Extended composite Higgs models

Mikael Chala (IFIC)

Work in collaboration with G. Durieux, C. Grojean, L. Lima,
and O. Matsedonskyi. Based on 1703.10624 and 1705.03013
Composite Higgs models
(very good candidates for new physics)

- No hierarchy problem because the Higgs is a bound state,
- This is lighter than the new physics scale (presumably slightly above the TeV) because it is a Goldstone of G/H,
- Fermion masses are induced by non-hierarchical couplings in the UV,

(almost) a high-energy copy of QCD
The composite Higgs paradigm
(a high-energy copy of QCD)

$L \sim \lambda [\Lambda_{UV}] \overline{q}_i O^d_{F} + \text{new global } \mathcal{G}$

parton condensate

$L \sim \lambda [\text{TeV}] \overline{q}_i Q^i$

$q \quad h \quad y_q \sim \left(\frac{\lambda}{m_Q}\right)^2 \quad \mathcal{H} \supset \mathcal{G}_{SM}$
Non-minimal composite Higgs models
(even better candidates for new physics)

- No hierarchy problem because the Higgs is a bound state,
- This is lighter than the new physics scale (presumably slightly above the TeV) because it is a Goldstone of \mathcal{G}/\mathcal{H},
- Fermion masses are induced by non-hierarchical couplings in the UV,

provide dark matter candidates, explanation for baryon anti-baryon asymmetry, feasible UV completions...
Non-minimal composite Higgs models
(table taken from Bellazzini et al, 1401.2457)

<table>
<thead>
<tr>
<th>G</th>
<th>H</th>
<th>C</th>
<th>N_G</th>
<th>r_H = r_{SU(2) \times SU(2)}(r_{SU(2) \times U(1)})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(5)</td>
<td>SO(4)</td>
<td>✓</td>
<td>4</td>
<td>4 = (2, 2)</td>
<td>11</td>
</tr>
<tr>
<td>SU(3) × U(1)</td>
<td>SU(2) × U(1)</td>
<td>✓</td>
<td>5</td>
<td>2_{\pm 1/2} + 1_0</td>
<td>10, 35</td>
</tr>
<tr>
<td>SU(4)</td>
<td>Sp(4)</td>
<td>✓</td>
<td>5</td>
<td>5 = (1, 1) + (2, 2)</td>
<td>29, 47, 64</td>
</tr>
<tr>
<td>SU(4)</td>
<td>[SU(2)]² × U(1)</td>
<td>✓*</td>
<td>8</td>
<td>(2, 2)_{\pm 2} = 2 \cdot (2, 2)</td>
<td>65</td>
</tr>
<tr>
<td>SO(7)</td>
<td>SO(6)</td>
<td>✓</td>
<td>6</td>
<td>6 = 2 \cdot (1, 1) + (2, 2)</td>
<td>-</td>
</tr>
<tr>
<td>SO(7)</td>
<td>G₂</td>
<td>✓*</td>
<td>7</td>
<td>7 = (1, 3) + (2, 2)</td>
<td>66</td>
</tr>
<tr>
<td>SO(7)</td>
<td>SO(5) × U(1)</td>
<td>✓*</td>
<td>10</td>
<td>10_0 = (3, 1) + (1, 3) + (2, 2)</td>
<td>-</td>
</tr>
<tr>
<td>SO(7)</td>
<td>[SU(2)]³</td>
<td>✓*</td>
<td>12</td>
<td>(2, 2, 3) = 3 \cdot (2, 2)</td>
<td>-</td>
</tr>
<tr>
<td>Sp(6)</td>
<td>Sp(4) × SU(2)</td>
<td>✓</td>
<td>8</td>
<td>(4, 2) = 2 \cdot (2, 2)</td>
<td>65</td>
</tr>
<tr>
<td>SU(5)</td>
<td>SU(4) × U(1)</td>
<td>✓*</td>
<td>8</td>
<td>4_{-5} + 4_{+5} = 2 \cdot (2, 2)</td>
<td>67</td>
</tr>
<tr>
<td>SU(5)</td>
<td>SO(5)</td>
<td>✓*</td>
<td>14</td>
<td>14 = (3, 3) + (2, 2) + (1, 1)</td>
<td>9, 47, 49</td>
</tr>
<tr>
<td>SO(8)</td>
<td>SO(7)</td>
<td>✓</td>
<td>7</td>
<td>7 = 3 \cdot (1, 1) + (2, 2)</td>
<td>-</td>
</tr>
<tr>
<td>SO(9)</td>
<td>SO(8)</td>
<td>✓</td>
<td>8</td>
<td>8 = 2 \cdot (2, 2)</td>
<td>67</td>
</tr>
<tr>
<td>SO(9)</td>
<td>SO(5) × SO(4)</td>
<td>✓*</td>
<td>20</td>
<td>(5, 4) = (2, 2) + (1 + 3, 1 + 3)</td>
<td>34</td>
</tr>
<tr>
<td>[SU(3)]²</td>
<td>SU(3)</td>
<td>✓</td>
<td>8</td>
<td>8 = 1_0 + 2_{\pm 1/2} + 3_0</td>
<td>8</td>
</tr>
<tr>
<td>[SO(5)]²</td>
<td>SO(5)</td>
<td>✓*</td>
<td>10</td>
<td>10 = (1, 3) + (3, 1) + (2, 2)</td>
<td>32</td>
</tr>
<tr>
<td>SU(4) × U(1)</td>
<td>SU(3) × U(1)</td>
<td>✓*</td>
<td>7</td>
<td>3_{-1/3} + 3_{+1/3} + 1_0 = 3 \cdot 1_0 + 2_{\pm 1/2}</td>
<td>35, 41</td>
</tr>
<tr>
<td>SU(6)</td>
<td>Sp(6)</td>
<td>✓*</td>
<td>14</td>
<td>14 = 2 \cdot (2, 2) + (1, 3) + 3 \cdot (1, 1)</td>
<td>30, 47</td>
</tr>
<tr>
<td>[SO(6)]²</td>
<td>SO(6)</td>
<td>✓*</td>
<td>15</td>
<td>15 = (1, 1) + 2 \cdot (2, 2) + (3, 1) + (1, 3)</td>
<td>36</td>
</tr>
</tbody>
</table>
Source of breaking: \[L \sim \lambda [\text{TeV}] \bar{q}_i Q^i \]
(driven mainly by the top mixing)

