Reproducible Science in Bioinformatics

Sarah Cohen-Boulakia

Laboratoire de Recherche en Informatique (LRI)

CNRS UMR 8623

Université Paris-Sud

Biological analysis

Public sources

- Distributed
- Heterogeneous
- Network

How these data have been generated? With which input data? Which tools? Which parameters?

What is the difference between these two experiments?

Tools

- Distributed
- Heterogeneous
- Chained

Workspace

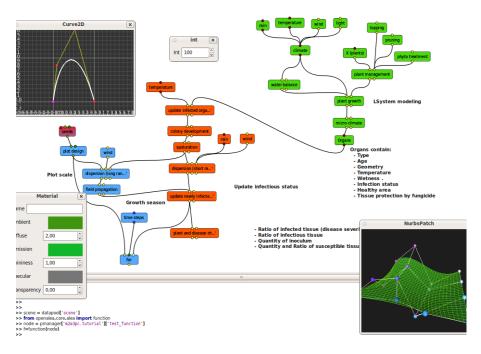
TGCCGTGTGGC

TAAATGTCTGTG

GTCTGTGC...

Take Home Message

Compared to 20 years ago...


- The number and diversity of the sources has increased a lot
 - > 1,500 databases (NAR databases issue)
 - ➤ Need for data provenance to determine data quality
- ▶ The complexity of the pipelines to be designed has increased a lot
 - ➤ Need for process provenance to determine data quality
 - →Increase in the heterogeneity of data
 - + Increase in the complexity of analysis pipelines
 - + Increase in the need to publish...
 - = increasing difficulties to reproduce experiments!

Analysing & Integrating biological data

- Use scripts (Python, Perl, ...)
 - quick to develop
 - hard to maintain
 - almost impossible to share
 - no high level view of the analysis steps...
 - 0
- Use Scientific Workflows
 - Visual programming: chaining processors (from libraries...)
 - SWF Systems take care of important issues: Scheduling and parallelization, logging, debugging, integration of web services, recovery, provenance
 - → Reproducibility

Scientific workflow

- Companion tools
 - Virtualisation & Container techniques (Docker, ...)
 - Notebooks
 - •