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The Pléiades Earth observation satellites

» Pléiades 1A launched in december
2011

» Orbit at 694 km

» Swath width: 20 km

» Ground Sampling Distance (GSD):
70 cm / pix

» Quasi-simultaneous stereo
acquisitions — 3D models Vidéo produced by CNES, copyright @©CNES 2011
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Why 3D digital models?

They are an essential tool for:
» large-scale measurements:
> snow height on glaciers [Berthier et
al. 2014]
> forests evolution [Gumbricht 2012]
> assessment after natural disasters
[Yeésou et al. 2015]

» change detection
[Chaabouni-Chouayakh et al. 2010]

» cartography (orthorectification)
[Leprince et al. 2007]

» more generally, image comparison
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Why 3D digital models? For Rosettal

Philae search area on comet
67P /Churyumov-Gerasimenko

Philae final landing site
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How to compute 3D digital models?

Active methods:
> Kinect
» Lidar
» Synthetic Aperture Radar (SAR)

Passive image-based methods:

v

(multi-view) stereo

structure from motion

v

» photogrammetry

» computer vision. ..
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3D reconstruction from images

General principle:
» find corresponding pixels
> intersect the back-projected 3D lines

Need a camera model, and its parameters.

Pinhole camera model: projective
mapping from 3D space to 2D images
plane, represented by a 3 x 4 matrix

P = KR[I|-C]

Many names: pinhole, frame, conic,
projective. ..

[Marr and Poggio 1976] [Hartley and Zisserman 2004]
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Baseline 3D reconstruction algorithm

images u, v
camera matrices P, P’

stereo
matching

triangulation

|

3D point cloud
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Pushbroom cameras

The cameras used on satellites are
pushbroom, not pinhole:
> image lines, and color channels, are
acquired sequentially
» images are huge: 40k x 40k pixels
» most of the computer vision and

image processing literature deals with
pinhole cameras.

Goal: fill the gap between computer
vision and remote sensing
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Pushbroom cameras

images u, v
camera matrices P, P’

Camera modeling is more complex:
stereo stereo
. ) . . hi rectification
camera matrix P — rational polynomial functions (RPC) matching
N————
12 coefficients 170 coefficients l v

triangulation |<—

l

3D point cloud

bundle adjustment
camera resectioning
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The Rational Polynomial Camera Model

Yy
o

» For end-users, image vendors provide
a localization function. It is as a

-1
Rational Polynomial Function with %

degree 3.
. . .. RPC, (-, h)
> lts inverse, with respect to x, Is given

as well.
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Pushbroom cameras

camera matrices P, P’

images u, v ]

» camera modeling is more complex:

camera matrix P — rational polynomial functions (RPC) stereo Stergo )
matching rectification
12 coefficients
A

170 coefficients

4
» bundle adjustment is more complex l ;
! P R R bundle adjustment
: T . gulation |<— P
» epipolar rectification is not possible camera resectioning

l

3D point cloud
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Outline of the algorithm

images u, v
calibration data RPC,,, RPC,,

cut u in
., :
small tiles

stereo local stereo- local pointing
matching rectification refinement of RPC,,

Local correction of the pointing error i

3. Stereo matching global pointing
l refinement of RPC,,

1. Epipolar rectification for pushbroom
images

4. Triangulation

—— > (3D point cloud
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1. Epipolar rectification of
pushbroom images
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—
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Epipolar rectification: what is it?

Process of resampling the images in such
a way that depth variations cause
apparent motion in the horizontal
direction only.

Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image
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Pinhole cameras

» C,C’ and x define a plane, called
the epipolar plane.

> |ts intersection with the second
image is the epipolar line of x,
denoted by epi*.

» All the x’ € epi* share the same
epipolar plane, hence the same
epipolar line in the first image.

Conclusion: there is a one-to-one
correspondence between epipolar lines.
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Pushbroom cameras

» Satellite cameras are not pinhole,
but pushbroom.

» As the camera center moves, the
epipolar plane becomes a doubly
ruled surface, namely a hyperbolic
paraboloid.

reference view

» Epipolar lines become curves, still
denoted by epi*.

» All the x’ € epi* have a different
epipolar surface, hence a different
epipolar line in the first image.

Conclusion: there is no one-to-one
correspondence between epipolar curves.
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Epipolar rectification: why and how

Why epipolar rectification:

» To reduce the exploration from 2D to
1D

» It is just an intermediate step
Then it could be done locally. Let's try

to approximate the pushbroom model
with a pinhole on small image tiles.

