Searches for Supersymmetry at CMS status and prospects

Wolfgang Adam

Institute of High Energy Physics Austrian Academy of Sciences

Laboratoire de l'Accélérateur Linéaire Univ. Paris-Sud, Orsay, Feb. 10, 2017

Outline

Introduction

- Searches for SUSY production (strong & EWK production)
- Some more exotic SUSY models
- Interpretations
- > Future

Summary

Searches for SUSY

n

Searches for SUSY

CMS

4

CMS in (early) Run 2

improved PU subtraction, e/γ isolation, τ trigger, increased granularity, more algorithms

SUSY in CMS

Input

• Triggers: in 2016, CMS used about 1/6 of it output rate for SUSY-specific triggers

Missing transverse energy at 13TeV

12.9 fb⁻¹ (13 TeV, 2016)

 \vec{u}_{T}

 $\vec{p}_{T}(l^{+}$

CMS*Preliminarv*

- calculated from particle flow candidates
- corrected for jet energy scale

LAL, Feb 10, 2017

Why look for SUSY after LHC Run1?

The main motivations remain

Hierarchy problem

 low-mass top squarks cancel SM contributions to m(H) (+ light higgsinos, gluinos)

Dark matter

 lightest SUSY particle can be massive, stable, and weakly interacting

Unification of gauge couplings

 Presence of sparticles changes running of couplings

NASA / Chandra

LAL, Feb 10, 2017

What are we looking for?

9

M. Adam: Searches for SUSY at CMS

How are we looking for it?

W. Adam: Searches for SUSY at CMS

The SUSY hunter's toolbox

Standard objects

- isolated charged (light or $\boldsymbol{\tau}$) leptons
- jets, b-tagged jets
- missing transverse momentum (energy sum (MET) or from jets (MHT))

Kinematic variables

- m_T (lepton/MET, b/MET)
- m_{T2} (stransverse mass) + variations
- m_{CT} (contransverse mass)
 common feature: endpoint at m(parent)
- hemispheres
- razor

Hadronic / total energy

- H_T (scalar sum of (jet) p_Ts)
- E_T^{sum} (sum of all particle p_Ts)

Composite (boosted) objects

- topness
- boosted W and top taggers
- jet substructure
- jet masses

SUSY in 13 TeV pp collisions

10

10⁸

10⁷

10⁶

10

10⁻⁴

10⁻⁵

10⁻⁶

10

^{10⁵ -}ິິ ເມ[ັ]ຸິ⊔

10³³ 01

events / sec for L

Still a needle in a haystack ...

13

GLUINO PAIR PRODUCTION

Spectacular signature for gluino decays via virtual top squarks

- Profit from high gluino pairproduction cross section
- Final states with four top quarks
 - Very high jet and b-jet multiplicities
 - Four W's → high BF to states with one or more leptons

Example for an inclusive, hadronic search: SUS-16-015

Online selection

 combinations of MET, H_T, and MH_T (higher MET for lower H_T thresholds)

Offline selection

- isolated lepton & track vetos
- anti-QCD (Δφ MET/jet)
- SRs binned in
 - #jets (1,...,≥7), #bs (0,...,≥4)
 - H_T (>1 jets) / jet pT (1 jet) (starting at 200GeV), and
 - MT2 (starting at 200GeV) Total of 172 SRs

estimate irreducible Z→vv and remaining lost-lepton backgrounds

16

 $Z \rightarrow vv$ background two possible proxys: $Z \rightarrow ||$: syst \odot stat \otimes γ +jets: syst \otimes stat \otimes CMS Preliminary Z(II) / γ Ratio 0.12 - Data Simulation 0.1 0.08 CMS Preliminary 12.9 fb⁻¹ (13 TeV) Entries $Z \rightarrow v\overline{v}$ background HT [575, 1000] GeV 0.06 10 Standard Bin by bin 0.04 0.02 10-500 1000 1500 2000 Data/MC = 0.89 ± 0.10 Data / MC 1.5 Bin / Std. O F

