Generic stereoscopic tools for planetary topography

Frédéric Schmidt (GEOPS - UPSud), **Carlo de Franchis**, Jean-Michel Morel (CMLA - ENS Paris-Saclay)

09 November 2016

The Pléiades Earth observation satellites

- Pléiades 1A launched in december 2011
- Orbit at 694 km
- Swath width: 20 km
- Ground Sampling Distance (GSD): 70 cm / pix
- ► Quasi-simultaneous stereo acquisitions → 3D models

Vidéo produced by CNES, copyright \bigodot{CNES} 2011

Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image

Why 3D digital models?

They are an essential tool for:

- large-scale measurements:
 - snow height on glaciers [Berthier et al. 2014]
 - forests evolution [Gumbricht 2012]
 - assessment after natural disasters [Yésou et al. 2015]
- change detection

[Chaabouni-Chouayakh et al. 2010]

- cartography (orthorectification) [Leprince et al. 2007]
- more generally, image comparison

Elevation differences on the Tungnafellsjökull Ice Cap

Why 3D digital models?

They are an essential tool for:

- large-scale measurements:
 - snow height on glaciers [Berthier et al. 2014]
 - forests evolution [Gumbricht 2012]
 - assessment after natural disasters [Yésou et al. 2015]
- change detection

[Chaabouni-Chouayakh et al. 2010]

- cartography (orthorectification) [Leprince et al. 2007]
- more generally, image comparison

Bassies (Pyrénées), 2015-03-11

Copyright \bigodot CNES 2011-15, distribution Airbus DS / Spot Image

Why 3D digital models?

They are an essential tool for:

- large-scale measurements:
 - snow height on glaciers [Berthier et al. 2014]
 - forests evolution [Gumbricht 2012]
 - assessment after natural disasters [Yésou et al. 2015]
- change detection

[Chaabouni-Chouayakh et al. 2010]

- cartography (orthorectification) [Leprince et al. 2007]
- more generally, image comparison

Bassies (Pyrénées), 2014-10-26

Copyright \bigodot CNES 2011-15, distribution Airbus DS / Spot Image

Why 3D digital models? For Rosetta!

Philae search area on comet 67P/Churyumov-Gerasimenko

Philae final landing site

How to compute 3D digital models?

Active methods:

- Kinect
- Lidar
- Synthetic Aperture Radar (SAR)
- Passive image-based methods:
 - (multi-view) stereo
 - structure from motion
 - photogrammetry
 - computer vision...

How to compute 3D digital models?

Active methods:

- Kinect
- Lidar
- Synthetic Aperture Radar (SAR)

Passive image-based methods:

- (multi-view) stereo
- structure from motion
- photogrammetry
- computer vision...

3D reconstruction from images

General principle:

- find corresponding pixels
- ► intersect the back-projected 3D lines Need a camera model, and its parameters.

Pinhole camera model: projective mapping from 3D space to 2D images plane, represented by a 3×4 matrix

 $\mathbf{P} = \mathbf{K} \mathbf{R} [\mathbf{I} | -\mathbf{C}]$

Many names: pinhole, frame, conic, projective...

[Marr and Poggio 1976] [Hartley and Zisserman 2004]

3D reconstruction from images

General principle:

- find corresponding pixels
- ► intersect the back-projected 3D lines Need a camera model, and its parameters.

Pinhole camera model: projective mapping from 3D space to 2D images plane, represented by a 3×4 matrix

 $\mathtt{P} = \mathtt{K}\mathtt{R}[\mathtt{I}| - \mathtt{C}]$

Many names: pinhole, frame, conic, projective...

[Marr and Poggio 1976] [Hartley and Zisserman 2004]

input images

rectified images

input images

rectified images

Pushbroom cameras

The cameras used on satellites are *pushbroom*, not pinhole:

- image lines, and color channels, are acquired sequentially
- images are **huge**: $40k \times 40k$ pixels
- most of the computer vision and image processing literature deals with pinhole cameras.

Goal: fill the gap between computer vision and remote sensing

Pushbroom cameras

The Rational Polynomial Camera Model

- For end-users, image vendors provide a localization function. It is as a Rational Polynomial Function with degree 3.
- Its inverse, with respect to x, is given as well.

