FIFTY YEARS THAT CHANGED OUR PHYSICS

LAL, 21 Nov. 2016

Jean Iliopoulos

ENS, Paris
The twentieth century was the century of revolutions in Physics
The twentieth century was the century of revolutions in Physics

- Relativity - Special and General
The twentieth century was the century of revolutions in Physics

- Relativity - Special and General
- Atoms and atomic theory
The twentieth century was the century of revolutions in Physics

- Relativity - Special and General
- Atoms and atomic theory
- Radioactivity
The twentieth century was the century of revolutions in Physics.

- Relativity - Special and General
- Atoms and atomic theory
- Radioactivity
- The atomic nucleus
The twentieth century was the century of revolutions in Physics

- Relativity - Special and General
- Atoms and atomic theory
- Radioactivity
- The atomic nucleus
- Quantum Mechanics
The twentieth century was the century of revolutions in Physics

- Relativity - Special and General
- Atoms and atomic theory
- Radioactivity
- The atomic nucleus
- Quantum Mechanics
- Particles and Fields
The twentieth century was the century of revolutions in Physics

- Relativity - Special and General
- Atoms and atomic theory
- Radioactivity
- The atomic nucleus
- Quantum Mechanics
- Particles and Fields
- Gauge theories and Geometry
The twentieth century was the century of revolutions in Physics

- Relativity - Special and General
- Atoms and atomic theory
- Radioactivity
- The atomic nucleus
- Quantum Mechanics
- Particles and Fields
- Gauge theories and Geometry
- Each one involved new physical concepts, new mathematical tools and new champions
Some were radical, others were conservative.
Some were radical, others were conservative.

I will talk about the last two:

Particles and Fields - Gauge theories and Geometry
Some were radical, others were conservative.

I will talk about the last two:
Particles and Fields - Gauge theories and Geometry

They were conservative: Things changed just enough so that they could remain the same.
Some were radical, others were conservative.

I will talk about the last two:
Particles and Fields - Gauge theories and Geometry

They were conservative: Things changed just enough so that they could remain the same

Yet, they influenced profoundly our way of looking at the fundamental laws of Nature
Some were radical, others were conservative.

I will talk about the last two:
Particles and Fields - Gauge theories and Geometry

They were conservative: Things changed just enough so that they could remain the same

Yet, they influenced profoundly our way of looking at the fundamental laws of Nature

They were mostly rejected by the champions of the previous revolutions
A bit of history

- The rules of counting states in a statistical ensemble
 Boltzmann, Gibbs, Planck, Natanson, Ehrenfest, Fowler, ...

- The Bose-Einstein rule
 Bose (1924), Einstein (1924)

- The Pauli exclusion principle
 Pauli (1925)

- The Fermi-Dirac rule
 Fermi (1926), Dirac (1926)

- Applications (mostly incorrect) to various physical systems
 Einstein, Heisenberg, Dirac, Pauli, Hund, Dennison, Wigner, ...
Nuclear structure and the puzzles of β-decay
Nuclear structure and the puzzles of β-decay

- β-decay ($t < 1930$) : $N_1 \rightarrow N_2 + e$

 Rule: What comes out must be in

 \Rightarrow Nuclei are made out of protons and electrons

 Measurements of: (i) electron spectra and (ii) nuclear spins, show non-conservation of energy and angular momentum. Electrons in nuclei did not obey the Pauli exclusion principle.
Nuclear structure and the puzzles of β-decay

- β-decay ($t < 1930$) : $N_1 \rightarrow N_2 + e$

 Rule: What comes out must be in

 \Rightarrow Nuclei are made out of protons and electrons

 Measurements of: (i) electron spectra and (ii) nuclear spins, show non-conservation of energy and angular momentum.
 Electrons in nuclei did not obey the Pauli exclusion principle.

- Bohr versus Pauli

 Bohr (et al) : Conservation laws may be violated in Quantum Mechanics

 Pauli (1930) : $N_1 \rightarrow N_2 + e + \nu$

 \Rightarrow Nuclei are made out of protons, electrons and neutrinos
Nuclear structure and the puzzles of β-decay

- In 1932 Chadwick discovers the neutron, but

 For most people the neutron is a proton-electron bound state.

 ⇒ The discovery does not seem to solve any of the puzzles.
Nuclear structure and the puzzles of β-decay

▶ In 1932 Chadwick discovers the neutron, but

For most people the neutron is a proton-electron bound state.
⇒ The discovery does not seem to solve any of the puzzles.

▶ In 1932 Heisenberg introduces the concept of isospin.
He puts the proton and the neutron in an $SU(2)$ doublet, but

In the Bohr-Pauli controversy he sides with Bohr

He believes that a neutron decays into a proton and an electron, something incompatible with it being a fermion
"...under suitable circumstances the neutron will break up into a proton and an electron in which case the conservation laws of energy and momentum probably do not apply....The admittedly hypothetical validity of Fermi statistics for neutrons as well as the failure of the energy law in β-decay proves the inapplicability of present quantum mechanics to the structure of the neutron."
Fermi’s *Tentativo*

An English version had been submitted earlier in *Nature*, but it was rejected “because it contained speculations too remote from reality to be of interest to the reader”.

In the Bohr-Pauli controversy Fermi sides with Pauli. In the Fermi theory of β-decay the neutrino is a particle like any other.

But he goes further: he breaks with the prevailing doctrine according to which whatever comes out from a nucleus must be already in. For Fermi a particle, like a photon in a spontaneous emission, is created the moment of the decay.
Fermi’s *Tentativo*

- Fermi (1933)

Tentativo di una teoria della emissione di raggi β.