M. Adam: Searches for SUSY at CMS 17

H_T [450,575] GeV H_T [575,1000] GeV H_T [1000,1500] GeV

Pre-fit background

H_T [575, 1000] GeV

4-6i 1b

4-6j 2b

≥7j ≥7i 0h

4-6i 0b

12.9 fb⁻¹ (13 TeV)

12.9 fb⁻¹ (13 TeV)

Multiiet

Lost leptor

Data

Multijet

Lost lepton

Gluino decays to tt+LSP: summary

Other final states:

- Single-lepton (SUS-16-019)
- Same-sign dileptons (SUS-16-020)
- Multileptons (SUS-16-022)

• high b-multiplicity helps with background discrimination

W. Adam: Searches for SUSY at CMS

Gluino decay chains via EWK gauginos

Alternative decay chains in gluino production

example for chargino→W LSP in the single lepton channel: SUS-16-019

Online selection

- combinations of isolated e/ μ and H_T

Offline selection

- 1 isolated e/m, pT>25GeV
- for this model: b-jet veto
- SRs binned in
 - #jets (5,6-7,≥8)
 - H_T (starting at 500GeV)
 - MET+pT(l) (starting at 250GeV)
 - high Δφ(I,I+MET)
 Total of 20 SRs

Challenges

- W+jets/tt fractions from #b's
- high/low Δφ measured at low #jets and applied at high #jets (individually for W+jets and tt)

Gluino decay chains via EWK gauginos

(Other) results:

- 100% BF to qqW+LSP:
 - single lepton (SUS-16-019)
 - same-sign dilepton (SUS-16-020)

- mixed qq(W/Z)+LSP:
 - hadronic (SUS-16-014)
 - multilepton (SUS-16-022)

M. Adam: Searches for SUSY at CMS

SQUARK PAIR PRODUCTION

Top squarks: hadronic

Example for a hadronic search: SUS-16-029

Online selection • MET and MH_T

Offline selection (high Δm)

- isolated lepton & track vetos
- anti-QCD ($\Delta \phi$ MET/jet)
- top and W-tagging (R=0.8 jets)
 - soft-drop mass, subjettiness
- SRs binned in
 - min(m_T(MET,b))<>175GeV
 - #jets (starting from 5)
 - #tops / #Ws (0, ≥1)
 - #b's (1,>1)
 - MET (starting at 250GeV) Total of 60 SRs

Catogory	$M_{\pi}(h_{ee}, F^{\text{miss}}) < 175 \text{ CeV}$				$M_{-}(h_{-}, F^{\text{miss}}) > 175 \ CoW$									
Category	$MT(0_{1,2}, L_T) < 1.5 GeV$				$m_{\mathrm{T}}(\sigma_{1,2}, r_{\mathrm{T}}) \geq 1/5 \ \mathrm{GeV}$									
$N_{\rm t}/N_{\rm W}$	-				$N_{t} = 0, N_{W} = 0$			$N_{\rm t} \ge 1, N_{\rm W} = 0$		$N_{\rm t} = 0, N_{\rm W} \ge 1$		$N_{\rm t} \ge 1, N_{\rm W} \ge 1$		
Nj	5-6		≥ 7		5-6		≥ 7		≥ 5		≥ 5		≥ 5	
N _b	1	≥ 2	1	≥ 2	1	≥ 2	1	≥ 2	1	≥ 2	1	≥ 2	1	≥ 2
	250-300	250 - 300	250-300	250-300	250-350	250-350	250-350	250-350	250 - 350	250 - 350	250 - 350	250 - 350	250-350	250-300
	300-400	300 - 400	300-400	300-400	350 - 450	350 - 450	350 - 450	350 - 450	350 - 450	350 - 450	350 - 450	350-450	350-450	300-400
E ^{miss} [GeV]	400-500	400 - 500	400-500	400 - 500	450 - 550	450 - 550	450-550	450-550	450 - 550	450 - 550	450 - 550	450 - 550	450 - 550	400-500
	≥ 500	≥ 500	≥ 500	≥ 500	≥ 550	≥ 550	≥ 550	≥ 550	550 - 650	550 - 650	550 - 650	550-650	≥ 500	≥ 500
									≥ 650	≥ 650	≥ 650	≥ 650		

