H(125) decays to leptons at CMS

Alexei Raspereza, DESY
(on behalf of CMS Collaboration)

HH Workshop, Orsay 2017/07/24
H(125) boson is discovered at 7/8 TeV and rediscovered at 13 TeV

• at the current level of precision the H(125) properties are consistent with expectations from the SM
• But what is the nature of H(125) state?

Leptonic decays of H(125)

• probe Yukawa couplings essential for testing mass-coupling relation for fermions
• provide access to CP quantum numbers of H(125)
• provide directly detectable signatures of new physics

lepton flavor violating (LVF) decays (covered in separate talk by Fanbo Meng)
Leptonic decays of H(125) : Results from CMS

- Main focus on recent results (Run II, 13 TeV)
 - also included results from Run I (7/8 TeV) and projections for the H → µµ search

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Documentation</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → µµ (projections)</td>
<td>HIG-13-007</td>
<td>14 TeV (up to 1500 fb⁻¹)</td>
</tr>
<tr>
<td>H → ττ</td>
<td>HIG-16-043</td>
<td>Run II, 35.9 fb⁻¹ at 13 TeV</td>
</tr>
</tbody>
</table>

Production modes exploited

Diagrams showing production modes involved in Higgs boson decays.
H(125) → μμ

- access to Yukawa coupling of 2nd generation of fermions
- low rate in SM (BR(H → μμ) ≃ 2 × 10⁻⁴) but clean signature
 narrow peak in the m_μμ spectrum on top of smoothly falling Z*→μμ background
- event categorization targeting various production modes
 based on multiplicity and kinematics of jets accompanying di-muon system
- further categorization exploiting difference in dimuon mass resolution
 for muons reconstructed in barrel and endcap

Signal extracted by simultaneous fit of the m_μμ spectrum in 15 categories
maximum-likelihood fit with superposition of analytical parametric
functions describing background and signal
H(125) → μμ: Results and Projections

Upper limit on production cross section times BR at \(m_H = 125 \text{ GeV} \)

\[
\frac{\sigma \mathcal{B}}{(\sigma \mathcal{B})_{\text{SM}}} < 7.4 \text{ (obs.)}
\]

\[
\frac{\sigma \mathcal{B}}{(\sigma \mathcal{B})_{\text{SM}}} < 6.5 \text{ (exp.)}
\]

Fitted value of the signal strength

\[
\frac{\sigma}{\sigma_{\text{SM}}} = 0.8^{+3.5}_{-3.4}
\]
H(125) → ττ

- second largest branching ratio (BR(H→ττ)=6.3%) among fermionic decays
- lower background compared to H → bb
- 4 final states considered, accounting for 94% of all ττ decays
 - eμ, μτh, eτh, τhτh
- 3 event categories targeting different production mechanisms
 - 0-jet, VBF, Boosted
- In all categories but one signal is extracted from 2-dimensions

<table>
<thead>
<tr>
<th>Selection</th>
<th>0-jet</th>
<th>VBF</th>
<th>Boosted</th>
</tr>
</thead>
<tbody>
<tr>
<td>eμ</td>
<td>No jet</td>
<td>2 jets, mjj > 300 GeV</td>
<td>Others</td>
</tr>
<tr>
<td>μτh</td>
<td>No jet</td>
<td>≥ 2 jets, mjj > 300 GeV, pTττ > 50 GeV, pTτh > 40 GeV</td>
<td>Others</td>
</tr>
<tr>
<td>eτh</td>
<td>No jet</td>
<td>≥ 2 jets, mjj > 300 GeV, pTττ > 50 GeV</td>
<td>Others</td>
</tr>
<tr>
<td>τhτh</td>
<td>No jet</td>
<td>≥ 2 jets, pTττ > 100 GeV, Δηjj > 2.5</td>
<td>Others</td>
</tr>
</tbody>
</table>

Variables used for the signal extraction

eμ	pTμ, mvis	mjj, mττ	pTττ, mττ
μτh	τh decay mode, mvis	mjj, mττ	pTττ, mττ
eτh	τh decay mode, mvis	mjj, mττ	pTττ, mττ
τhτh	mττ	mjj, mττ	pTττ, mττ
Di-tau Mass Reconstruction

