Higgs decays to bosons
ATLAS results

Stefano Rosati

INFN Roma

24 July 2017

On behalf of the ATLAS Collaboration
Introduction

- Bosonic channels analyses in ATLAS
 - $H \rightarrow ZZ^* \rightarrow l^+ l^- l^+ l^-$
 - $H \rightarrow \gamma\gamma$

- Mass measurement
- Fiducial and differential cross sections
- Couplings

- Results shown here are based on 36.1 fb$^{-1}$ of $\sqrt{s} = 13$ TeV p-p collision data collected by the ATLAS experiment in 2015 and 2016
- Focusing on the channels with new most recent updates
- All results from the recent ATLAS CONF-notes:
 - ATLAS-CONF-2017-046
 - ATLAS-CONF-2017-045
 - ATLAS-CONF-2017-043
 - ATLAS-CONF-2017-032
Higgs to four leptons event selection

- Four opposite sign, same flavour leptons (μ, e), with $p_T > 20, 15, 10, 5(\mu)/7(e)$ GeV, isolated and from the primary vertex
- Cut on the two di-lepton mass pairs
- BDT discriminant to reduce ZZ background, based on p_T^{4l}, η^{4l} and $D_{ZZ} = \ln(|M_{HZZ^*}|^2/|M_{ZZ^*}|^2)$
- Z-mass constraint on the leading lepton pair
- Jets: anti-k_t algorithm with $R=0.4$, $p_T > 30$ GeV
Higgs to two photons event selection

- Two photons with $E_T/m_{\gamma\gamma} > 0.35, 0.25$ in $|\eta| < 2.37$, $(1.37 \leq |\eta| \leq 1.52$ excluded)
- Neural network combining photons directions and information from the Inner Detector for primary vertex identification
 - Rate of correct diphoton vertex selection in MC is 79% for gg-fusion events, 84-97% for other production mechanisms
- Keep events with $105 \text{ GeV} \leq m_{\gamma\gamma} \leq 160 \text{ GeV}$
- Jets: anti-k_t algorithm with $R=0.4$, $p_T > 30$ GeV
- Selected events are categorized:
 - Use 31 categories sensitive to the production mode
 - Same categorization scheme for the mass measurement
MASS MEASUREMENT
Muon and e/\gamma calibrations

- Muon momentum scale and resolution calibration on \(J/\psi \rightarrow \mu^+\mu^- \) and \(Z \rightarrow \mu^+\mu^- \)
 - Scale systematics between \(\sim 0.05\% \) and \(\sim 0.2\% \)
 - Correction for sagitta measurement bias due to ID misalignments (affects resolution)

- Electron scale measured on \(Z \rightarrow e^+e^- \) and cross-checked on \(J/\psi \rightarrow e^+e^- \). Photon scale cross-checked on \(Z \rightarrow l^+l^-\gamma \)
 - \(\gamma \) scale uncertainty at \(\sim 60 \text{ GeV} \) is 0.4\% (barrel) and 0.8\% (endcap)
 - \(e \) uncertainty at 40 (10) GeV is 0.02\% (0.5\%) in the barrel and 0.1\% (0.8\%) in the endcap
Mass fit in the 4l channel

- Four exclusive categories in BDT bins (\(\sim 6\%\) resolution improvement)
- Z mass constraint applied to the leading lepton pair (\(\sim 15\%\) resolution improvement)
- Mass model as convolution of a BW with SM width, with a resolution function calculated per-event based on single-lepton resolutions
- Validation on \(Z \rightarrow 4l\) events

\[\sqrt{s} = 13 \text{ TeV, 36.1 fb}^{-1} \]

\(H \rightarrow ZZ^* \rightarrow 4l\) events

\(m_{4l} [\text{GeV}]\)

\(m_H [\text{GeV}]\)
Mass fit in the $\gamma\gamma$ channel

- Signal model is a double-sided Crystal Ball function
 - Parameters dependence on m_H from samples weighted for production modes
 - Resolution ranging from 1.42 GeV to 2.14 GeV (1.87 GeV inclusive)

- Background parametrized with a continuous function for each category
 - Function chosen as the one that minimizes the fitted signal yield in a background-only sample (from CR or from MC)
 - Typically exponential for low-stat categories, power-law or exp of polynomial for the others
Mass fit results

- 4l mass fit:
 \[m_{\gamma\gamma}^{ZZ^*} = 124.88 \pm 0.37 \text{(stat)} \pm 0.05 \text{(syst)} \text{ GeV} = 124.88 \pm 0.37 \text{ GeV} \]