How to do epipolar rectification:

1. Find keypoint matches x; > x} with
SIFT [Lowe 2004, Rey Otero 2014]

2. Estimate the fundamental matrix F
[Hartley and Zisserman 2004]

)T
x; Fx; =0

3. Estimate resampling homographies H
and H' [Loop Zhang 1999]

0O 0 O
F=#' |0 0 —1|H
01 O
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Results

N,
X

/
2

To evaluate the method, measure the

epipolar error

max max{d(XQ, Fx;), d(xi, FTX;)}v

i€{1,...,n}

where d(x’,F"x) is the vertical disparity:

d(x',Fx) =

VETX)2 + (F]%)?

0.6

4
IS

max error (pix)
o
W

0.2

0.1

500

calanques
cannes
giza

mera

mont_blanc
montevideo

new_york

*—* Ossoue

toulouse

L
=—a tregor
a—4 ubaye

+—¢ mercedes
fray_bentos

_—

10

00

1500

2000

L
2500 3000
Tile size (pix)

L L L
3500 4000 4500 5000

23 /35



Results

N,
X

/
1

Conclusion:

» After epipolar rectification, the maximal
error w.r.t true camera model (RPC) is
only 0.05 pixel!

» Working with small tiles (1000 x 1000
pixels) permits to do the usual epipolar
rectification with enough accuracy for
stereo matching.
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Results

epipolar rectification from keypoints rectification from RPC
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2. Local correction of the
pointing error

images u, v
calibration data RPC,,, RPC,,

cut v in
—
stereo local stereo- local pointing
matching rectification refinement of RPC,,
global pointing
l refinement of RPC,,

— > 3D point cloud
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images u, v
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The relative pointing error

Due to attitude measurement
inaccuracies, the RPC functions may
contain an error of a few pixels.

Given two corresponding points x <+ x/,
the epipolar curve

epiX, : h = RPC, 1 (RPCy(x, h), h)

may not pass through x’.

26 /35



On small tiles

» epipolar curves can be considered as parallel
lines i
» we observed that the pointing error is mostly —
a constant offset

Hence, given a set of keypoint matches e
(Obtained with SIFT [Rey Otero 14]), the error is = -
corrected with a translation of the second image: S

N
1
T* = arg min N Z d(Tx;, epiy’, (R))
T i=1 Error vectors on a tile of size
1000 x 1000 pixels

[Rey Otero 14] Ives Rey Otero and Mauricio Delbracio, Anatomy of the SIFT Method,
Image Processing On Line, 4 (2014)
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Local correction of the relative pointing error




Local correction of the relative pointing error




3. Stereo matching

images u, v
calibration data RPC,,, RPC,,

cut v in
—
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global pointing
l refinement of RPC,,

— > 3D point cloud
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Stereo Matching

Problem: for each 3D point visible in the
first image, find its location in the second
image (if not occluded).

input: rectified image pair

output: disparity map 30/35
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Stereo Matching

The problem is modeled as the minimization of an energy defined on the image
graph:

([:I:f%f:[ E(D) = Z C(p,Dp) + Z V(Dp, Dq)
i%:;l[_jl_f:[ | pevV (p.9)€€

data term: regularity term:
AD, NCC, Census. .. impogses sn{oothness
on the edges of the

image graph, e.g.

V(d,d")=|d—d'|

Problem: on 2D image graphs, minimizing E is NP-hard.
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Two kinds of approximations are used to solve
the minimization problem:
1. Compute a local minimum:
> Refine low resolution result: coarse-to-fine,
filtering, ...
» FastPD [Komodakis and Tziritas 07]
» Block Coordinate Descent [Chen and Koltun
14]
2. Modify the problem:

» Dynamic Programming (DP) on trees
[Veksler 05, Bleyer 08]

> Semi-Global Matching (SGM) [Hirschmiiller
05]

4-connected
image graph

DP on a tree
[Veksler 05]

DP optimization
[Baker & Binford
81]

SGM
[Hirschmiiller 05]
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images u, v
calibration data RPC,,, RPC,,

cut v in
—
stereo local stereo- local pointing
matching rectification refinement of RPC,,
global pointing
l refinement of RPC,,

— > 3D point cloud

4. Satellite Stereo Pipeline: S2P
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images u, v
calibration data RPC,,, RPC,,
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Triangulation

Triangulation requires two things: —
» point matches: transported back %
from the tiles v/ =
locally rectified tile
» cameras parameters: they were C eforonco secondary

refined tilewise X

Thus a unique global (affine) refinement
is estimated from the local translations.

34/35



Triangulation

Triangulation requires two things:

» point matches: transported back
from the tiles v/

» cameras parameters: they were
refined tilewise X

Thus a unique global (affine) refinement
is estimated from the local translations.

34/35



S2P implementation

Source code on github:

https://github.com/carlodef/s2p

Online demo on IPOL:

http://dev.ipol.im/carlo/s2p
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