Pushbroom cameras

- 1. Epipolar rectification for pushbroom images
- 2. Local correction of the pointing error
- 3. Stereo matching
- 4. Triangulation

- 1. Epipolar rectification for pushbroom images
- 2. Local correction of the pointing error
- 3. Stereo matching
- 4. Triangulation

- 1. Epipolar rectification for pushbroom images
- 2. Local correction of the pointing error
- 3. Stereo matching
- 4. Triangulation

- 1. Epipolar rectification for pushbroom images
- 2. Local correction of the pointing error
- 3. Stereo matching
- 4. Triangulation

- 1. Epipolar rectification for pushbroom images
- 2. Local correction of the pointing error
- 3. Stereo matching
- 4. Triangulation

1. Epipolar rectification of pushbroom images

1. Epipolar rectification of pushbroom images

Epipolar rectification: what is it?

Process of **resampling** the images in such a way that depth variations cause **apparent motion** in the **horizontal** direction only.

Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image

Epipolar rectification: what is it?

Process of **resampling** the images in such a way that depth variations cause **apparent motion** in the **horizontal** direction only.

Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image

Pinhole cameras

- ► C, C' and x define a plane, called the **epipolar plane**.
- Its intersection with the second image is the epipolar line of x, denoted by epi^x.
- ► All the x' ∈ epi^x share the same epipolar plane, hence the same epipolar line in the first image.

Conclusion: there is a one-to-one correspondence between epipolar lines.

Pushbroom cameras

- Satellite cameras are not pinhole, but pushbroom.
- As the camera center moves, the epipolar plane becomes a doubly ruled surface, namely a hyperbolic paraboloid.
- Epipolar lines become curves, still denoted by epi^x.
- ► All the x' ∈ epi^x have a different epipolar surface, hence a different epipolar line in the first image.

Conclusion: there is **no** one-to-one correspondence between epipolar curves.

Epipolar rectification: why and how

Why epipolar rectification:

- To reduce the exploration from 2D to 1D
- It is just an intermediate step

Then it could be done **locally**. Let's try to **approximate** the pushbroom model with a pinhole on **small image tiles**.

How to do epipolar rectification:

- 1. Find keypoint matches $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$ with SIFT [Lowe 2004, Rey Otero 2014]
- 2. Estimate the fundamental matrix F [Hartley and Zisserman 2004]

$$\mathbf{x}_i^{\prime \, \top} \mathbf{F} \mathbf{x}_i = \mathbf{0}$$

3. Estimate resampling homographies H and H' [Loop Zhang 1999]

$$\mathbf{F} = \mathbf{H'}^{\top} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{H}$$

To evaluate the method, measure the **epipolar error**

$$\max_{i \in \{1,\dots,n\}} \max\{d(\mathbf{x}'_i, \mathbf{F}\mathbf{x}_i), d(\mathbf{x}_i, \mathbf{F}^{\top}\mathbf{x}'_i)\},\$$

where $d(\mathbf{x}', \mathbf{F}^{\top}\mathbf{x})$ is the vertical disparity:

$$d(\mathbf{x}', \mathbf{F}\mathbf{x}) = \frac{|\mathbf{x}'^{\top}\mathbf{F}\mathbf{x}|}{\sqrt{(\mathbf{F}_1^{\top}\mathbf{x})^2 + (\mathbf{F}_2^{\top}\mathbf{x})^2}}$$

Conclusion:

- After epipolar rectification, the maximal error w.r.t true camera model (RPC) is only 0.05 pixel!
- Working with small tiles (1000 × 1000 pixels) permits to do the usual epipolar rectification with enough accuracy for stereo matching.

epipolar rectification from keypoints

rectification from RPC

epipolar rectification from keypoints

rectification from RPC

2. Local correction of the pointing error

2. Local correction of the pointing error

The relative pointing error

Due to **attitude measurement** inaccuracies, the RPC functions may contain an **error of a few pixels**.