- \(\gamma\gamma \) mass fit:
 \[m_{\gamma\gamma}^{\gamma\gamma} = 125.11 \pm 0.21 \text{(stat)} \pm 0.36 \text{(syst)} \text{ GeV} = 125.11 \pm 0.42 \text{ GeV} \]

- The combined measurement will be presented by Bruno Mansoulié tomorrow

Systematics for \(m_{4l} \)

<table>
<thead>
<tr>
<th>Source</th>
<th>Unc. [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon momentum scale</td>
<td>40</td>
</tr>
<tr>
<td>Electron energy scale</td>
<td>20</td>
</tr>
<tr>
<td>Background modelling</td>
<td>10</td>
</tr>
<tr>
<td>Simulation statistics</td>
<td>8</td>
</tr>
</tbody>
</table>

Systematics for \(m_{\gamma\gamma} \)

<table>
<thead>
<tr>
<th>Source</th>
<th>Unc. [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAr cell non-linearity</td>
<td>\pm 200</td>
</tr>
<tr>
<td>LAr layer calibration</td>
<td>\pm 190</td>
</tr>
<tr>
<td>Non-ID material</td>
<td>\pm 120</td>
</tr>
<tr>
<td>Lateral shower shape</td>
<td>\pm 110</td>
</tr>
<tr>
<td>ID material</td>
<td>\pm 110</td>
</tr>
<tr>
<td>Conversion reconstruction</td>
<td>\pm 50</td>
</tr>
<tr>
<td>(Z \rightarrow ee) calibration</td>
<td>\pm 50</td>
</tr>
<tr>
<td>Background model</td>
<td>\pm 50</td>
</tr>
<tr>
<td>Primary vtx</td>
<td>\pm 40</td>
</tr>
<tr>
<td>Resolution</td>
<td>\pm 20</td>
</tr>
<tr>
<td>Signal model</td>
<td>\pm 20</td>
</tr>
</tbody>
</table>
CROSS SECTIONS AND COUPLINGS
Simplified template cross-sections

- Production cross section times BR is measured in mutually exclusive phase space regions (production bins), with $|y_H| < 2.5$
- Chosen to maximise the measurement precision and the sensitivity to BSM contributions

Stage 0

- Production bins
 - ggF
 - VBF
 - VH
 - ttH

Reduced Stage 1

- $ggF-0j$
- $ggF-1j-p_TH ^{<} 60 GeV$
- $ggF-1j-p_TH ^{>} 120 GeV$
- $ggF-2j$

Reconstructed event categories

- $0j$
- $1j p_TH ^{<} 60 GeV$
- $1j p_TH ^{>} 120 GeV$
- $m_{jj} ^{>} 120 GeV$
- $m_{jj} ^{<} 120 GeV$

†: VH-Had enriched is divided into $p_T > 150$ GeV and $p_T < 150$ GeV sub-categories for tensor structure measurement.
Categorization of reconstructed candidates

\[H \rightarrow ZZ^* \rightarrow l^+l^-l^+l^- \] categorization

- Based on the presence of b-jets, jets and additional leptons in the event
- Further categorization based on kinematic cuts on \(p_T^{4l}, p_T^{j1}, m_{jj} \)
- End up with 9 categories each enriched in one or more production process
- Further separation using multi-variate discriminants in the categories with enough statistics, to select ggF, VBF, VH-hadronic

\[H \rightarrow \gamma\gamma \] categorization

- 31 exclusive categories each enriched in one of the production mechanisms
- Dedicated BDT used for VBF- and ttH-enriched categories to increase the separation from ggF and background
Global signal strength:
\[\mu = 1.28^{+0.18}_{-0.17} \text{(stat.)}^{+0.08}_{-0.06} \text{(exp.)}^{+0.08}_{-0.06} \text{(th.)} = 1.28^{+0.21}_{-0.19} \]
Cross sections by production mode: $\gamma\gamma$ channel

- Global signal strength:
 $$\mu = 0.99^{+0.12}_{-0.11} \text{(stat)}^{+0.06}_{-0.05} \text{(exp.)}^{+0.06}_{-0.05} \text{(th.)} = 0.99 \pm 0.14$$

ATLAS Preliminary $\sqrt{s}=13$ TeV, 36.1 fb$^{-1}$

- $H \rightarrow \gamma\gamma$, $m_H=125.09$ GeV

Measurements

- $\sigma \times \text{BR Normalized to SM} \times \mu$
- Distributions for different production modes:
 - ggH
 - VBF
 - VH
 - Top

