu_{R}=\mu_{F}=m_{H} / 2[7 \mathrm{pts}], \quad Q_{\mathrm{res}} \equiv m_{H} / 2$
[HqT, Bozzi et al.]
\checkmark uncertainty bands of HqT contain nNLOPS at low-/moderate p_{T}
- very good agreement with HqT resummation at low p_{T}
["~ expected", since $Q_{\text {res }} \equiv m_{H} / 2$, and $\beta=1 / 2$]
- HqT tail harder than nnLops tail
- understood: $\mu_{\mathrm{HqT}}<" \mu_{\text {MiNLO }} "$

H@NNLOPS ($\left.p_{T}^{j_{1}}\right)$

(4838) Separation of $H \rightarrow W W$ from $t \bar{t}$ bkg: x-sec binned in $N_{\text {jet }}$

0 -jet bin \Leftrightarrow jet-veto accurate predictions needed !

- JetVHeto: NNLL resum, $\mu_{R}=\mu_{F}=m_{H} / 2$ [7pts], $\quad Q_{\text {res }} \equiv m_{H} / 2$, (a)-scheme only
- nice agreement, differences never more than 5-6 \%

H@NNLOPS $\left(p_{T}^{j_{1}}\right)$

(4838) Separation of $H \rightarrow W W$ from $t \bar{t}$ bkg: x-sec binned in $N_{\text {jet }}$

0 -jet bin \Leftrightarrow jet-veto accurate predictions needed !

- JetVHeto: NNLL resum, $\mu_{R}=\mu_{F}=m_{H} / 2[7 \mathrm{pts}], \quad Q_{\mathrm{res}} \equiv m_{H} / 2$, (a)-scheme only
[JetVHeto, Banfi et al.]
- nice agreement, differences never more than 5-6 \%

WH@NNLOPS

To reweight, use ($y_{\mathrm{HW}}, \Delta y_{\mathrm{HW}}, p_{t, \mathrm{H}}$) + Collins-Soper angles

$$
\begin{aligned}
\frac{d \sigma}{d \Phi_{B}} & =\frac{d \sigma}{d y_{\mathrm{HW}} d \Delta y_{\mathrm{HW}} d p_{t, \mathrm{H}} d \cos \theta^{*} d \phi^{*}} \\
& =\frac{3}{16 \pi}\left(\frac{d \sigma}{d \Phi_{\mathrm{HW}^{*}}}\left(1+\cos ^{2} \theta^{*}\right)+\sum_{i=0}^{7} A_{i}\left(\Phi_{\mathrm{HW}^{*}}\right) f_{i}\left(\theta^{*}, \phi^{*}\right)\right)
\end{aligned}
$$

- left plot: angular dependence in slice of y_{HW}
- right plot: hardest-jet spectrum

conclusions

- Monte Carlo tools play a major role for LHC searches
- especially if no "smoking gun" new-Physics around the corner, precision will be the key to maximise impact of LHC results
- huge amount of improvements over the last few years
- NLO+PS tools are now well established and very mature
- by now they are basically automated also for BSM processes
- major developments in last 3-4 years: NLOPS multijet merging
- it might play a very important role in absence of smoking-gun BSM signal
- NNLO+PS is doable, at least for color-singlet production.

Outlook

What next?

- "proof of principle" results for NLOPS merging for higher multiplicity, using MiNLO

H+jj @ NLO, H+j @ NLO and H @ NNLO

[Frederix,Hamilton '15]

Outlook

What next?

- "proof of principle" results for NLOPS merging for higher multiplicity, using MiNLO
. H+jj @ NLO, H+j @ NLO and H @ NNLO [Frederix,Hamilton '15]
- NNLOPS for more complicated processes

Outlook

What next?

- "proof of principle" results for NLOPS merging for higher multiplicity, using MiNLO

```
. H+jj @ NLO, H+j @ NLO and H @ NNLO
- NNLOPS for more complicated processes
- understand and improve resummation property of (N)NLOPS tools.

\section*{Outlook}

\section*{What next?}
- "proof of principle" results for NLOPS merging for higher multiplicity, using MiNLO
```

. H+jj @ NLO, H+j @ NLO and H @ NNLO

- NNLOPS for more complicated processes
- understand and improve resummation property of (N)NLOPS tools.
- electroweak corrections

Outlook

What next?

- "proof of principle" results for NLOPS merging for higher multiplicity, using MiNLO

```
. H+jj @ NLO, H+j @ NLO and H @ NNLO
- NNLOPS for more complicated processes
- understand and improve resummation property of (N)NLOPS tools.
- electroweak corrections
- phenomenology in experimental analyses

\section*{Outlook}

\section*{What next?}
- "proof of principle" results for NLOPS merging for higher multiplicity, using MiNLO
```

. H+jj @ NLO, H+j @ NLO and H @ NNLO

- NNLOPS for more complicated processes
- understand and improve resummation property of (N)NLOPS tools.
- electroweak corrections
- phenomenology in experimental analyses

Thank you for your attention!

[^0]: *[Hoeche,Krauss, et al.,1207.5030] [Frederix,Frixione,1209.6215] [Lonnblad,Prestel,1211.7278]
 [Platzer,1211.5467] [Alioli,Bauer, et al.,1211.7049] ...

