

Quantifying Tensions in Cosmology

Sebastian Grandis, Faculty of Physics, LMU

LMU: D. Rapetti, A. Saro, J. J. Mohr, J. P. Dietrich

ETH: S. Seehars, A. Amara, A. Refregier, A. Nicola

Introduction

History of the Universe: Expansion and Formation of Structures

Introduction

Evolution of the Universe described by Standard Model of Cosmology

 \Rightarrow expanding spacetime described by metric

 \Rightarrow filled with different components:

- photon, neutrinos, ...
- ordinary matter ("baryons")
- missing, non-luminous matter ("Dark Matter")
- something driving late-time accelerated expansion ("Dark Energy")

 \Rightarrow slight initial perturbations of the metric (gravitational potentials)

Interaction and Gravity lead to Expansion and Formation of Structure

Introduction

Universe described by finite set of cosmological parameters

- present-day densities of components: Ω_{γ} , Ω_{ν} , Ω_{b} , Ω_{cdm} , Ω_{Λ} , Ω_{k} **T** baryons
- present-day expansion rate (sets physical scale of the Universe): H_0
- prescription for initial fluctuations: $n_{\rm S}$, $A_{\rm S}$ alternatively σ_8 •

spectral index and amplitude of primordial scalar fluctuations

photons

neutrinos

root-mean square of present-day matter fluctuations at 8 Mpc/h

curvature

DM

and others •

<u>Predictions for:</u> • power spectra of different components

distances as function of redshift •

Observational Cosmology infers these parameters from observations (Cosmological probes)

Cosmological Probes

Cosmic Microwave Background (CMB)

While expanding/cooling, the early Universe turned from optically thick to transparent: Last Scattering Surface

Since LSS photons travel freely \implies "Echo" from the primordial Universe

Planck

Photon Background in Microwaves with tiny temperature fluctuation

WMAP

CMB perfect Blackbody \Rightarrow mean Temperature of CMB fixes Ω_{γ}

angular power spectrum of temperature fluctuation

Cosmological Probes

gravitational lensing of galaxy shapes

spectroscopic galaxy surveys

2dF Galaxy Survey

Observation of amplitude of fluctuations at low redshift

 \Rightarrow constraints on $\Omega_{\rm M}$ and σ_8

 \Rightarrow possible clues about DE

Cosmological Probes

Measurements of cosmological distances

BAOs can be found in distribution of galaxies $\downarrow\downarrow$ standard ruler object of constant size $\downarrow\downarrow$ angular size of standard ruler is distance measure Supernovae Type Ia (SNe) have constant luminosity ↓ standard candle object of constant luminosity ↓ flux of standard candle is distance measure

Calibration

"Distance ladder"

BAOs imprinted on CMB

- parallax measurements to Cepheid stars (variable)
- Cepheids used to determine intrinsic luminosity of SNe

LUDWIG-

MÜNCHEN

MAXIMILIANS-

Cosmological Probes

Cosmology is blessed with a variety of (almost) independent measurements

Distance Measurements

Hubble Space Telescope, European Space Agency

S. Grandis, at LAL, Jan 24, Orsay Cedex

Very different datasets put constraint on the same model

Introduction

Given large **variety of datasets** constraining the same model

Need to measuremutual consistencyof different datasets

Different datasets \Rightarrow Different observables \Rightarrow posterior distribution in model parameter space

Comparing marginal contours might be misleading

 \Rightarrow Projection effects due to correlations between parameters

Comparison of

 \Rightarrow Qualitative

S. Grandis, at LAL, Jan 24, Orsay Cedex

Let D_1 be the reference dataset, and θ the model parameters

Bayesian Inference:

S. Grandis, at LAL, Jan 24, Orsay Cedex

also Kullback-Leibler (KL) divergence

LUDWIG-

MAXIMILIANS-

UNIVERSITÄT

MÜNCHEN

Relative Entropy

- Relative Entropy measures the difference between distributions, i.e. the **Information Gain**
- Relative Entropy is **invariant** under (invertible) transformation in parameter space $\theta' = \psi(\theta)$
- Relative Entropy is a function of the data $KL[D_2|D_1]$

For Gaussian prior, and linear Gaussian Likelihood:

Information Gain

$$KL = \left[\frac{1}{2}\Delta\mu^T \Pi^{-1}\Delta\mu\right] + \frac{1}{2}\operatorname{tr}(\Sigma\Pi^{-1} - \mathbb{I}) + \left[\frac{1}{2}\ln\left(\frac{\det\Pi}{\det\Sigma}\right)\right]$$

Shift of central values

Surprise

$$S = \left[\frac{1}{2}\Delta\mu^T \Pi^{-1}\Delta\mu\right] + \frac{1}{2}\mathrm{tr}\left(\Sigma\Pi^{-1} - \mathbb{I}\right)$$

$$\frac{\text{Variance}}{\sigma^2(KL)} = \frac{1}{2} \text{tr} \left((\Sigma \Pi^{-1} - \mathbb{I})^2 \right)$$