ATLAS** Preliminary $\sqrt{s}=13$ TeV, 36.1 fb$^{-1}$

- $H \rightarrow \gamma\gamma$, $m_H=125.09$ GeV

- ggH (0 jet)
- ggH (1 jet, $p_T^\ell < 60$ GeV)
- ggH (1 jet, $60 < p_T^\ell < 120$ GeV)
- ggH (1 jet, $120 < p_T^\ell < 200$ GeV)
- ggH (2 jet)
- qq \rightarrow Hqq ($p_T^\ell < 200$ GeV)
- ggH + qq \rightarrow Hqq (BSM-like)
- VH (leptonic)
- VH (jets, $p_T < 200$ GeV)
- Top

- SM prediction
Tensor structure of couplings

- The tensor structure of couplings is studied in 4l within the framework of the effective Lagrangian of the Higgs characterization model [JHEP 1311 (2013) 043]
- Couplings fit based on the event yields in each of the 4l experimental categories
- Fits with $\kappa_{SM} = 1$ (SM coupling factor) fixed. Difference with respect to the SM expectation is mostly caused by the excess in the 2-jet category. Max deviation is 2.3σ for k_{HVV}.

Agreement with the SM hypothesis improves if k_{SM} is left free in the fit
Fiducial and total cross sections

- Fiducial volume: cuts based on detector acceptance, to minimize model dependency in the extrapolation
- Corrections applied for detector effects: bin by bin unfolding as correction factors

$$\sigma_{i, \text{fid}} = \sigma_i \times A_i \times BR = \frac{N_{i, \text{fit}}}{L \times C_i}$$

- $\sigma_i \rightarrow$ total cross section
- $A_i \rightarrow$ acceptance
- $C_i \rightarrow$ correction factor

ATLAS Preliminary

$H \rightarrow ZZ^* \rightarrow 4l$

$13 \text{ TeV, } 36.1 \text{ fb}^{-1}$

Diphoton fiducial

VBF-enhanced

$N_{\text{lepton}} \geq 1$

ttH-enhanced

$95\% \text{ C.L.}$

High E_T^{miss}

$m_H = 125.09 \text{ GeV}$

Data

- Syst. uncertainties
- LHCXSWG ggH @N3LO + XH
- HRes 2.3, N3LO+N2LL + XH
- MG5 FxFx + XH
- Powheg NNLOPS + XH
Differential cross sections: p_T

- The differential p_T distribution is sensitive to perturbative QCD calculations and presence of new additional particles in loops
- Agreement with the SM (NNLOPS): p-value 25% for 4l, 51% for $\gamma\gamma$
Differential cross sections: N_{jets} and $|y_{\gamma\gamma}|$

- Sensitive to production mode composition and PDFs

ATLAS Preliminary

$H \rightarrow ZZ^* \rightarrow 4l$

13 TeV, 36.1 fb$^{-1}$

Data

Syst. uncertainties

NNLOPS $k = 1.1$, +XH

$MG5$ FxFx $k = 1.47$, +XH

$XH = VBF+WH+ZH+ttH+bbH$

p-value NNLOPS = 33%

p-value MG5 FxFx = 55%

Syst. uncertainties

ATLAS Preliminary

$H \rightarrow \gamma\gamma$, $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$

- data, tot. unc.
- syst. unc.

$m_H = 125.09$ GeV

$H \rightarrow gg$

Scetlib+MCFM8 + XH

$XH = VBF+VH+ttH+bbH$

Data/Theory

<table>
<thead>
<tr>
<th>N_{jets}</th>
<th>Data/Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>≥ 3</td>
<td>4</td>
</tr>
</tbody>
</table>

do_{id} / dly_{\gamma\gamma} [fb]

| $|y_{\gamma\gamma}|$ | do_{id} / dly_{\gamma\gamma} [fb] |
|---------------------|-----------------------------------|
| 0 | 1 |
| 0.2 | 2 |
| 0.4 | 3 |
| 0.6 | 4 |
| 0.8 | 5 |
| 1.0 | 6 |
| 1.2 | 7 |
| 1.4 | 8 |
| 1.6 | 9 |
| 1.8 | 10 |
| 2.0 | 11 |
| 2.2 | 12 |
| 2.4 | 13 |

Stefano Rosati (INFN Roma)

Higgs Hunting 2017 - Paris

24 July 2017
Limits on contact-interaction decay terms

- Terms modifying the contact-interaction between the Higgs and left- and right-handed leptons
 - Lepton universality assumed

- Double-differential cross section in the m_{12}, m_{34} plane used to extract limits in the pseudo-observables framework [Eur. Phys. J. C (2015) 75: 128]
 - The differential information helps in constraining the couplings more than the total cross section alone
Conclusions

- The most recent results on $H \rightarrow ZZ^* \rightarrow l^+l^-l^+l^-$ and $H \rightarrow \gamma\gamma$ decay channels have been presented, based on the analysis of 36.1 fb$^{-1}$ of data collected at $\sqrt{s} = 13$ TeV in 2015 and 2016.

