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The Pléiades Earth observation satellites

I Pléiades 1A launched in december
2011

I Orbit at 694 km
I Swath width: 20 km
I Ground Sampling Distance (GSD):

70 cm / pix
I Quasi-simultaneous stereo

acquisitions → 3D models Vidéo produced by CNES, copyright ©CNES 2011
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Why 3D digital models?

They are an essential tool for:
I large-scale measurements:

I snow height on glaciers [Berthier et
al. 2014]

I forests evolution [Gumbricht 2012]
I assessment after natural disasters

[Yésou et al. 2015]

I change detection
[Chaabouni-Chouayakh et al. 2010]

I cartography (orthorectification)
[Leprince et al. 2007]

I more generally, image comparison
Elevation differences on the
Tungnafellsjökull Ice Cap
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Why 3D digital models? For Rosetta!

Philae search area on comet
67P/Churyumov-Gerasimenko Philae final landing site
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How to compute 3D digital models?

Active methods:
I Kinect
I Lidar
I Synthetic Aperture Radar (SAR)

Passive image-based methods:
I (multi-view) stereo
I structure from motion
I photogrammetry
I computer vision. . .
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3D reconstruction from images

General principle:
I find corresponding pixels
I intersect the back-projected 3D lines

Need a camera model, and its parameters.

Pinhole camera model: projective
mapping from 3D space to 2D images
plane, represented by a 3× 4 matrix

P = KR[I|−C]

Many names: pinhole, frame, conic,
projective. . .

[Marr and Poggio 1976] [Hartley and Zisserman 2004]
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Baseline 3D reconstruction algorithm
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Baseline 3D reconstruction algorithm

input images

rectified images
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Pushbroom cameras

The cameras used on satellites are
pushbroom, not pinhole:

I image lines, and color channels, are
acquired sequentially

I images are huge: 40k × 40k pixels
I most of the computer vision and

image processing literature deals with
pinhole cameras.

Goal: fill the gap between computer
vision and remote sensing

13 / 35



Pushbroom cameras

Camera modeling is more complex:

camera matrix P︸ ︷︷ ︸
12 coefficients

−→ rational polynomial functions (RPC)︸ ︷︷ ︸
170 coefficients
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The Rational Polynomial Camera Model

I For end-users, image vendors provide
a localization function. It is as a
Rational Polynomial Function with
degree 3.

I Its inverse, with respect to x, is given
as well.
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Pushbroom cameras

I camera modeling is more complex:

camera matrix P︸ ︷︷ ︸
12 coefficients

−→ rational polynomial functions (RPC)︸ ︷︷ ︸
170 coefficients

I bundle adjustment is more complex
I epipolar rectification is not possible
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Outline of the algorithm

1. Epipolar rectification for pushbroom
images

2. Local correction of the pointing error
3. Stereo matching
4. Triangulation
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1. Epipolar rectification of
pushbroom images
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Epipolar rectification: what is it?

Process of resampling the images in such
a way that depth variations cause
apparent motion in the horizontal
direction only.

Copyright ©CNES 2011-15, distribution Airbus DS / Spot Image
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Pinhole cameras

I C,C′ and x define a plane, called
the epipolar plane.

I Its intersection with the second
image is the epipolar line of x,
denoted by epix.

I All the x′ ∈ epix share the same
epipolar plane, hence the same
epipolar line in the first image.

Conclusion: there is a one-to-one
correspondence between epipolar lines.
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Pushbroom cameras

I Satellite cameras are not pinhole,
but pushbroom.

I As the camera center moves, the
epipolar plane becomes a doubly
ruled surface, namely a hyperbolic
paraboloid.

I Epipolar lines become curves, still
denoted by epix.

I All the x′ ∈ epix have a different
epipolar surface, hence a different
epipolar line in the first image.

Conclusion: there is no one-to-one
correspondence between epipolar curves.
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Epipolar rectification: why and how

Why epipolar rectification:

I To reduce the exploration from 2D to
1D

I It is just an intermediate step

Then it could be done locally. Let’s try
to approximate the pushbroom model
with a pinhole on small image tiles.