- Fully reconstructed di-tau mass is key variable discriminating signal against dominant $Z \rightarrow \tau\tau$ background
- Reconstruction of $m_{\tau\tau}$ with dynamic likelihood algorithm
- Inputs: \vec{p}_{τ_1}, \vec{p}_{τ_2}, \vec{p}_{mis}, $\text{COV}(\vec{p}_{\text{mis}})$
- Estimate of $m_{\tau\tau}$ is obtained by maximizing likelihood combining
 - matrix elements of tau decays
 - χ^2 of \vec{p}_{mis} measurement

- Better separation of $H \rightarrow \tau\tau$ signal and $Z \rightarrow \tau\tau$ background compared to the invariant mass of visible τ decay products
 - the peak position is shifted to the nominal value of resonance mass
 - mass resolution: 15-20%
Background estimation

Z → ττ:
- Simulation corrected for Z boson kinematics and kinematics of accompanying jets (corrections are derived from Z → μμ control region)

QCD multijets:
- Shape and normalization are estimated from sideband regions (same-sign lepton pairs, relaxed lepton identification/isolation)

W+Jets and VV:
- Shape estimated from simulation, normalization is determined from high-\(m_T\) sideband

Z → ll with \(l \) faking \(τ_h \):
- Simulation corrected for Z boson and jet kinematics (corrections derived from Z → μμ control region), additional corrections for \(l \rightarrow τ_h \) fake rate

tt production:
- Shape estimate from simulation with corrections for top \(p_T\) distributions, dedicated control region in \(eμ\) channel is used to constrain normalization
Signal Extraction

- Signal is extracted by simultaneous maximum-likelihood fit in 12 channels
 4 final states (e\(\mu\), e\(\tau_h\) \(\mu\tau_h\), \(\tau_h\tau_h\)) \(\times\) 3 event categories (0-jet, VBF, Boosted)

- Representative example of unrolled postfit 2D distribution: VBF \(\tau_h\tau_h\)
Observation of $H \to \tau\tau$ Decays

- Distribution of event yield in the analysis bins ordered by $S/(S+B)$

- Clearly visible excess in data w.r.t. background-only expectation

- Obs. (exp.) significance at $m_H = 125$ GeV

- 4.9σ (4.7σ) with Run II data only

- Combination with Run I CMS data yields 5.9σ (5.9σ)

- First observation of Yukawa coupling in single fermionic decay channel at CMS
Events are weighted by $S/(S+B)$ in bins of second variable of 2D distributions → unbiased mass spectrum

Signal is clearly visible in the distribution of physical observable $m_{\tau\tau}$
Measurements performed for different production modes and in different final states are compatible with each other and with the expectation for the SM Higgs boson.
Measurement of couplings

- probing universal coupling modifiers
 \[\kappa_f = \frac{g_{Hff}}{g_{Hff}^{SM}} \] affects \(gg \to H\) and \(ttH\) production rates and \(H \to bb/\tau\tau\) decay rates

 \[\kappa_V = \frac{g_{HVV}}{g_{HVV}^{SM}} \] affects VBF and VH production rates and \(H \to VV\) decay rates

- Contribution of VH is added but not targeted with specific category

- Contribution from \(H \to WW\) (significant in e\(\mu\) channel, sub-dominant in other channels) is treated as signal

- Measurement of couplings is compatible with SM expectation
Summary

- **H(125) → ττ decay** is observed with statistical significance of ~5.9 σ combining data collected at 7, 8, and 13 TeV

 - measured H(125) properties in the H → ττ decay channel are consistent with SM expectations

- **Search for H(125) → μμ decays** performed with Run I data collected at 7/8 TeV revealed no signal

 - upper limit is set on production cross section times BR(H→μμ)
 \[\frac{\sigma \mathcal{B}}{(\sigma \mathcal{B})_{SM}} < 7.4 \text{ at 95\% CL} \]

 - search is being currently updated with Run II data collected at 13 TeV

 - one needs ~ 400 (1200) fb⁻¹ to observe H → μμ decay with statistical significance of 3 (5) standard deviations

- **Results of measurements** in the H → ττ and H → μμ decay channels indicate non-universality of the H(125) coupling to leptons