An english version had been submitted earlier in *Nature*, but it was rejected "because it contained speculations too remote from reality to be of interest to the reader".
Fermi’s *Tentativo*

- Fermi (1933)

 Tentativo di una teoria della emissione di raggi β.

 An english version had been submitted earlier in *Nature*, but it was rejected "because it contained speculations too remote from reality to be of interest to the reader".

- In the Bohr-Pauli controversy Fermi sides with Pauli.

 In the Fermi theory of β-decay the neutrino is a particle like any other.
Fermi’s *Tentativo*

- Fermi (1933)

 Tentativo di una teoria della emissione di raggi β.

 An english version had been submitted earlier in *Nature*, but it was rejected "because it contained speculations too remote from reality to be of interest to the reader".

- In the Bohr-Pauli controversy Fermi sides with Pauli.

 In the Fermi theory of β-decay the neutrino is a particle like any other.

- But he goes further: he breaks with the prevailing doctrine according to which whatever comes out from a nucleus must be already in. For Fermi a particle, like a photon in a spontaneous emission, is created the moment of the decay.
Fermi’s *Tentativo*

- He showed how this could actually happen.

\[
\{a_s(p), a_{s'}^\dagger(p')\} = \hbar (2\pi)^3 2\omega_p \delta^3(p - p') \delta_{ss'}
\]
\[
\{a_s(p), a_{s'}(p')\} = \{a_{s}^\dagger(p), a_{s'}^\dagger(p')\} = 0
\]

It is amazing how fast Fermi’s theory was universally accepted. The times were ripe. Quantum Field Theory became the language of particle physics.

Bohr continued to play with energy non-conserving theories for several years, but he was soon alone. A. Pais: “It is clear that Particles and Fields belong to the post-Bohr era.”
Fermi’s *Tentativo*

- He showed how this could actually happen.

\[
\begin{align*}
\{a_s(p), a_{s'}^\dagger(p')\} &= \hbar(2\pi)^3 2\omega_p \delta^3(p - p') \delta_{ss'} \\
\{a_s(p), a_{s'}(p')\} &= \{a_{s'}^\dagger(p), a_{s'}^\dagger(p')\} = 0
\end{align*}
\]

- It is amazing how fast Fermi’s theory was universally accepted. The times were ripe. Quantum Field Theory became the language of particle physics.
Fermi’s *Tentativo*

- He showed how this could actually happen.

\[
\{ a_s(p), a_{s'}^{\dagger}(p') \} = \hbar (2\pi)^3 2\omega_p \delta^3(p - p') \delta_{ss'} \\
\{ a_s(p), a_{s'}(p') \} = \{ a_{s'}^{\dagger}(p), a_{s'}^{\dagger}(p') \} = 0
\]

- It is amazing how fast Fermi’s theory was universally accepted. The times were ripe. Quantum Field Theory became the language of particle physics.

- Bohr continued to play with energy non-conserving theories for several years, but he was soon alone.

A. Pais: "It is clear that Particles and Fields belong to the post-Bohr era."
In the 1960’s there were two main lines of research in theoretical high energy physics
In the 1960’s there were two main lines of research in theoretical high energy physics

- The analytic S-matrix theory
 The dominant subject
In the 1960’s there were two main lines of research in theoretical high energy physics

- The analytic S-matrix theory
 The dominant subject

- Symmetries and Current Algebras, Weak Interactions and CP-violation
 Secondary subjects
In the 1960’s there were two main lines of research in theoretical high energy physics

- The analytic S-matrix theory
 The dominant subject

- Symmetries and Current Algebras, Weak Interactions and CP-violation
 Secondary subjects

- Notice the absence of Quantum Field Theory
 A totally marginal subject
The analytic S-matrix theory

A series of (more or less) reasonable axioms formulated directly on the scattering amplitudes.

- Invariance under Poincaré and internal symmetries
- Crossing symmetry
- Unitarity

\[S = \frac{1}{1 + iT} S^\dagger = S^\dagger S = \frac{1}{1 + 2i T} \Rightarrow 2i T = T^\dagger T \]

- Maximum analyticity
- Polynomial boundedness

Not very well defined, fuzzy rules

An important addition: Analyticity in the complex angular momentum plane (Regge)
The analytic S-matrix theory

- A series of (more or less) reasonable axioms formulated directly on the scattering amplitudes.
 - Invariance under Poincaré and internal symmetries
 - Crossing symmetry
 - Unitarity $S = 1 + iT$ $SS^\dagger = S^\dagger S = 1 \Rightarrow 2\text{Im }T = TT^\dagger$
 - Maximum analyticity
 - Polynomial boundedness

\textit{Not very well defined, fuzzy rules}
The analytic S-matrix theory

- A series of (more or less) reasonable axioms formulated directly on the scattering amplitudes.
 - Invariance under Poincaré and internal symmetries
 - Crossing symmetry
 - Unitarity $S = 1 + iT$ $SS^\dagger = S^\dagger S = 1 \implies 2\text{Im} T = TT^\dagger$
 - Maximum analyticity
 - Polynomial boundedness

 Not very well defined, fuzzy rules

- An important addition: Analyticity in the complex angular momentum plane (Regge)
Some important by-products

- Cutkosky unitarity relations
Some important by-products

- Cutkosky unitarity relations

- Bootstrap
Some important by-products

- Cutkosky unitarity relations

- Bootstrap

- Duality (*Dual Resonance Model*)
The Veneziano amplitude

\[A(s, t) \sim \frac{\Gamma(-1 + s/2)\Gamma(-1 + t/2)}{\Gamma(-2 + (s + t)/2)} \]

This amplitude, appropriately generalised, was the starting point of a concept which turned out to be seminal and important:

The string model

Initially, it was meant to be a theory for hadronic physics and gave rise to interesting phenomenological models.