Coefficients estimated via SILH formalism \[\text{[Giudice, Grojean, Pomarol, Rattazzi, hep-ph/0703164]}\]

\[
L \sim \frac{c_1}{f^2} \left[\partial_\mu (H^\dagger H) \right]^2 + \frac{c_2}{f^2} |H|^2 |D_\mu H|^2 \\
- \frac{c_3}{f^2} (H^\dagger H)^3 + \frac{c_4^{ij}}{f^2} (H^\dagger H \bar{\psi}_L^i L H \psi_R^j) + \cdots
\]
Source of breaking: $L \sim \lambda [\text{TeV}] q_i Q_i$

(driven mainly by the top mixing)

$$L \sim \frac{c_1}{f^2} \left[\partial_\mu (H^\dagger H) \right]^2 + \frac{c_2}{f^2} |H|^2 |D_\mu H|^2$$

$$-\frac{c_3}{f^2} (H^\dagger H)^3 + \frac{c_{ij}^5}{f} (\overline{S \psi_L^i H \psi_R^j}) + \cdots$$
The EFT of next-to-minimal CHMs

(the scalar sector consists of $H+S$)

- $1S1C\left(f, g_\rho; m_\rho = g_\rho f\right) +$ dimensional analysis determines the scaling of the effective operators, [Panico, Wulzer 1506.01961]

- Operator coefficients of order one, up to selection rules

- It captures the features of many non-minimal CHMs

\[
m_\rho f^2 \left[\frac{N_c y_t^2}{(4\pi)^2} \right] \#^L \left[\frac{N_f g_\rho^2}{(4\pi)^2} \right] \#^L \left[\frac{y_q \bar{q} q}{m_\rho f} \right] \#^q q \left[\frac{g_A A}{m_\rho} \right] \#^A \left[\frac{S}{f} \right] \#^S \left[\frac{H}{f} \right] \#^H \left[\frac{\partial_\mu}{m_\rho} \right] \#^\partial
\]
There is \textit{a priori} no reason for the mass of S to be tuned. It is then expected that

\[m_S^2 \sim m_\rho^2 \frac{N_c y_t^2}{(4\pi)^2} \sim \frac{f^2}{v^2} m_h^2 \sim (500 \text{ GeV})^2 \ll m_\rho^2 \]
The coset $SO(6)/SO(5)$

(Gripaios, Pomarol, Riva, Serra 0902.1483)

\[
V \sim f^2 \left[c_1 - \frac{7}{4} c_2 \right] h^2 + (c_2 - c_1) h^4
\]

\[-c_2 f^2 S^2 + (c_2 - c_1) h^2 S^2 \]
The coset $SO(6)/SO(5)$

(Gripaios, Pomarol, Riva, Serra 0902.1483)

$$V \sim \frac{1}{2} \mu^2 h^2 + \frac{1}{4} \lambda_h h^4$$

$$+ \frac{1}{3} \lambda_h f^2 (1 - 2\epsilon) S^2 + \frac{1}{4} \lambda_h h^2 S^2$$
The coset \(SO(7)/G_2 \)

(MC 1210.6208; Ballesteros, MC, Carmona 1704.07388)

\[
V \sim \frac{1}{2} \mu^2 h^2 + \frac{1}{4} \lambda_h h^4 \\
+ \frac{1}{3} \lambda_h f^2 (1 - 2\epsilon) S^2 + \frac{1}{4} \lambda_h h^2 S^2
\]
The EFT of next-to-minimal CHMs
(the scalar sector consists of H+S)

\[\rho \sim \text{few TeV} \]