- Mass measurement
 - Based on the latest calibrations for muons, electrons and photons, and improved analysis techniques
 - Result in excellent agreement with the Run-1 ATLAS+CMS combination

- Updated cross section measurement per production mechanism

- Fiducial total and differential cross sections and extrapolations to the full phase-space

- First limits on contact interaction terms and updated limits on Higgs characterization effective couplings

- No deviation from the SM is observed

- Most of the measurements are limited by statistics

- See the talk tomorrow by B. Mansoulié on the combination of ATLAS measurements
BACKUP SLIDES
Electron and photon scale calibration

- Converted photons
- Unconverted photons

Calibration uncertainty

Measurement

$\gamma \rightarrow Z$ Preliminary

ATLAS-1

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$

$\sqrt{s} = 13$ TeV, 0.7 fb$^{-1}$

Higgs Hunting 2017 - Paris

24 July 2017 22 / 34
Muon scale calibration
Mass fit per channel

ATLAS Preliminary

- **$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$**
- $H \rightarrow ZZ^{*} \rightarrow 4\mu$

ATLAS Preliminary

- **$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$**
- $H \rightarrow ZZ^{*} \rightarrow 2e2\mu$

ATLAS Preliminary

- **$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$**
- $H \rightarrow ZZ^{*} \rightarrow 2\mu2e$

ATLAS Preliminary

- **$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$**
- $H \rightarrow ZZ^{*} \rightarrow 4e$
Z→4l mass fits

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Z4l_mass_fits.png}
\end{figure}
Sagitta bias correction

- Correct the effects of local ID misalignments, that are causing local charge-dependent biases on the muon sagitta measurement
- Improvement of Z mass resolution by 1% to 5%, depending on the η and ϕ of the muons in the pair
Differential cross sections

- m_{34} for the 4l channel and $\cos(\theta^*)$ for $\gamma\gamma$

![Graph showing differential cross sections for m_{34} and $\cos(\theta^*)$ for $\gamma\gamma$.](image)

ATLAS Preliminary

- $H \rightarrow ZZ^* \rightarrow 4l$
- 13 TeV, 36.1 fb$^{-1}$
- p-value NNLOPS = 55%
- p-value MG5 FxFx = 60%

| $|\cos\theta^*|$ | Data/Theory |
|-----------------|-------------|
| 0.1 | 1.5 |
| 0.2 | 1.8 |
| 0.3 | 1.5 |
| 0.4 | 1.2 |
| 0.5 | 1.0 |
| 0.6 | 0.8 |
| 0.7 | 0.6 |
| 0.8 | 0.4 |
| 0.9 | 0.2 |

Higgs Production

- $H \rightarrow \gamma\gamma$, $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
- $m_H = 125.09$ GeV
- $XH = VBF+WH+ZH+ttH+bbH$

Data/Theory

- $\gamma\gamma$/fId σ_{d}
- $0\quad 0.2\quad 0.4\quad 0.6\quad 0.8\quad 1\quad 1.2\quad 1.4\quad 1.6\quad 1.8\quad 2\quad 2.2\quad 2.4$
- $0\quad 20\quad 40\quad 60\quad 80$

Stefano Rosati (INFN Roma)
Higgs Hunting 2017 - Paris
24 July 2017 27 / 34
Expected and observed events in the 4l channel