How to do epipolar rectification:

1. Find keypoint matches xi ↔ x′i with
SIFT [Lowe 2004, Rey Otero 2014]

2. Estimate the fundamental matrix F
[Hartley and Zisserman 2004]

x′i
>Fxi = 0

3. Estimate resampling homographies H
and H′ [Loop Zhang 1999]

F = H′>
0 0 0
0 0 −1
0 1 0

 H
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Results

To evaluate the method, measure the
epipolar error

max
i∈{1,...,n}

max{d(x′i, Fxi), d(xi, F>x′i)},

where d(x′, F>x) is the vertical disparity:

d(x′, Fx) =
|x′>Fx|√

(F>1 x)2 + (F>2 x)2
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Results

Conclusion:
I After epipolar rectification, the maximal

error w.r.t true camera model (RPC) is
only 0.05 pixel!

I Working with small tiles (1000× 1000
pixels) permits to do the usual epipolar
rectification with enough accuracy for
stereo matching.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Tile size (pix)

0.1

0.2

0.3

0.4

0.5

0.6

m
ax

 e
rr

or
 (p

ix
)

calanques
cannes
giza
mera
mont_blanc
montevideo
new_york

ossoue
toulouse
tregor
ubaye
mercedes
fray_bentos

23 / 35



Results

epipolar rectification from keypoints rectification from RPC
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2. Local correction of the
pointing error
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The relative pointing error

Due to attitude measurement
inaccuracies, the RPC functions may
contain an error of a few pixels.

Given two corresponding points x↔ x′,
the epipolar curve

epixuv : h 7→ RPC−1v (RPCu(x, h), h)

may not pass through x′.
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On small tiles

I epipolar curves can be considered as parallel
lines

I we observed that the pointing error is mostly
a constant offset

Hence, given a set of keypoint matches
(obtained with SIFT [Rey Otero 14]), the error is
corrected with a translation of the second image:

T? = argmin
T

1

N

N∑
i=1

d(Tx′i, epi
xi
u,v(R))

Error vectors on a tile of size
1000× 1000 pixels

[Rey Otero 14] Ives Rey Otero and Mauricio Delbracio, Anatomy of the SIFT Method,
Image Processing On Line, 4 (2014)
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Local correction of the relative pointing error

before after
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Local correction of the relative pointing error
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3. Stereo matching
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Stereo Matching

Problem: for each 3D point visible in the
first image, find its location in the second
image (if not occluded).

input: rectified image pair

output: disparity map 30 / 35
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Stereo Matching

The problem is modeled as the minimization of an energy defined on the image
graph:

E(D) =
∑
p∈V

C(p,Dp)︸ ︷︷ ︸
data term:

AD, NCC, Census. . .

+
∑

(p,q)∈E

V (Dp,Dq)︸ ︷︷ ︸
regularity term:

imposes smoothness
on the edges of the
image graph, e.g.
V (d,d′)=|d−d′|

Problem: on 2D image graphs, minimizing E is NP-hard.
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Two kinds of approximations are used to solve
the minimization problem:
1. Compute a local minimum:

I Refine low resolution result: coarse-to-fine,
filtering, . . .

I FastPD [Komodakis and Tziritas 07]
I Block Coordinate Descent [Chen and Koltun

14]
2. Modify the problem:

I Dynamic Programming (DP) on trees
[Veksler 05, Bleyer 08]

I Semi-Global Matching (SGM) [Hirschmüller
05]

4-connected
image graph

DP optimization
[Baker & Binford

81]

DP on a tree
[Veksler 05]

SGM
[Hirschmüller 05]
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4. Satellite Stereo Pipeline: S2P
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Triangulation

Triangulation requires two things:
I point matches: transported back

from the tiles 3

I cameras parameters: they were
refined tilewise 7

Thus a unique global (affine) refinement
is estimated from the local translations.
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S2P implementation

Source code on github:

https://github.com/carlodef/s2p

Online demo on IPOL:

http://dev.ipol.im/~carlo/s2p
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