Seehars et al. 14, 15

Change in volume of

credibility contours

- priors Π covariance
- posteriors \sum
 - covariance
- identity \mathbf{I} matrix

Constraints on parameters of cosmological model:

LUDWIG-

MÜNCHEN

MAXIMILIANS-

UNIVERSITÄT

Quantifying Tensions I: CMB

Transformation, such that WMAP constraints are uncorrelated

S. Grandis, at LAL, Jan 24, Orsay Cedex

LUDWIG-

MAXIMILIANS-

UNIVERSITÄT

MÜNCHEN

Quantifying Tensions I, b

Information gain (blue) and Surprise (red) when combining different probes with WMAP9 flat ΛCDM, WMAP 9 prior

- everything consistent when using WMAP as a prior
- Planck much more informative than other probes

in flat ΛCDM

S. Grandis, at LAL, Jan 24, Orsay Cedex

Information gain (blue) and Surprise (red) when combining different probes with Planck 15 (full mission)

- small gains by
 adding other probes
- large Surprise when adding WL to Planck (8σ significance)

S. Grandis, at LAL, Jan 24, Orsay Cedex

MAXIMILIANS-UNIVERSITÄT MÜNCHEN

sigma8 Problem

WL and galaxy clusters want lower amplitudes than CMB

Possible physical effects:

- massive neutrinos Maccrann et al. 2015, Joudaki et al. 2016
- Interactions DM-D γ or DM-Dgluons
 - Lesgourgues et al. 2015
- modified gravity (less gravity)

S. Grandis, at LAL, Jan 24, Orsay Cedex

Systematic effects:

- CMB: τ and foregrounds
- WL: photo-zs, non linearities, ... Maccrann et al. 2015, Joudaki et al. 2016
- Clusters: mass calibration

Planck Collaboration, SZ clusters, 2014, 2015

The Surprise

PROS

- quantitative method
- unaffected by projection effects
- invariant under transformations

CONS

- only applicable to Gaussian constraints
- $\langle \cdot \rangle_{D_2|D_1}$ very hard to compute
- other methods already exist (what is the gain?)

Remark:

Surprise is not symmetric

choice of reference data set, i.e. priors, matters

Bayes Theorem

LUDWIG-

MÜNCHEN

MAXIMILIANS-

UNIVERSITÄT

Evidence Ratio Joint Evidence over Product of individual Evidences

$$R(D_1, D_2) = \frac{E(D_1, D_2)}{E(D_1) E(D_2)}$$
Marshall et al 06

Prob. that D1, D2 are described by same set of parameters

Prob. that D1, D2 are described by different sets of parameters

Tension between Data Sets $\Leftrightarrow R < 1$

Need to calibrate by expected value:

calibrated Evidence Ratio

$$\ln R - \langle \ln R \rangle = -\frac{1}{2} \Delta \mu^T (\Sigma_1 + \Sigma_2)^{-1} \Delta \mu + \frac{n}{2}$$

R < 1 not generally applicable

Furthermore, the scale of significance is set by $Var[\ln R] = \frac{\pi}{2}$

any measure of Tension needs to be calibrated

need to compute $\langle \cdot \rangle_{D_2|D_1}$ or $\langle \cdot \rangle_{D_1,D_2}$

Average over expected distribution of data

analytic for Gaussians, hard in general

Gaussianisation

Optimise subsequent transformations of parameter space, such that the distribution becomes Gaussian upon application of the transformations for one distribution: Schuhmann et al. 2016

for two distribution: Grandis et al. 2016b after BC^1 Gaussian degenerate **BC: Box Cox Transformation** PCA: Principal Component $BC^1(y_2)$ Rotation x_2 \mathcal{Y}_2 Accuracy of $S/\sigma=5.16$ $S/\sigma = 6.87$ $S/\sigma = 13.72$ Surprise estimation $BC^1(y_1)$ y_1 x_1 after BC^2 after PCA after Arsinh Accuracy of BC^2 (Arsinh(PC₂)) $4rsinh(PC_2)$ Gaussianisation PC_2 Uncertainty due to $S/\sigma=5.16$ $S/\sigma=6.65$ $S/\sigma = 6.77$ finite samples PC_1 BC^2 (Arsinh(PC_1)) $Arsinh(PC_1)$ Grandis et al. 2016b, Appendix A

S. Grandis, at LAL, Jan 24, Orsay Cedex

25

Checked explicitly that the Gaussianisation is good enough

Grandis et al. 2016b, Appendix A

LUDWIG-

MAXIMILIANS-

UNIVERSITÄT

MÜNCHEN

SG et al. 2016b

The Planck power spectra give the constraint

 $\Omega_K = -0.052^{+0.049}_{-0.055}$ (95%, *Planck* TT+lowP). (47)

Taken at face value, Eq. (47) represents a detection of positive curvature at just over 2σ , largely via the impact of lensing on the power spectra. One might wonder whether this is mainly a parameter volume effect, but that is not the case, since the best fit closed model has $\Delta \chi^2 \approx 6$ relative to base Λ CDM, and the fit is improved over almost all the posterior volume, with the mean chi-squared improving by $\langle \Delta \chi^2 \rangle \approx 5$ (very similar to the phenomenological case of Λ CDM+ A_L). Addition of the *Planck* polarization spectra shifts Ω_K towards zero by $\Delta \Omega_K \approx 0.015$:

 $\Omega_K = -0.040^{+0.038}_{-0.041}$ (95%, *Planck* TT, TE, EE+lowP), (48)

but Ω_K remains negative at just over 2σ .