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>Signal (full mass range)</th>
<th>Signal</th>
<th>ZZ^*</th>
<th>Other backgrounds</th>
<th>Total expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>4μ</td>
<td>21.0 ± 1.7</td>
<td>19.7 ± 1.6</td>
<td>7.5 ± 0.6</td>
<td>1.00 ± 0.21</td>
<td>28.1 ± 1.7</td>
</tr>
<tr>
<td>$2e2\mu$</td>
<td>15.0 ± 1.2</td>
<td>13.5 ± 1.0</td>
<td>5.4 ± 0.4</td>
<td>0.78 ± 0.17</td>
<td>19.7 ± 1.1</td>
</tr>
<tr>
<td>$2\mu2e$</td>
<td>11.4 ± 1.1</td>
<td>10.4 ± 1.0</td>
<td>3.57 ± 0.35</td>
<td>1.09 ± 0.19</td>
<td>15.1 ± 1.0</td>
</tr>
<tr>
<td>$4e$</td>
<td>11.3 ± 1.1</td>
<td>9.9 ± 1.0</td>
<td>3.35 ± 0.32</td>
<td>1.01 ± 0.17</td>
<td>14.3 ± 1.0</td>
</tr>
<tr>
<td>Total</td>
<td>59 ± 5</td>
<td>54 ± 4</td>
<td>19.7 ± 1.5</td>
<td>3.9 ± 0.5</td>
<td>77 ± 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reconstructed category</th>
<th>Expected N_S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected</td>
</tr>
<tr>
<td>$0j$, BDT-Bin 0-4</td>
<td>5 $^{+4}_{-3}$</td>
</tr>
<tr>
<td>$0j$, BDT-Bin 5-9</td>
<td>11 $^{+4}_{-3}$</td>
</tr>
<tr>
<td>$0j$, BDT-Bin 10-14</td>
<td>11 $^{+4}_{-3}$</td>
</tr>
<tr>
<td>$1j \ p_T^{4\ell}$-Low, BDT-Bin 0-4</td>
<td>5.8 $^{+3.2}_{-2.6}$</td>
</tr>
<tr>
<td>$1j \ p_T^{4\ell}$-Low, BDT-Bin 5-9</td>
<td>3.1 $^{+1.8}_{-1.8}$</td>
</tr>
<tr>
<td>$1j \ p_T^{4\ell}$-Med, BDT-Bin 0-4</td>
<td>3.5 $^{+2.5}_{-1.8}$</td>
</tr>
<tr>
<td>$1j \ p_T^{4\ell}$-Med, BDT-Bin 5-9</td>
<td>2.0 $^{+1.9}_{-1.2}$</td>
</tr>
<tr>
<td>$1j \ p_T^{4\ell}$-High</td>
<td>1.5 $^{+1.7}_{-1.0}$</td>
</tr>
<tr>
<td>VBF-enriched $p_T^{4\ell}$-Low, BDT-Bin 0-4</td>
<td>4.0 $^{+2.0}_{-1.5}$</td>
</tr>
<tr>
<td>VBF-enriched $p_T^{4\ell}$-Low, BDT-Bin 5-9</td>
<td>2.4 $^{+2.0}_{-1.3}$</td>
</tr>
<tr>
<td>VBF-enriched $p_T^{4\ell}$-High</td>
<td>0.6 $^{+1.5}_{-1.3}$</td>
</tr>
<tr>
<td>VH-Had enriched, BDT-Bin 0-4</td>
<td>2.4 $^{+2.1}_{-1.4}$</td>
</tr>
<tr>
<td>VH-Had enriched, BDT-Bin 5-9</td>
<td>1.3 $^{+0.9}_{-0.7}$</td>
</tr>
<tr>
<td>VH-Lep enriched</td>
<td>0.3 $^{+1.0}_{-1.0}$</td>
</tr>
<tr>
<td>ttH-enriched</td>
<td>0.4 $^{+1.1}_{-0.9}$</td>
</tr>
<tr>
<td>Combined acceptance</td>
<td>23.5 $^{+1.9}_{-1.8}$</td>
</tr>
</tbody>
</table>

Acceptance [%]

- ggF: 2.40 ± 0.23, 1.78 ± 0.029, 0.20 ± 0.05, 0.74 ± 0.01, 2.0 ± 0.01
- VH: 5.4 ± 0.5, 0.64 ± 0.12, 1.72 ± 0.19, 1.89 ± 0.27, 6.3 ± 0.2
- ttH: 3.1 ± 0.16, 1.9 ± 0.05, 2.9 ± 0.14, 2.8 ± 0.4, 1.0 ± 0.05
- bbH: 1.4 ± 0.07