But it was soon realised that it contains a version of quantum gravity

(more about that later)
Symmetries and Current Algebras, Weak Int. and CPV

SYMMETRIES

The pre-history
- Space-time symmetries
- Internal symmetries (Heisenberg 1932, Kemmer 1937, Fermi 1951)
- Gauge symmetries (Gauss, Einstein 1914, Fock 1926, Klein 1937, Pauli 1953, Yang and Mills 1954)

Early history
- Higher symmetry (Gell-Mann 1961 (+ Ne'eman))
- Current Algebras (Gell-Mann 1962)

Quarks (Gell-Mann 1964 (+ Zweig))
Symmetries and Current Algebras, Weak Int. and CPV

SYMMETRIES

▶ The pre-history
 • Space-time symmetries
 • Internal symmetries (Heisenberg 1932, Kemmer 1937, Fermi 1951)
 • Gauge symmetries (Gauss ??, Einstein 1914, Fock 1926, Klein 1937, Pauli 1953, Yang and Mills 1954)
Symmetries and Current Algebras, Weak Int. and CPV

SYMMETRIES

▶ The pre-history
 • Space-time symmetries
 • Internal symmetries (Heisenberg 1932, Kemmer 1937, Fermi 1951)
 • Gauge symmetries (Gauss??, Einstein 1914, Fock 1926, Klein 1937, Pauli 1953, Yang and Mills 1954)

▶ Early history
 • Higher symmetry (Gell-Mann 1961 (+ Ne’eman)) SU(3)
 • Current Algebras (Gell-Mann 1962)

\[[V, V] = V \quad ; \quad [V, A] = A \quad ; \quad [A, A] = V \]

• Quarks (Gell-Mann 1964 (+Zweig))
In this talk I will concentrate on very few particular subjects:

- The construction of the Standard Electroweak Model
- The renormalisation and QCD
- The importance of anomalies
In this talk I will concentrate on very few particular subjects:

- The construction of the Standard Electroweak Model
In this talk I will concentrate on very few particular subjects:

- The construction of the Standard Electroweak Model
- The renormalisation group and QCD
In this talk I will concentrate on very few particular subjects:

- The construction of the Standard Electroweak Model
- The renormalisation group and QCD
- The importance of anomalies
I. THE WEAK INTERACTIONS. PHENOMENOLOGY
Fermi 1933
The Electroweak Standard Model

I. THE WEAK INTERACTIONS. PHENOMENOLOGY
Fermi 1933

- The Fermi theory of the weak interactions was phenomenologically very successful

\[\mathcal{L}_W = \frac{G}{\sqrt{2}} J_{(w)}^\mu (x) J_{(w)}^\dagger (x) \]
I. THE WEAK INTERACTIONS. PHENOMENOLOGY
Fermi 1933

- The Fermi theory of the weak interactions was phenomenologically very successful

\[\mathcal{L}_W = \frac{G}{\sqrt{2}} J^\mu_{(w)}(x) J^\dagger_{(w)\mu}(x) \]

- But it was a non-renormalisable theory, Fierz 1936

\[d\sigma(\bar{\nu} + p \rightarrow n + e^+) = \frac{G_F^2}{2\pi^2} p_{\nu}^2 d\Omega \]
\[A \sim C_0^1(G_F\Lambda^2) + C_1^1 G_F M^2 \\
+ C_0^2(G_F\Lambda^2)^2 + C_1^2 G_F M^2(G_F\Lambda^2) + C_2^2(G_F M^2)^2 \\
+ \ldots \\
+ C_0^n(G_F\Lambda^2)^n + C_1^n G_F M^2(G_F\Lambda^2)^{n-1} + \ldots \\
+ \ldots \]

Effective coupling constant: \(\lambda = G_F\Lambda^2 \)

\[A \sim \lambda^n + G_F M^2 \lambda^{n-1} + \ldots \]

\[A \sim \text{“leading”} + \text{“next-to-leading”} + \ldots \]

The Theory is valid up to a scale \(\sim \Lambda \)

\(G_F\Lambda^2 \sim 1 \Rightarrow \Lambda \sim 300 \text{ GeV} \)
B.L. Joffe and E.P. Shabalin (1967)

- At leading order

 Limits on Parity and Strangeness violation in strong interactions

 \[G_F \Lambda^2 << 1 \Rightarrow \Lambda \sim 3 \text{ GeV} \]
B.L. Joffe and E.P. Shabalin (1967)

- At leading order
 Limits on Parity and Strangeness violation in strong interactions
 \[G_F \Lambda^2 << 1 \Rightarrow \Lambda \sim 3 \text{ GeV} \]

- At next-to-leading order
 Limits on \(K^0 \rightarrow \mu^+\mu^- \) and \(K^0 - \bar{K}^0 \) mass difference
 \[G_F \Lambda^2 << 1 \Rightarrow \Lambda \sim 3 \text{ GeV} \]
In a purely phenomenological approach the idea was to push the value of the cut-off beyond the reach of the experiments.

Example:

- Assume the approximate invariance of the strong interactions under chiral $SU(3) \times SU(3)$

- Assume an explicit breaking via a $(3 \bar{3}, \bar{3} \bar{3})$ term.

Like a quark mass term

The leading divergences respect all the strong interaction symmetries

Cl. Bouchiat, J. I., J. Prentki 1968

Following this line attempts were made to "determine" the properties of the weak interactions, for example to calculate the value of the Cabibbo angle.