Planck Collaboration 2015, cosmological parameters, pag. 38

LUDWIG-

MAXIMILIANS-

UNIVERSITÄT

MÜNCHEN

Quantifying Tensions II

Considered 3 models:flat ΛCDMcurved ΛCDMuniverse with flat spatial geometry
Dark Energy "just" a constant
and "cold Dark Matter"allows for more general
geometry (flat, 3d sphere,
3d hyperboloid)

flat $\Lambda CDM + A_L$ parameter expressing systematic uncertainties in

lensing of CMB photons

Considered 6 datasets in addition to primary Planck 15 CMB

- prior: Planck 15 temperature and large scale polarisation
- <u>BAO</u>: compilation of BAO measurements used by Planck 15
- <u>SNe</u>: binned version presented by Betoule et al. 13
- <u>CMB lensing</u>: constraints presented from Planck 15
- <u> H_0 </u>: latest results from Riess et al. 16
- <u>Lyα BAO</u>: BAO feature in Lyman alpha forest (absorption from distant quasars) Delubac et al. 15
- <u>TEEE</u>: small scale polarisation from Planck 15

Quantifying Tensions II

- Significant tensions between CMB and distance measures, especially distance ladder
- Significant tension between CMB and CMB lensing

in flat $\Lambda CDM + A_L$:

- no tensions between CMB and distance measures
- agreement between CMB and H_0 , contrary to flat ΛCDM

for base Λ CDM is $A_L = 1$. The results of such an analysis for models with variable A_L is shown in Fig. 12. The marginalized constraint on A_L is

 $A_{\rm L} = 1.22 \pm 0.10$ (68%, *Planck* TT+lowP). (22)

This is very similar to the result from the 2013 *Planck* data reported in PCP13. The persistent preference for $A_L > 1$ is discussed in detail there. For the 2015 data, we find that $\Delta \chi^2 = -6.4$ between the best-fitting $\Lambda CDM + A_L$ model and the best-fitting base ΛCDM model. Planck Collaboration 2015, cosmological parameters

 tension between CMB and CMB lensing (only other probe sensitive to A_L)

 H_0 problem

Quantifying Tensions II

LUDWIG-

MÜNCHEN

MAXIMILIANS-

UNIVERSITÄT

Quantifying Tensions II

What drives $\Omega_{\rm K} < 0$ and $A_{\rm L} > 1$?

Check constraints put by Planck 15 temperature data on CMB power spectrum and lensing potential in these models

less power on large scales preferred

larger lensing potential

Possibilities: modified gravity, large scale anomaly, systematic effect, ...

The H₀Problem

Tension between local measurements and CMB measurements of H_0

- variety of physical explanations attempted, e.g. $N_{\rm eff}$ e.g. Riess et al 16
- systematic effects in Cepheids calibration proposed e.g. Efstathiou et al 14
- exacerbated by free curvature
- solved by $A_L > 1$ \Rightarrow unphysical in Standard Model \Rightarrow creates A_L problem

Conclusions

- The Surprise is a quantitative, information theoretically motivated measure of the agreement of datasets
- The Surprise can only be estimated for Gaussian constraints

due to need of calibration, also true for other measures Seehars et al. 2015, SG et al. 2016b

- Some distributions can be "made" Gaussian with appropriate transformation
- current Gaussianising transformation have issues with hard cuts, flat distributions, especially if correlated

need more flexible transformations

Conclusions

 $A_{\rm L}$, σ_8 , and H_0 problem persist

 \implies new physical models necessary?

impact of new models larger when prediction code
 is provided, e.g. CAMB, Class
 Ideally with python wrapper :)

 \Rightarrow unresolved systematic effects

 \Rightarrow large amounts of new data from ongoing and planned surveys

Growing necessity to check quantitatively for possible tensions in different models

Thank you for your attention!!

special thanks to: Ben Hoyle, Steffen Hagstutz, Joël Akereth, Giulia Chirivì, the anonymous reviewers

Seehars, SG, et al. 2015: <u>http://adsabs.harvard.edu/abs/2016PhRvD..93j3507S</u>

Grandis et al. 2016a: http://adsabs.harvard.edu/abs/2016JCAP...05..034G

Grandis at al. 2016b: http://adsabs.harvard.edu/doi/10.1093/mnras/stw2028

and references therein

We acknowledge the use of the Planck Legacy Archive, CAMB, numpy, matplotlib and scipy