Higgs Hunting 2017 - Paris
$H \rightarrow \gamma\gamma$ reco categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>tH lep 0fwd</td>
<td>$N_{\text{lep}} = 1, N_{\text{cen}} \leq 3, N_{\text{b-tag}} \geq 1, N_{\text{fwd}} = 0$ ($p_T^{\text{jett}} > 25$ GeV)</td>
</tr>
<tr>
<td>tH lep 1fwd</td>
<td>$N_{\text{lep}} = 1, N_{\text{cen}} \leq 3, N_{\text{b-tag}} \geq 1, N_{\text{fwd}} \geq 1$ ($p_T^{\text{jett}} > 25$ GeV)</td>
</tr>
<tr>
<td>tH lep</td>
<td>$N_{\text{lep}} \geq 1, N_{\text{cen}} \geq 2, N_{\text{b-tag}} \geq 1, Z_{\ell\ell}$ veto ($p_T^{\text{jett}} > 25$ GeV)</td>
</tr>
<tr>
<td>tH had BDT1</td>
<td>$N_{\text{lep}} = 0, N_{\text{jets}} \geq 3, N_{\text{b-tag}} \geq 1$, BDT_{ttH} > 0.92</td>
</tr>
<tr>
<td>tH had BDT2</td>
<td>$N_{\text{lep}} = 0, N_{\text{jets}} \geq 3, N_{\text{b-tag}} \geq 1$, $0.83 < $BDT_{ttH} < 0.92</td>
</tr>
<tr>
<td>tH had BDT3</td>
<td>$N_{\text{lep}} = 0, N_{\text{jets}} \geq 3, N_{\text{b-tag}} \geq 1$, $0.79 < $BDT_{ttH} < 0.83</td>
</tr>
<tr>
<td>tH had BDT4</td>
<td>$N_{\text{lep}} = 0, N_{\text{jets}} \geq 3, N_{\text{b-tag}} \geq 1$, $0.52 < $BDT_{ttH} < 0.79</td>
</tr>
<tr>
<td>tH had 4j1b</td>
<td>$N_{\text{lep}} = 0, N_{\text{cen}} = 4, N_{\text{b-tag}} = 1$ ($p_T^{\text{jett}} > 25$ GeV)</td>
</tr>
<tr>
<td>tH had 4j2b</td>
<td>$N_{\text{lep}} = 0, N_{\text{cen}} = 4, N_{\text{b-tag}} \geq 2$ ($p_T^{\text{jett}} > 25$ GeV)</td>
</tr>
<tr>
<td>VH dilep</td>
<td>$N_{\text{lep}} \geq 2, 70$ GeV $\leq m_{\ell\ell} \leq 110$ GeV</td>
</tr>
<tr>
<td>VH lep HIGH</td>
<td>$N_{\text{lep}} = 1,</td>
</tr>
<tr>
<td>VH lep LOW</td>
<td>$N_{\text{lep}} = 1,</td>
</tr>
<tr>
<td>VH MET HIGH</td>
<td>150 GeV $< E_{T\text{miss}} < 250$ GeV, $E_{T\text{miss}}$ significance > 9 or $E_{T\text{miss}} > 250$ GeV</td>
</tr>
<tr>
<td>VH MET LOW</td>
<td>80 GeV $< E_{T\text{miss}} < 150$ GeV, $E_{T\text{miss}}$ significance > 8</td>
</tr>
<tr>
<td>jet BSM</td>
<td>$p_{T,j1} > 200$ GeV</td>
</tr>
<tr>
<td>VH had tight</td>
<td>60 GeV $< m_{jj} < 120$ GeV, BDT_{VH} > 0.78</td>
</tr>
<tr>
<td>VH had loose</td>
<td>60 GeV $< m_{jj} < 120$ GeV, $0.35 < $BDT_{VH} < 0.78</td>
</tr>
<tr>
<td>VBF tight, high p_T^{HJJ}</td>
<td>$\Delta \eta_{jj} > 2$, $</td>
</tr>
<tr>
<td>VBF loose, high p_T^{HJJ}</td>
<td>$\Delta \eta_{jj} > 2$, $</td>
</tr>
<tr>
<td>VBF tight, low p_T^{HJJ}</td>
<td>$\Delta \eta_{jj} > 2$, $</td>
</tr>
<tr>
<td>VBF loose, low p_T^{HJJ}</td>
<td>$\Delta \eta_{jj} > 2$, $</td>
</tr>
<tr>
<td>ggH 2J BSM</td>
<td>≥ 2 jets, $p_T^{H} > 200$ GeV</td>
</tr>
<tr>
<td>ggH 2J HIGH</td>
<td>≥ 2 jets, $p_T^{H} \in [120, 200]$ GeV</td>
</tr>
<tr>
<td>ggH 2J MED</td>
<td>≥ 2 jets, $p_T^{H} \in [60, 120]$ GeV</td>
</tr>
<tr>
<td>ggH 2J LOW</td>
<td>≥ 2 jets, $p_T^{H} \in [0, 60]$ GeV</td>
</tr>
<tr>
<td>ggH 1J BSM</td>
<td>$= 1$ jet, $p_T^{H} \geq 200$ GeV</td>
</tr>
<tr>
<td>ggH 1J HIGH</td>
<td>$= 1$ jet, $p_T^{H} \in [120, 200]$ GeV</td>
</tr>
<tr>
<td>ggH 1J MED</td>
<td>$= 1$ jet, $p_T^{H} \in [60, 120]$ GeV</td>
</tr>
<tr>
<td>ggH 1J LOW</td>
<td>$= 1$ jet, $p_T^{H} \in [0, 60]$ GeV</td>
</tr>
<tr>
<td>ggH 0J FWD</td>
<td>$= 0$ jets, one photon with $</td>
</tr>
<tr>
<td>ggH 0J CEN</td>
<td>$= 0$ jets, two photons with $</td>
</tr>
</tbody>
</table>
Couplings and $\sigma \times BR$ in the 4l channel

ATLAS Preliminary

H \rightarrow ZZ* \rightarrow 4l

13 TeV, 36.1 fb$^{-1}$

Best Fit

68% CL Obs.