Gatto, Sartori, Tonin; Cabibbo, Maiani; Gell-Mann, Goldberger, Kroll, Low
In a purely phenomenological approach the idea was to push the value of the cut-off beyond the reach of the experiments.

Example:

- Assume the approximate invariance of the strong interactions under chiral $SU(3) \times SU(3)$

- Assume an explicit breaking via a $(3, \bar{3})$ term.

 Like a quark mass term
In a purely phenomenological approach the idea was to push the value of the cut-off beyond the reach of the experiments.

Example:

- Assume the approximate invariance of the strong interactions under chiral $SU(3) \times SU(3)$

- Assume an explicit breaking via a $(3, \bar{3})$ term. *Like a quark mass term*

- The leading divergences respect all the strong interaction symmetries

Cl. Bouchiat, J. I., J. Prentki 1968
In a purely phenomenological approach the idea was to push the value of the cut-off beyond the reach of the experiments.

Example:

- Assume the approximate invariance of the strong interactions under chiral \(SU(3) \times SU(3) \)

- Assume an explicit breaking via a \((3, \bar{3})\) term.

 Like a quark mass term

- The leading divergences respect all the strong interaction symmetries

 Cl. Bouchiat, J. I., J. Prentki 1968

- Following this line attempts were made to "determine" the properties of the weak interactions, for example to calculate the value of the Cabibbo angle.

 Gatto, Sartori, Tonin; Cabibbo, Maiani; Gell-Mann, Goldberger, Kroll, Low
The argument on the leading divergences can, and has been, phrased entirely in terms of currents and symmetries of the strong interactions, although the assumption of an intermediate charged vector boson was always made. The Wilson short distance expansion was not used.

\[A \sim \frac{G}{\sqrt{2}} \int d^4 k \ e^{ikx} < a| T(J_\mu(x), J_\nu(0))|b > \frac{k^\mu k^\nu / m_W^2}{k^2 - m_W^2} \]

⇒

Only the symmetry properties of the currents are used, not their explicit expression in terms of elementary fields. The argument can be generalised to all orders in perturbation theory \((J.I.)\)
In principle, the same formalism can be used for the next-to-leading divergences, those which produce FCNC. (*G.I.M.*)

\[
d \nu_s \nu_{\mu^-} \nu_{\mu^+} W_{-} W_{+}
d \nu_s \nu_{\mu^-} \nu_{\mu^+} W_{-} W_{+}
\]
In principle, the same formalism can be used for the next-to-leading divergences, those which produce FCNC. \((G.I.M.)\)

At this point, however, the paradigm gradually changed from symmetries and currents to the quark model.
Intermezzo

Two seemingly disconnected contributions:
Two seemingly disconnected contributions:

- Spontaneous symmetry breaking in the presence of gauge interactions

 Brout and Englert; Higgs; Guralnik, Hagen and Kibble 1964
Two seemingly disconnected contributions:

- Spontaneous symmetry breaking in the presence of gauge interactions
 Brout and Englert; Higgs; Guralnik, Hagen and Kibble 1964

- A model for leptons
 Weinberg 1967; Salam 1968
Intermezzo

Two seemingly disconnected contributions:

- Spontaneous symmetry breaking in the presence of gauge interactions
 \textit{Brout and Englert; Higgs; Guralnik, Hagen and Kibble 1964}

- A model for leptons
 \textit{Weinberg 1967; Salam 1968}

- Both went totally unnoticed
II. THE WEAK INTERACTIONS. FIELD THEORY

Developed in parallel, kind of a sub-culture

Both, the phenomenological approach and the field theory approach, aimed at controlling the divergences of perturbation theory. In the first, you do not know the fields, you do not know the interactions. In the second you start from a given field theory.
Early attempts

- Use scalar intermediate bosons. Kummer, Segré 1965
- Introduce "physical" unstable particles with negative metric, but try to “confine” the violation of unitarity to very short times. Lee, Wick 1968
- The electrodynamics of charged vector bosons. ξ-limiting formalism Lee and Yang; Lee 1962
Early attempts

- Use scalar intermediate bosons
 Kummer, Segré 1965

The V-A structure is an accident of the lowest order.
Early attempts

- Use scalar intermediate bosons
 \textit{Kummer, Segré 1965}
 The V-A structure is an accident of the lowest order.

- Introduce "physical" unstable particles with negative metric, but try to "confine" the violation of unitarity to very short times.
 \textit{Lee, Wick 1968}
Early attempts

- Use scalar intermediate bosons

 Kummer, Segré 1965

 The V-A structure is an accident of the lowest order.

- Introduce "physical" unstable particles with negative metric, but try to "confine" the violation of unitarity to very short times.

 Lee, Wick 1968

- The electrodynamics of charged vector bosons

 ξ-limiting formalism Lee and Yang; Lee 1962
Massive Yang-Mills; Trial and error strategy.

Veltman

Find the Feynman rules for gauge invariant theories.

Feynman; Faddeev, Popov; 't Hooft

Combine with scalar fields.

't Hooft, Veltman

Prove renormalisability

't Hooft, Veltman 1971

Then all hell broke loose!

Formal Ward Identities.

Slavnov; Taylor; Lee, Zinn-Justin

In the same family of gauges you find renormalisable gauges and unitary gauges.

't Hooft, Veltman

Understand why it works.