Top squarks: single lepton

Single lepton search: SUS-16-028

Online selection

• MET, MH_T, and single e/μ

Offline selection (high Δm)

- one e or $\boldsymbol{\mu}$
- MET > 250GeV
- #jets>=2, #b's>=1
- m_T(lepton,MET)>150GeV
- SRs binned in
 - #jets, M_{T2}^w, modified topness, and MET Total of 15 SRs

Challenges

- dilepton ttbar and W+jets from CRs
- estimate of W+bb, and MET resolution for subleading backgrounds

Top squarks: high Δm summary

Top squarks: decays via charginos

Top squarks – the soft side

One of the focus points of SUSY searches

- motivation for light top squarks in natural SUSY
 - even if recently under discussion (see, e.g., Baer et al, arXiv:1207.3343)
- small Δm helps to achieve the right DM relic density via stop-bino coannihilation
 - however, ∆m's of 30GeV experimentally challenging

Two decay options

(assuming all other sparticles decoupled)

- Flavour-changing decay to c+LSP
- 4-body decay to bff'+LSP

with details of BFs being model dependent

The soft side of top squarks

- Top squark 4-body decays accessible via ISR
- covered in Ol (SUS-16-029), 1l (SUS-16-031) and 2l (SUS-16-025) final states

LAL, Feb 10, 2017

Searches for OS ee/ $\mu\mu$ pairs: SUS-16-021

- sensitive to production of Z-bosons in SUSY decay chains ("on-Z") and kinematic edges from leptons emitted in one branch ("edge")
- one of the SUSY searches with the lowest systematics:
 - well-defined Z-dominated CRs
 - low experimental uncertainties for the "flavour-symmetric" (FS) backgrounds

M. Adam: Searches for SUSY at CMS

Edge search

SRs (binned in)

- MET>150GeV
- low & high m(ll) (20-81GeV, >101GeV)
- tt(2l) likelihood
 - using MET,pT(II), $\Delta \phi$ (II), and Σm (Ib)

Background estimation

- dominant FS backgrounds estimated with R(SF/OF)
 - directly from lower MET sideband
 - factorized in ε(reco/ID) (from DY) and a correction for ε(trigger)

$$R_{\rm SF/OF} = \frac{1}{2}(r_{\mu/e} + r_{\mu/e}^{-1}) \cdot R_{\rm T}$$

Edge search

SRs (binned in)

- MET>150GeV
- low & high m(ll) (20-81GeV, >101GeV)
- tt(2l) likelihood
 - using MET,pT(II), $\Delta \phi$ (II), and Σm (Ib)

Background estimation

- dominant FS backgrounds estimated with R(SF/OF)
 - directly from lower MET sideband
 - factorized in ε(reco/ID) (from DY) and a correction for ε(trigger)

$$R_{\rm SF/OF} = \frac{1}{2}(r_{\mu/e} + r_{\mu/e}^{-1}) \cdot R_{\rm T}$$

	Data	MC	
$\frac{1}{2}(r_{\mu/e} + r_{\mu/e}^{-1})$	$1.032 {\pm} 0.025$	1.020 ± 0.020	
R_T	$1.062 {\pm} 0.069$	-	
R _{SF/OF}			
From factorization method	$1.096 {\pm} 0.076$	$1.083 {\pm} 0.073$	
From direct measurement	$1.090 {\pm} 0.024$	$1.101 {\pm} 0.003$	
Weighted average	$1.091 {\pm} 0.023$	$1.101 {\pm} 0.003$	

M. Adam: Searches for SUSY at CMS

On-Z search

SRs (strong production) binned in

- #jets (2-3,>3), #b's (0,>1)
- MET (starting at 100GeV)

Background estimation

- FS backgrounds as before
- MET tails in DY estimated from γ+jets
 - need to reweight in pT(γ)
 - normalization at low MET
- ZV and Ztt from multilepton CRs
- DY estimate also propagated to edge search

On-Z search

SRs (strong production) binned in

- #jets (2-3,>3), #b's (0,>1)
- MET (starting at 100GeV)

Background estimation

- FS backgrounds as before
- MET tails in DY estimated from $\gamma\text{+jets}$
 - need to reweight in $pT(\gamma)$
 - normalization at low MET
- ZV and Ztt from multilepton CRs
- DY estimate also propagated to edge search