95% CL Obs.

SM

ATLAS Preliminary

H \rightarrow ZZ* \rightarrow 4l

13 TeV, 36.1 fb$^{-1}$

Best Fit

68% CL Obs.

95% CL Obs.

SM

Stefano Rosati (INFN Roma)

Higgs Hunting 2017 - Paris

24 July 2017
Cross Sections

<table>
<thead>
<tr>
<th>Cross section [fb]</th>
<th>Data (± (stat) ± (sys))</th>
<th>LHCXSWG prediction</th>
<th>p-value [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{4\mu}$</td>
<td>0.92 $^{+0.25}{-0.23}$ $^{+0.07}{-0.05}$</td>
<td>0.880 ± 0.039</td>
<td>88</td>
</tr>
<tr>
<td>σ_{4e}</td>
<td>0.67 $^{+0.28}{-0.23}$ $^{+0.08}{-0.06}$</td>
<td>0.688 ± 0.031</td>
<td>96</td>
</tr>
<tr>
<td>$\sigma_{2\mu2e}$</td>
<td>0.84 $^{+0.28}{-0.24}$ $^{+0.09}{-0.06}$</td>
<td>0.625 ± 0.028</td>
<td>39</td>
</tr>
<tr>
<td>$\sigma_{2e2\mu}$</td>
<td>1.18 $^{+0.30}{-0.26}$ $^{+0.07}{-0.05}$</td>
<td>0.717 ± 0.032</td>
<td>7</td>
</tr>
<tr>
<td>σ_{comb}</td>
<td>3.62 $^{+0.53}{-0.50}$ $^{+0.29}{-0.23}$</td>
<td>2.91 ± 0.13</td>
<td>18</td>
</tr>
<tr>
<td>σ_{tot} [pb]</td>
<td>69 $^{+10}_{-9}$ ±5</td>
<td>55.6 ± 2.5</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fiducial region</th>
<th>Measured cross section</th>
<th>SM prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphoton fiducial</td>
<td>54.7 ± 9.1 (stat.) ± 4.5 (syst.) fb</td>
<td>[N^3LO + XH]</td>
</tr>
<tr>
<td>VBF-enhanced</td>
<td>3.7 ± 0.8 (stat.) ± 0.5 (syst.) fb</td>
<td>[NNLOPS + XH]</td>
</tr>
<tr>
<td>$N_{\text{lepton}} \geq 1$</td>
<td>≤ 1.39 fb @ 95% CL</td>
<td>[NNLOPS + XH]</td>
</tr>
<tr>
<td>High E_T^{miss}</td>
<td>≤ 1.00 fb @ 95% CL</td>
<td>[NNLOPS + XH]</td>
</tr>
<tr>
<td>$t\bar{t}H$-enhanced</td>
<td>≤ 1.27 fb @ 95% CL</td>
<td>[NNLOPS + XH]</td>
</tr>
</tbody>
</table>

Decay channel

<table>
<thead>
<tr>
<th>Total cross section ($pp \rightarrow H + X$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{s} = 7$ TeV</td>
</tr>
<tr>
<td>$\sqrt{s} = 8$ TeV</td>
</tr>
<tr>
<td>$\sqrt{s} = 13$ TeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 8$ TeV</th>
<th>$\sqrt{s} = 13$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>35$^{+13}_{-12}$ pb</td>
<td>30.5$^{+7.5}_{-7.4}$ pb</td>
<td>47.9$^{+9.1}_{-8.6}$ pb</td>
</tr>
<tr>
<td>$H \rightarrow ZZ^* \rightarrow 4\ell$</td>
<td>33$^{+21}_{-16}$ pb</td>
<td>37$^{+9}_{-8}$ pb</td>
<td>68.0$^{+11.4}_{-10.4}$ pb</td>
</tr>
<tr>
<td>Combination</td>
<td>34 ± 10 (stat.) $^{+4}_{-2}$ (syst.) pb</td>
<td>33.3$^{+5.5}{-5.3}$ (stat.) $^{+1.7}{-1.3}$ (syst.) pb</td>
<td>57.0$^{+6.0}{-5.9}$ (stat.) $^{+4.0}{-3.3}$ (syst.) pb</td>
</tr>
<tr>
<td>SM prediction [8]</td>
<td>19.2 ± 0.9 pb</td>
<td>24.5 ± 1.1 pb</td>
<td>55.6$^{+2.4}_{-3.4}$ pb</td>
</tr>
</tbody>
</table>
Couplings and $\sigma \times \text{BR}$ in $\gamma\gamma$ channel