Becchi, Rouet, Stora; Tyutin
Renormalisation - Yang-Mills - Quarks

- Massive Yang-Mills; Trial and error strategy. *Veltman*
Renormalisation - Yang-Mills - Quarks

- Massive Yang-Mills; Trial and error strategy. *Veltman*

- Find the Feynman rules for gauge invariant theories. *Feynman; Faddeev, Popov; ’t Hooft*

- Combine with scalar fields. *’t Hooft, Veltman*

- Prove renormalisability. *’t Hooft, Veltman 1971*

- Formal Ward Identities. *Slavnov; Taylor; Lee, Zinn-Justin*

- In the same family of gauges you find renormalisable gauges and unitary gauges. *’t Hooft, Veltman*

- Understand why it works. *Becchi, Rouet, Stora; Tyutin*
Renormalisation - Yang-Mills - Quarks

- Massive Yang-Mills; Trial and error strategy. *Veltman*

- Find the Feynman rules for gauge invariant theories. *Feynman; Faddeev, Popov; ’t Hooft*

- Combine with scalar fields. *’t Hooft, Veltman*
Renormalisation - Yang-Mills - Quarks

- Massive Yang-Mills; Trial and error strategy. Veltman
- Find the Feynman rules for gauge invariant theories. Feynman; Faddeev, Popov; ’t Hooft
- Combine with scalar fields. ’t Hooft, Veltman
- Prove renormalisability ’t Hooft, Veltman 1971

Then all hell broke loose!
Renormalisation - Yang-Mills - Quarks

- Massive Yang-Mills; Trial and error strategy. *Veltman*
- Find the Feynman rules for gauge invariant theories. *Feynman; Faddeev, Popov; ’t Hooft*
- Combine with scalar fields. *’t Hooft, Veltman*
- Prove renormalisability *’t Hooft, Veltman 1971*
 Then all hell broke loose!
- Formal Ward Identities. *Slavnov; Taylor; Lee, Zinn-Justin*
Renormalisation - Yang-Mills - Quarks

- Massive Yang-Mills; Trial and error strategy.
 Veltman

- Find the Feynman rules for gauge invariant theories.
 Feynman; Faddeev, Popov; ’t Hooft

- Combine with scalar fields.
 ’t Hooft, Veltman

- Prove renormalisability
 ’t Hooft, Veltman 1971
 Then all hell broke loose!

- Formal Ward Identities.
 Slavnov; Taylor; Lee, Zinn-Justin

- In the same family of gauges you find renormalisable gauges and unitary gauges.
 ’t Hooft, Veltman
Renormalisation - Yang-Mills - Quarks

- Massive Yang-Mills; Trial and error strategy. Veltman
- Find the Feynman rules for gauge invariant theories. Feynman; Faddeev, Popov; ’t Hooft
- Combine with scalar fields. ’t Hooft, Veltman
- Prove renormalisability ’t Hooft, Veltman 1971
 Then all hell broke loose!
- Formal Ward Identities. Slavnov; Taylor; Lee, Zinn-Justin
- In the same family of gauges you find renormalisable gauges and unitary gauges.
 ’t Hooft, Veltman
- Understand why it works. Becchi, Rouet, Stora; Tyutin
Geometry and Dynamics

Gauge theories on a space-time lattice

The dictionary:

- A field $\Psi(x) \Rightarrow \Psi_n$
- A local term such as $\bar{\Psi}(x)\Psi(x) \Rightarrow \bar{\Psi}_n\Psi_n$
- A derivative $\partial^\mu \Psi(x) \Rightarrow (\Psi_n - \Psi_{n+\mu})$
- The kinetic energy term $\bar{\Psi}(x)\partial^\mu \Psi(x) \Rightarrow \bar{\Psi}_n\Psi_n - \bar{\Psi}_n\Psi_{n+\mu}$
- A gauge transformation $\Psi(x) \rightarrow e^{i\Theta(x)}\Psi(x) \Rightarrow \Psi_n \rightarrow e^{i\Theta_n}\Psi_n$

- All local terms of the form $\bar{\Psi}_n\Psi_n$ remain invariant
- The kinetic energy $\bar{\Psi}_n\Psi_n + \mu \rightarrow \bar{\Psi}_n e^{-i\Theta_n}e^{i\Theta_n + \mu}\Psi_n + \mu$

- Introduce U_n, $n + \mu \rightarrow e^{i\Theta_n}U_n$, $n + \mu e^{-i\Theta_n + \mu}$

- $\bar{\Psi}_n U_n$, $n + \mu \Psi_n + \mu$
Geometry and Dynamics

Gauge theories on a space-time lattice

The dictionary:

- A field \(\psi(x) \) \(\Rightarrow \) \(\psi_n \)
Geometry and Dynamics

Gauge theories on a space-time lattice

The dictionary:
- A field $\psi(x) \Rightarrow \psi_n$
- A local term such as $\bar{\psi}(x)\psi(x) \Rightarrow \bar{\psi}_n\psi_n$
Geometry and Dynamics

Gauge theories on a space-time lattice

The dictionary:

- A field $\psi(x) \Rightarrow \psi_n$
- A local term such as $\bar{\psi}(x)\psi(x) \Rightarrow \bar{\psi}_n\psi_n$
- A derivative $\partial_\mu \psi(x) \Rightarrow (\psi_n - \psi_{n+\mu})$

where $n + \mu$ should be understood as a unit vector joining the point n with its nearest neighbour in the direction μ.
Geometry and Dynamics

Gauge theories on a space-time lattice

The dictionary:

- A field $\psi(x) \Rightarrow \psi_n$
- A local term such as $\bar{\psi}(x)\psi(x) \Rightarrow \bar{\psi}_n\psi_n$
- A derivative $\partial_\mu \psi(x) \Rightarrow (\psi_n - \psi_{n+\mu})$
 where $n + \mu$ should be understood as a unit vector joining the point n with its nearest neighbour in the direction μ.
- The kinetic energy term $\bar{\psi}(x)\partial_\mu \psi(x) \Rightarrow \bar{\psi}_n\psi_n - \bar{\psi}_n\psi_{n+\mu}$
Geometry and Dynamics

Gauge theories on a space-time lattice

The dictionary:

- A field $\Psi(x) \Rightarrow \Psi_n$
- A local term such as $\bar{\Psi}(x)\Psi(x) \Rightarrow \bar{\Psi}_n\psi_n$
- A derivative $\partial_\mu \Psi(x) \Rightarrow (\Psi_n - \Psi_{n+\mu})$
 where $n + \mu$ should be understood as a unit vector joining the point n with its nearest neighbour in the direction μ.
- The kinetic energy term $\bar{\Psi}(x)\partial_\mu \Psi(x) \Rightarrow \bar{\Psi}_n\psi_n - \bar{\Psi}_n\psi_{n+\mu}$
- A gauge transformation $\Psi(x) \rightarrow e^{i\Theta(x)}\Psi(x) \Rightarrow \Psi_n \rightarrow e^{i\Theta_n}\psi_n$
Geometry and Dynamics

Gauge theories on a space-time lattice

The dictionary:

- A field $\psi(x)$ \Rightarrow ψ_n
- A local term such as $\bar{\psi}(x)\psi(x)$ \Rightarrow $\bar{\psi}_n\psi_n$
- A derivative $\partial_\mu \psi(x)$ \Rightarrow $(\psi_n - \psi_{n+\mu})$
 where $n + \mu$ should be understood as a unit vector joining the point n with its nearest neighbour in the direction μ.
- The kinetic energy term $\bar{\psi}(x)\partial_\mu \psi(x)$ \Rightarrow $\bar{\psi}_n\psi_n - \bar{\psi}_n\psi_{n+\mu}$
- A gauge transformation
 $\psi(x)$ \rightarrow $e^{i\Theta(x)}\psi(x)$ \Rightarrow ψ_n \rightarrow $e^{i\Theta_n}\psi_n$
- All local terms of the form $\bar{\psi}_n\psi_n$ remain invariant.
Geometry and Dynamics

Gauge theories on a space-time lattice

The dictionary:

- A field $\psi(x) \Rightarrow \psi_n$
- A local term such as $\bar{\psi}(x)\psi(x) \Rightarrow \bar{\psi}_n\psi_n$
- A derivative $\partial_\mu \psi(x) \Rightarrow (\psi_n - \psi_{n+\mu})$
 where $n + \mu$ should be understood as a unit vector joining the point n with its nearest neighbour in the direction μ.
- The kinetic energy term $\bar{\psi}(x)\partial_\mu \psi(x) \Rightarrow \bar{\psi}_n\psi_n - \bar{\psi}_n\psi_{n+\mu}$
- A gauge transformation $\psi(x) \rightarrow e^{i\Theta(x)}\psi(x) \Rightarrow \psi_n \rightarrow e^{i\Theta_n}\psi_n$
- All local terms of the form $\bar{\psi}_n\psi_n$ remain invariant
- The kinetic energy $\bar{\psi}_n\psi_{n+\mu} \rightarrow \bar{\psi}_n e^{-i\Theta_n} e^{i\Theta_{n+\mu}} \psi_{n+\mu}$
Geometry and Dynamics

Gauge theories on a space-time lattice

The dictionary:

- A field $\psi(x) \Rightarrow \psi_n$
- A local term such as $\overline{\psi}(x)\psi(x) \Rightarrow \overline{\psi}_n\psi_n$
- A derivative $\partial_\mu \psi(x) \Rightarrow (\psi_n - \psi_{n+\mu})$
 where $n + \mu$ should be understood as a unit vector joining the point n with its nearest neighbour in the direction μ.
- The kinetic energy term $\overline{\psi}(x)\partial_\mu \psi(x) \Rightarrow \overline{\psi}_n\psi_n - \overline{\psi}_n\psi_{n+\mu}$
- A gauge transformation $\psi(x) \rightarrow e^{i\Theta(x)}\psi(x) \Rightarrow \psi_n \rightarrow e^{i\Theta_n}\psi_n$
- All local terms of the form $\overline{\psi}_n\psi_n$ remain invariant
- The kinetic energy $\overline{\psi}_n\psi_{n+\mu} \rightarrow \overline{\psi}_n e^{-i\Theta_n} e^{i\Theta_{n+\mu}} \psi_{n+\mu}$
- Introduce: $U_{n,n+\mu} \rightarrow e^{i\Theta_n} U_{n,n+\mu} e^{-i\Theta_{n+\mu}}$
Geometry and Dynamics

Gauge theories on a space-time lattice

The dictionary:

- A field $\psi(x) \Rightarrow \psi_n$
- A local term such as $\bar{\psi}(x)\psi(x) \Rightarrow \bar{\psi}_n\psi_n$
- A derivative $\partial_\mu \psi(x) \Rightarrow (\psi_n - \psi_{n+\mu})$
 where $n + \mu$ should be understood as a unit vector joining the point n with its nearest neighbour in the direction μ.
- The kinetic energy term $\bar{\psi}(x)\partial_\mu \psi(x) \Rightarrow \bar{\psi}_n\psi_n - \bar{\psi}_n\psi_{n+\mu}$
- A gauge transformation
 $\psi(x) \rightarrow e^{i\Theta(x)}\psi(x) \Rightarrow \psi_n \rightarrow e^{i\Theta_n}\psi_n$
- All local terms of the form $\bar{\psi}_n\psi_n$ remain invariant
- The kinetic energy $\bar{\psi}_n\psi_{n+\mu} \rightarrow \bar{\psi}_n e^{-i\Theta_n} e^{i\Theta_{n+\mu}} \psi_{n+\mu}$
- Introduce: $U_{n,n+\mu} \rightarrow e^{i\Theta_n} U_{n,n+\mu} e^{-i\Theta_{n+\mu}}$
- $\bar{\psi}_n U_{n,n+\mu} \psi_{n+\mu}$
Geometry and Dynamics

Gauge theories on a space-time lattice

Matter fields Ψ live on lattice points

Gauge fields $U_n, U_{n+\mu}$ live on the oriented link joining the two neighbouring points.

The mathematicians are right when they do not call the gauge field "a field" but "a connection"

The kinetic energy of the gauge field on the lattice:

$$\text{Tr} F_{\mu \nu}(x) F_{\mu \nu}(x) \Rightarrow ???$$

A path $p_{n,m}$: $P(p)(n,m) = \prod U_{n,n+\mu} ... U_{m-\nu,m}$

For a closed path $c = p_{n,n}$ the quantity $\text{Tr} P(c)$ is gauge invariant.

⇒ "a curvature"
Gauge theories on a space-time lattice

- Matter fields Ψ live on lattice points
Gauge theories on a space-time lattice

- Matter fields Ψ live on lattice points
- Gauge fields $U_{n,n+\mu}$ live on the oriented link joining the two neighbouring points.

The mathematicians are right when they do not call the gauge field “a field” but “a connection”
Geometry and Dynamics

Gauge theories on a space-time lattice

- Matter fields Ψ live on lattice points
- Gauge fields $U_{n,n+\mu}$ live on the oriented link joining the two neighbouring points.
 The mathematicians are right when they do not call the gauge field “a field” but “a connection”

- The kinetic energy of the gauge field on the lattice:
 $\text{Tr} F_{\mu\nu}(x) F^{\mu\nu}(x) \Rightarrow ??$
Geometry and Dynamics

Gauge theories on a space-time lattice

- Matter fields Ψ live on lattice points
- Gauge fields $U_{n,n+\mu}$ live on the oriented link joining the two neighbouring points.

 The mathematicians are right when they do not call the gauge field “a field” but “a connection”
- The kinetic energy of the gauge field on the lattice:

 $\text{Tr} \mathcal{F}_{\mu\nu}(x) \mathcal{F}^{\mu\nu}(x) \Rightarrow ??$
- $p_{n,m}$ "a path": $P^{(p)}(n,m) = \prod_p U_{n,n+\mu} \ldots U_{m-\nu,m}$
Gauge theories on a space-time lattice

- Matter fields Ψ live on lattice points
- Gauge fields $U_{n,n+\mu}$ live on the oriented link joining the two neighbouring points.

The mathematicians are right when they do not call the gauge field “a field” but “a connection”

- The kinetic energy of the gauge field on the lattice:
 $\text{Tr} F_{\mu\nu}(x) F^{\mu\nu}(x) \Rightarrow ??$

- $p_{n,m}$ "a path" : $P^{(p)}(n, m) = \prod_p U_{n,n+\mu}...U_{m-\nu,m}$

- For a closed path $c = p_{n,n}$ the quantity $\text{Tr} P^{(c)}$ is gauge invariant. $\Rightarrow \text{“a curvature“}$
First conclusion

The 1960’s was an extraordinary decade....

although no one at the time had realised that a revolution was taking place!
The renormalisation group and QCD

Contrary to what you may think, the study (rather the re-birth) of the renormalisation group was not initially motivated by the SLAC results on DIS.

A short history

• The RG equation was first written down by Stückelberg and Petermann in 1953

\[[M \frac{\partial}{\partial M} + \beta \frac{\partial}{\partial \lambda} + \gamma_m m \frac{\partial}{\partial m} - n\gamma] \Gamma^{(2n)}(p_1, ..., p_{2n}; m, \lambda; M) = 0 \]

It was meant to clarify the meaning of the subtraction in the renormalisation procedure

• Gell-Mann and Low in 1954 observed that it can be used to study the asymptotic behaviour of the theory, but, in the late sixties, the emphasis was to use the equation \(\beta = 0 \) for QED as an eigenvalue equation to determine \(\alpha \)
The renormalisation group and QCD

• In the very late sixties Callan and Symanzik wrote an independent equation, which was \textit{the broken scale invariance Ward identity}

\[
\left[m_R \frac{\partial}{\partial m_R} + \beta \frac{\partial}{\partial \lambda_R} + n\gamma \right] \Gamma_R^{(2n)} = m_R^2 \delta \Gamma_{\phi^2R}^{(2n)}
\]
The renormalisation group and QCD

• In the very late sixties Callan and Symanzik wrote an independent equation, which was *the broken scale invariance Ward identity*

\[
\left[m_R \frac{\partial}{\partial m_R} + \beta \frac{\partial}{\partial \lambda_R} + n\gamma \right] \Gamma^{(2n)}_R = m_R^2 \delta \Gamma^{(2n)}_{\phi^2 R}
\]

• These two equations, which have a totally different physical content, share a common property: *they both describe the response of the system under the change of a dimensionfull parameter* ⇒ They can be used to study the asymptotic behaviour of the theory.
The renormalisation group and QCD

- In the very late sixties Callan and Symanzik wrote an independent equation, which was the broken scale invariance Ward identity

\[m_R \frac{\partial}{\partial m_R} + \beta \frac{\partial}{\partial \lambda_R} + n \gamma \] \[\Gamma_R^{(2n)} = m_R^2 \delta \Gamma_{\phi^2 R}^{(2n)} \]

- These two equations, which have a totally different physical content, share a common property: they both describe the response of the system under the change of a dimensionfull parameter. They can be used to study the asymptotic behaviour of the theory.