$E_T^{miss}(GeV)$	0 – 50	50 - 100	100 - 150	150 - 225	225 - 300	≥ 300
SRA, b-veto	2 %	10 %	20 %	20 %	20 %	25 %
SRA, with b-tags	1 %	5 %	20 %	20 %	40%	40%
SRB, b-veto	1 %	6 %	10 %	10 %	35 %	35 %
SRB, with b-tags	1 %	10 %	20 %	25 %	30 %	30 %
EWK Signal Region	25 %	2 %	10 %	10 %	10 %	15 %
ATLAS Signal Region	2 %	10 %	25 %	35 % 40 %		o o
edge Signal Region	1 %	5 %	5 %	7 %		

W. Adam: Searches for SUSY at CMS

ELECTROWEAK PRODUCTION MODES

Decays via sleptons

- little hadronic activity main players are multilepton final states
- several scenarios motivated by different assumptions on the gaugino mixing and the nature of the sleptons
 - all 3 flavours contribute equally: less
 (charged) multilepton final states reduced
 - $\tilde{\chi}_2^0$ decays as above; $\tilde{\chi}_1^{\pm}$ to τ only
 - both $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^\pm$ decay exclusively to τ 's

Decays via W / Z / h

- if W / Z on-shell: final states with high lepton multiplicity at medium – high pTs
- for decays via h:
 - multilepton modes from h→WW*,ZZ* offer high discrimination but suffer from low BFs

M. Adam: Searches for SUSY at CMS

W. Adam: Searches for SUSY at CMS

39

Chargino / neutralino production

Results and interpretation for different mass hierarchies

10.1 fb⁻¹ (13 TeV

Data

tt(2I)

VV

tW

30 35 40 45 50

Fakes

M(II) [GeV]

DY+jets

-CNWZ(20)

Strong motivation for low-mass higgsinos in natural SUSY

• $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^{0}$ almost degenerate, $\tilde{\chi}_1^{0}$ only slightly lighter: use soft leptons to go beyond "monojet" ISR search

Soft OS 2I search: SUS-16-025

Online selection

- MET or
- specific MET + 2 soft μ trigger (lower MET threshold @ 50GeV)

Offline selection

- 2 soft (pT 5-30GeV) OSSF e/μ (low-mass resonance veto)
- anti-QCD and Z→ττ cuts
- ≥1 jet (no b's), HT>100GeV
- MET>125GeV, mT<70GeV
- SRs binned in MET and m(II) Total of 8 (EWK) SRs

Challenges

- trigger and soft lepton reco / ID
- backgrounds from CRs: DY (mainly ττ), dileptonic ttbar

Results of the soft 2l search

 limits calculated with wino-like cross sections, but higgsino-like cross sections in reach

Other results for the same model

- multileptons (SUS-16-024)
- "classical" 2I on-Z search (SUS-16-021)

R-PARITY VIOLATION

RPV in gluino decays

2.7 fb⁻¹ (13 TeV)

5

 ΔR_{bb}

4

Gluino decays to tbs in MFV: SUS-16-013

Online selection Background estimation HT>800GeV ٠ CRs at low #jets fit to b multiplicity in ٠ **Offline selection** bins of #jets and MJ special care for $g \rightarrow bb$ 0 or 1 isolated e/μ at least 1 b CMS Preliminary SRs binned in Events Data 🔳 tī, 1 l #leptons, #b's $(1,...,\geq 4)$ - ã(1.0 TeV)→ tbs $600 \vdash \cdots \tilde{g}(1.1 \text{ TeV}) \rightarrow \text{tbs}$ tt, 0 l MJ (sum of large-R jets) QCD W+jets, 1 I W+jets, 0 I Single t #jets (starting at 8) Z+jets, 0 I Other 400 Total of 6 SRs 0l, N_b=2 M₁>500GeV

200

1.5 0.5

0

2

3

Data / MC

Some other RPV results

Displaced top squark decays to bl: EXO-16-022

- via LFV couplings (Graham et al. arXiv:1204.6038)
- eµ channel
- CRs at low IP(s), 3 SRs at high IPs