ATLAS Preliminary
$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
$H \rightarrow \gamma\gamma$, $m_H = 125.09$ GeV, $|\gamma_\mu| < 2.5$

Best fit
68% CL
95% CL
SM

$\kappa = \kappa_V = \kappa_W = \kappa_Z$
$\kappa_F = \kappa_\ell = \kappa_b = \kappa_\tau$

Stefano Rosati (INFN Roma)
Higgs Hunting 2017 - Paris
24 July 2017
Effective Lagrangian of the Higgs characterization model

$$\mathcal{L}_0^V = \left\{ \kappa_{SM} \left[\frac{1}{2} g_{HZZ} Z_\mu Z^\mu + g_{HWW} W^\mu_\mu W^{-\mu} \right] - \frac{1}{4} \left[\kappa_{Hgg} g_{Hgg} G^{a,\mu\nu} G_{a,\mu\nu} + \tan \alpha \kappa_{Agg} g_{Agg} G^{a,\mu\nu} \tilde{G}_{a,\mu\nu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \tan \alpha \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] - \frac{1}{2} \frac{1}{\Lambda} \left[\kappa_{HWW} W^{\mu\nu}_\mu W^{-\mu\nu} + \tan \alpha \kappa_{AWW} W^{\mu\nu}_\mu W^{-\mu\nu} \right] \right\} x_0. \quad (1)$$
Limits on EFT couplings

<table>
<thead>
<tr>
<th>BSM coupling</th>
<th>Fit configuration</th>
<th>Expected limit</th>
<th>Observed limit</th>
<th>Best-fit $\hat{\kappa}_{BSM}$</th>
<th>Best-fit $\hat{\kappa}_{SM}$</th>
<th>Deviation from SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_{Agg}</td>
<td>$(\kappa_{Hgg} = 1, \kappa_{SM} = 1)$</td>
<td>[-0.47, 0.47]</td>
<td>[-0.68, 0.68]</td>
<td>± 0.43</td>
<td>-</td>
<td>1.8σ</td>
</tr>
<tr>
<td>κ_{HVV}</td>
<td>$(\kappa_{Hgg} = 1, \kappa_{SM} = 1)$</td>
<td>[-2.9, 3.2]</td>
<td>[0.8, 4.5]</td>
<td>2.9</td>
<td>-</td>
<td>2.3σ</td>
</tr>
<tr>
<td>κ_{HVV}</td>
<td>$(\kappa_{Hgg} = 1, \kappa_{SM} \text{ free})$</td>
<td>[-3.1, 4.0]</td>
<td>[-0.6, 4.2]</td>
<td>2.2</td>
<td>1.2</td>
<td>1.7σ</td>
</tr>
<tr>
<td>κ_{AVV}</td>
<td>$(\kappa_{Hgg} = 1, \kappa_{SM} = 1)$</td>
<td>[-3.5, 3.5]</td>
<td>[-5.2, 5.2]</td>
<td>± 2.9</td>
<td>-</td>
<td>1.4σ</td>
</tr>
<tr>
<td>κ_{AVV}</td>
<td>$(\kappa_{Hgg} = 1, \kappa_{SM} \text{ free})$</td>
<td>[-4.0, 4.0]</td>
<td>[-4.4, 4.4]</td>
<td>± 1.5</td>
<td>1.2</td>
<td>0.5σ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fit configuration</th>
<th>Best-fit $\hat{\kappa}_{HVV}$</th>
<th>Best-fit $\hat{\kappa}_{AVV}$</th>
<th>Best-fit $\hat{\kappa}_{SM}$</th>
<th>Deviation from SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\kappa_{Hgg} = 1, \kappa_{SM} = 1$</td>
<td>2.9</td>
<td>± 0.5</td>
<td>-</td>
<td>1.9σ</td>
</tr>
<tr>
<td>$\kappa_{Hgg} = 1, \kappa_{SM} \text{ free}$</td>
<td>2.1</td>
<td>± 0.3</td>
<td>1.7</td>
<td>1.2σ</td>
</tr>
</tbody>
</table>