- Two physical applications:
 (i) Phase transitions and critical phenomena (Kadanoff, Fischer, Wilson)
 (ii) Scaling properties in DIS ⇒ Asymptotic freedom and QCD (Gross, Politzer, Wilcek)
The renormalisation group and QCD

DIS phenomena were described by:

- The parton model: Simple intuitive picture, no mathematical justification
- QCD: Field theory foundation, no simple picture
- The synthesis: The DGLAP equations - The best of two worlds
The renormalisation group and QCD

DIS phenomena were described by:

- The parton model
 Simple intuitive picture, no mathematical justification
The renormalisation group and QCD

DIS phenomena were described by:

- The parton model
 Simple intuitive picture, no mathematical justification

- QCD
 Field theory foundation, no simple picture
The renormalisation group and QCD

DIS phenomena were described by:

- The parton model
 Simple intuitive picture, no mathematical justification

- QCD
 Field theory foundation, no simple picture

- The synthesis: The DGLAP equations
 The best of two worlds
QCD has been enormously successful in perturbation.
QCD has been enormously successful

In the non-perturbative region
THE STANDARD MODEL

\[U(1) \times SU(2) \times SU(3) \rightarrow U(1)_{\text{em}} \times SU(3) \]
THE STANDARD MODEL

\[U(1) \times SU(2) \times SU(3) \rightarrow U(1)_{\text{em}} \times SU(3) \]

- Gauge theories describe \textit{ALL} interactions among elementary particles (\textit{?})
THE STANDARD MODEL

\[U(1) \times SU(2) \times SU(3) \rightarrow U(1)_{\text{em}} \times SU(3) \]

- Gauge theories describe \textit{ALL} interactions among elementary particles (?)

- Dynamics=Geometry

"Let no one ignorant of geometry enter under this roof",
\textit{Platon}
THE STANDARD MODEL and anomalies

An obscure higher order effect determines the structure of the world.
The mathematical consistency of a gauge field theory is based on the strict respect of the underlying Ward identities. This can be roughly translated into saying that the corresponding currents should be conserved.
THE STANDARD MODEL and anomalies

An obscure higher order effect determines the structure of the world.

- The mathematical consistency of a gauge field theory is based on the strict respect of the underlying Ward identities. This can be roughly translated into saying that the corresponding currents should be conserved.

- The weak currents have a vector and an axial part. We know that, in general, we cannot enforce the conservation of both.

\[\partial_\mu j^{(5)}_\mu (x) = \frac{e^2}{8\pi^2} \epsilon_{\nu\rho\sigma\tau} F^{\nu \rho}(x) F^{\sigma \tau}(x) \]
THE STANDARD MODEL and anomalies

An obscure higher order effect determines the structure of the world.

The mathematical consistency of a gauge field theory is based on the strict respect of the underlying Ward identities. This can be roughly translated into saying that the corresponding currents should be conserved.

The weak currents have a vector and an axial part. We know that, in general, we cannot enforce the conservation of both.

\[\partial^\mu j^{(5)}_\mu(x) = \frac{e^2}{8\pi^2} \epsilon_{\nu\rho\sigma\tau} F^{\nu\rho}(x) F^{\sigma\tau}(x) \]

Anomaly cancellation condition \(A = \sum_i Q_i = 0 \)
THE STANDARD MODEL and anomalies

An obscure higher order effect determines the structure of the world.

- The presence of anomalies is a general feature of gauge theories, including gravitation.
THE STANDARD MODEL and anomalies

An obscure higher order effect determines the structure of the world.

- The presence of anomalies is a general feature of gauge theories, including gravitation
- Anomalies should be cancelled at all levels

(Green and Schwarz, 1983)
THE STANDARD MODEL and anomalies

An obscure higher order effect determines the structure of the world.

- The presence of anomalies is a general feature of gauge theories, including gravitation
- Anomalies should be cancelled at all levels
- For the Standard Model, once the τ lepton was found, we could predict the existence of the b and t quarks

(Green and Schwarz, 1983)
THE STANDARD MODEL and anomalies

An obscure higher order effect determines the structure of the world.

- The presence of anomalies is a general feature of gauge theories, including gravitation
- Anomalies should be cancelled at all levels
- For the Standard Model, once the τ lepton was found, we could predict the existence of the b and t quarks
- The discovery of a very special anomaly cancellation in string theories, established the super-string theory as the only viable candidate for a quantum gauge theory of all interactions (Green and Schwarz, 1983)
Imagine we integrate over all degrees of freedom heavier than a scale M

M does not have to correspond to a physical threshold, although it could!

\Rightarrow

We obtain an effective theory in terms of the light, $< M$, degrees of freedom:

$$\mathcal{L}_{\text{eff}} = \sum_{i=0}^{\infty} C_i \mathcal{O}_i$$

By dimensional analysis: $C_i \sim M^{4-d_i}$

\Rightarrow

The only dominant operator in the SM is the scalar mass term ϕ^2
This is not "The end of History"
▶ This is not "The end of History"

▶ It is not even the end of the story!
- This is not "The end of History"

- It is not even the end of the story!

- We are looking forward to the next chapter