Given two corresponding points $\mathbf{x}\leftrightarrow\mathbf{x}^{\prime}\text{,}$ the epipolar curve

 $\operatorname{epi}_{uv}^{\mathbf{x}}: h \mapsto \mathsf{RPC}_{v}^{-1}(\mathsf{RPC}_{u}(\mathbf{x},h),h)$

may not pass through \mathbf{x}' .

On small tiles

- epipolar curves can be considered as parallel lines
- we observed that the pointing error is mostly a constant offset

Hence, given a set of **keypoint matches** (obtained with SIFT [Rey Otero 14]), the error is corrected with a translation of the second image:

$$\mathbf{T}^{\star} = \mathop{\arg\min}_{\mathbf{T}} \frac{1}{N} \sum_{i=1}^{N} d(\mathbf{T}\mathbf{x}_{i}^{\prime}, \operatorname{epi}_{u,v}^{\mathbf{x}_{i}}(\mathbf{R}))$$

 $\begin{array}{l} \mbox{Error vectors on a tile of size} \\ 1000 \times 1000 \mbox{ pixels} \end{array} \end{array}$

[Rey Otero 14] Ives Rey Otero and Mauricio Delbracio, Anatomy of the SIFT Method, Image Processing On Line, 4 (2014)

On small tiles

- epipolar curves can be considered as parallel lines
- we observed that the pointing error is mostly a constant offset

Hence, given a set of **keypoint matches** (obtained with SIFT [Rey Otero 14]), the error is corrected with a translation of the second image:

$$\mathtt{T}^{\star} = \mathop{\arg\min}_{\mathtt{T}} \frac{1}{N} \sum_{i=1}^{N} d(\mathtt{T}\mathbf{x}_{i}^{\prime}, \operatorname{epi}_{u,v}^{\mathbf{x}_{i}}(\mathbf{R}))$$

 $\begin{array}{l} \mbox{Error vectors on a tile of size} \\ 1000 \times 1000 \mbox{ pixels} \end{array} \end{array}$

[Rey Otero 14] Ives Rey Otero and Mauricio Delbracio, Anatomy of the SIFT Method, Image Processing On Line, 4 (2014)

Local correction of the relative pointing error

after

Local correction of the relative pointing error

after

3. Stereo matching

3. Stereo matching

Stereo Matching

Problem: for each 3D point visible in the first image, find its location in the second image (if not occluded).

input: rectified image pair

output: disparity map

Stereo Matching

Problem: for each 3D point visible in the first image, find its location in the second image (if not occluded).

input: rectified image pair

output: disparity map

Stereo Matching

The problem is modeled as the **minimization** of an energy defined on the **image graph**:

Problem: on 2D image graphs, minimizing E is NP-hard.

Two kinds of **approximations** are used to solve the minimization problem:

- 1. Compute a local minimum:
 - Refine low resolution result: coarse-to-fine, filtering, . . .
 - FastPD [Komodakis and Tziritas 07]
 - Block Coordinate Descent [Chen and Koltun 14]
- 2. Modify the problem:
 - Dynamic Programming (DP) on trees [Veksler 05, Bleyer 08]
 - Semi-Global Matching (SGM) [Hirschmüller 05]

4-connected [fimage graph

DP optimization [Baker & Binford 81]

DP on a tree [Veksler 05]

SGM [Hirschmüller 05]

4. Satellite Stereo Pipeline: S2P

4. Satellite Stereo Pipeline: S2P

Triangulation

Triangulation requires two things:

- ▶ point matches: transported back from the tiles ✓
- cameras parameters: they were refined tilewise X

Thus a unique **global** (affine) refinement is estimated from the local translations.

Triangulation

Triangulation requires two things:

- ▶ point matches: transported back from the tiles ✓
- cameras parameters: they were refined tilewise X

Thus a unique **global** (affine) refinement is estimated from the local translations.

/	,	_ *	_▼	~	~
~	~	_>	_×	~	-
~	~	/	_*	~*	~
~	~	,	,*	×	_

Source code on github:

https://github.com/carlodef/s2p

Online demo on IPOL:

http://dev.ipol.im/~carlo/s2p