Strong sector

Integrating out S,

\[S|H|^2, S\bar{q}Hq \]

\[(a + b)|H|^2\bar{q}Hq \]

EW scale

Higgs Hunting 2017, July 25th 2017
A basis for the EFT of $H+S$
(regarding S, we focus on dimension 5)

Caveat: eliminating operator redundancies can break the power counting estimates:

$$\frac{1}{f} |D_\mu H|^2 S \rightarrow \frac{1}{2f} |H|^2 \Box S$$

$$- \frac{1}{2f} (H^\dagger \Box H S + \text{h.c})$$
A basis for the EFT of $H+S$
(regarding S, we focus on dimension 5)

- Caveat: eliminating operator redundancies can break the power counting estimates.
- We end up with the minimal set of operators

$$
\begin{array}{c|c}
SX^2, S^{2,4} & SD_\mu H^2, S^{3,5} \\
S\bar{q}Hq, S^2|H|^2 & S|H|^2, S|H|^4, S^3|H|^2 \\
\end{array}
$$
Estimated size of the dimension-5 operators
(cases beyond the PNGB one are also present)

<table>
<thead>
<tr>
<th></th>
<th>scalar</th>
<th></th>
<th>pseudo-scalar</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>generic</td>
<td>PNGB</td>
<td>generic</td>
<td>PNGB (PC)</td>
<td>PNGB (anom.)</td>
</tr>
<tr>
<td>$k_X S X^2$</td>
<td>$\frac{g_X^2}{g^2} \frac{1}{f}$</td>
<td>$\frac{3y^2}{(4\pi)^2} \frac{g_X^2}{g^2} \frac{1}{f}$</td>
<td>$\frac{g_X^2}{g^2} \frac{1}{f}$</td>
<td>$\frac{3y^2}{(4\pi)^2} \frac{g_X^2}{g^2} \frac{1}{f}$</td>
<td>$\frac{N_f^{(X)}}{(4\pi)^2} \frac{g_X^2}{g^2} \frac{1}{f}$</td>
</tr>
<tr>
<td>$k_q S \bar{q} H q$</td>
<td>$y_q \frac{1}{f}$</td>
<td>$y_q \frac{1}{f}$</td>
<td>$i y_q \frac{1}{f}$</td>
<td>$i y_q \frac{1}{f}$</td>
<td>—</td>
</tr>
<tr>
<td>$k_H S</td>
<td>D_\mu H</td>
<td>^2$</td>
<td>$\frac{1}{f}$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$k_{H1} S</td>
<td>H</td>
<td>^2$, $k_{H2} S</td>
<td>H</td>
<td>^4/f^2$, $k_{H3} S^3</td>
<td>H</td>
</tr>
<tr>
<td>$k_{H4} S^2</td>
<td>H</td>
<td>^2$</td>
<td>—</td>
<td>$\frac{3y_t^2}{(4\pi)^2} \frac{m_\rho^2}{f^2}$</td>
<td>$\frac{3y_t^2}{(4\pi)^2} \frac{m_\rho^2}{f^2}$</td>
</tr>
<tr>
<td>$k_M S^2$, $k_A S^4/f^2$</td>
<td>m_ρ^2</td>
<td>$\frac{3y_t^2}{(4\pi)^2} m_\rho^2$</td>
<td>m_ρ^2</td>
<td>$\frac{3y_t^2}{(4\pi)^2} m_\rho^2$</td>
<td>$\frac{\tilde{N}f g\rho^2}{(4\pi)^2} m_\rho^2$</td>
</tr>
<tr>
<td>$k_3 S^3$, $k_5 S^5/f^2$</td>
<td>$\frac{m_\rho^2}{f}$</td>
<td>$\frac{3y_t^2}{(4\pi)^2} m_\rho^2$</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Impact on Higgs physics
(cases beyond the PNGB one are also present)
Limits on new vector-like quarks

(MC 1705.03013; see also Serra 1506.05110)

Bounds considering all branching ratios (also elusive decays) in light of 1505.04306, ATLAS-2016-102, ATLAS-2016-104, ATLAS-2017-015, CMS-SUS-16-029
Limits on new vector-like quarks

(MC 1705.03013; see also Serra 1506.05110)

Bounds can be automatically obtained using VLQ-limits, available at http://github.com/mikaelchala/vlqlimits
Conclusions
• Non-minimal composite Higgs models are very good candidates for new physics

• Power counting estimates suggest that extra scalar singlets S are heavier than the Higgs boson

• We have worked out a basis of dimension-5 operators for S. Some redundant operators must be kept in order not to break the power counting

• The effects of S on Higgs physics can be larger than those coming from the strong sector

• VLQs are very different from what current analyses are searching for
Thank you very much for your attention!
Backup