Top squark decays to qq: EXO-16-029

- decays via λ''_{312}
- using R=0.8 jets & grooming techniques (incl. @ trigger level)and N-subjetiness τ₁₂
- selection on mass asymmetry and $\Delta\eta$ (j₁,j₂)

OTHER MODELS

GMSB

Some results for neutralino decays to $\gamma/Z + G^{\sim}$

Split SUSY

Heavy stable charged particle search motivated by split SUSY: EXO-16-036

- long-lived g~ hadronizes
 - open parameters are the fraction of produced R-glueballs and the interaction model
- analysis based on dE/dx in the Si tracker
 - online selection with muon or MET triggers

VBF SEARCHES

VBF searches for SUSY

Vector-boson fusion offers an alternative to ISR-based searches for (nearly-) invisible SUSY production

• example scenarios:

- Events can be tagged using the 2 VBF jets at large rapidity gap / large dijet mass
- Background estimation from data using separate CR for the SUSY-decay-products+jj, and for the m(jj) shape

VBF searches for SUSY

Electroweak production (SUS-14-005, JHEP 11 (2015) 189)

Selection

- $(e\mu/\mu\mu/\mu\tau h/\tau h\tau h) + 2$ jets
- MET (75 / 30GeV), b-jet veto
- 2 jets with $\Delta \eta > 4.2$
- m(jj)>250GeV (shape)

Sbottom production (SUS-14-019, acc. by PRL)

Selection

- 2 jets with $\Delta \eta > 4.2$ •
- m(jj)>750GeV (shape)
- lepton and additional jet veto

INTERPRETATION

Simplified model spectra

THE interpretation tool for SUSY searches @ LHC

Pros

- closely related to exp. observables
- limited number of parameters
 - results as 2D scans
- "easy" reinterpretation (cross-section limit)

Cons

- no self-consistent model
 - higher-order corrections?
 - decay widths?
- application to other (full) models
 - ignores details of production, spin structure, ...
- implementation of long decay chains or mixed decays quickly increases the number of required SMS's

Searches for SUSY

Link with full models: pMSSM

Phenomenological MSSM

- catches essential MSSM features in 19-dim subspace
 - (no CPV couplings, R-parity conserving, degeneracy of 1st&2nd generation, MFV)
- goal: understand impact on model parametes, limitations of SMS approach & "holes" in experimental MSSM coverage using scans of pMSSM parameter space

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

Reinterpretations

Limitations of exp. papers

- quoted models typically meant for motivation and demonstration
 - experimental result typically more generally valid
- we cannot cover all current or future use cases → need possibility for reinterpretations
- one typical obstacle:
 - use of a large number of SRs in order to make best use of the data

No miraculous one-size-fits-all solution, but

- increased extra information on public pages
 & HepData
- alternative, larger (ex- or inclusive) signal regions
- covariance matrix of for background estimates
 - allows to build simplified likelihood as described in CMS-NOTE-2017/001

example of the application of a simplified LH to an inclusive, hadronic search (SUS-16-016)

FUTURE

Run 2 and beyond

Medium term

- new pixel detector in EYETS16/17!
 - move to 4 barrel and 3 endcap layers
 - expect improvements on SUSY searches, e.g., on b-tagging and photon ID

Run 2 and beyond: prospects for HL-LHC

Summary

- Excellent LHC performance allowed for considerable increase in sensitivity with (partial) 2016 data set
 - CMS performed a large set of analyses almost synchronously with data taking
 - So far no signs of an excess now preparing results with the full data set
- Next step: extend to more challenging scenarios
 - Only had a first look at electroweak production, compressed mass spectra, ...
 - Slower relative increase in integrated luminosity will provide time to refine strategies and to prepare new approaches
- Mass limits (in simplified model spectra!)
 - pushed to about 1.9 TeV (gluinos) and 900 GeV (top squarks); limits on EW production even for small mass differences

A large data set is at our hand, and we can expect a 3-fold increase during the rest of Run2, with an improved detector. We are eager to see the first significant deviations from SM predictions!

Additional Material

Summary gluino production

Summary squark production

Summary EWK production

