Search for Heavy Neutrinos with the T2K near detector PHENIICS Fest

Mathieu Lamoureux

SPP, CEA Saclay
May 31, 2017

Contents

(1) Why? (Theory)
(2) Where? (Experiment)
(3) How? (Analysis)

2

Why? (Theory)

3

Neutrinos

Standard Model

- Neutrinos come in three flavours: $\nu_{e}, \nu_{\mu}, \nu_{\tau}$
- They are left-handed (right-handed neutrinos have never been observed)
- Neutrinos are massless

Neutrino oscillations

- Neutrinos change flavours between production and detection.
- Two-flavours oscillations:

$$
\operatorname{Prob}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\sin ^{2} 2 \theta \sin ^{2} \frac{\Delta m^{2} L}{4 E}
$$

- $\Delta m^{2} \neq 0 \Rightarrow$ Neutrinos are massive

Why neutrinos are massless in the Standard Model?

left-handed electron right-handed electron

left-handed neutrino

neutrino is alone

$$
\Rightarrow m_{\nu}=0
$$

right-handed neutrine

$$
\mathcal{L}=m \bar{\Psi}_{L} \Psi_{R}+m \bar{\Psi}_{R} \Psi_{L} \quad \text { (Dirac mass term) }
$$

Right-handed partner for the neutrino

- Introduction of right-handed neutrinos
left-handed neutrino

right-handed neutrino

gravitation only
- When you write the whole theory, you end up with:
- 3 light neutrinos $(m \sim 0.1 \mathrm{eV}) \Rightarrow$ the ones we know
- 3 heavy neutrinos ($m_{N}=\mathrm{keV}, \mathrm{MeV}, \mathrm{GeV}, \ldots$?) that interact through weak interaction with a penalty factor $U_{\alpha}=$ mixing between light and heavy neutrinos \Rightarrow new particles !

Why is it interesting?

We can choose heavy neutrino mass and mixing U_{α} to solve other issues.
Example: $\nu \mathrm{MSM}$ by Asaka and Shaposhnikov (2005), 3 new states:

- N_{1} with $M_{1} \sim \mathcal{O}(\mathrm{keV}) \Rightarrow$ candidate for warm dark matter
- $N_{2,3}$ with $M_{2,3} \sim \mathcal{O}(\mathrm{GeV}) \Rightarrow$ explains matter-antimatter asymmetry

We can look for new physics with current experiments by putting limits in $m_{N}-U_{\alpha}^{2}$ plane ($U_{\alpha}^{2} \lesssim 10^{-8}$ from past exp.)

How can we see heavy neutrinos?

- It behaves like a neutrino
- The kinematic is different, because of different mass
- We add an additional factor U_{α}^{2} each time we put an heavy neutrino instead of a standard neutrino $\nu_{\alpha}(\alpha=e, \mu, \tau)$
- $K^{+} \rightarrow e^{+} \nu_{e} \Longrightarrow K^{+} \rightarrow e^{+} N$ if $m_{N}<m_{K}-m_{e}$ with mixing U_{e}^{2}
- $\pi^{+} \rightarrow \mu^{+} \nu_{\mu} \Longrightarrow N \rightarrow \pi^{-} \mu^{+}$if $m_{N}>m_{\pi}-m_{\mu}$ with mixing U_{μ}^{2}
- $Z \rightarrow \nu N, N \rightarrow \mu^{+} e^{-} \nu, N \rightarrow 3 \nu, N \rightarrow \gamma \nu \ldots$
pion decay

heavy neutrino decay ${ }_{u}$

8

Where? (Experiment)

9

The T2K experiment

Neutrino oscillation experiment in Japan, running since 2010

Super Kamiokande

- At J-PARC, 30 GeV proton beam is sent on a graphite target
- It produces kaons/pions that decays to neutrinos
- They propagate up to far detector (295 km) and are detected through their interaction with nucleus

The T2K experiment

- At J-PARC, 30 GeV proton beam is sent on a graphite target
- It produces kaons that decays to heavy neutrinos $\left(\# \propto U_{\alpha}^{2}\right)$
- They decay within a few kilometers and can be detected through their decay in the near detector
- Number of decays is proportional to $U_{\alpha}^{2} U_{\beta}^{2}$
- Heavy neutrino mass should be: $m_{\pi}<m_{N}<m_{K}$

The near detector ND280

- Initial goal: detect standard neutrino interaction on nuclei
- Target: carbon scintillators + water modules
- Tracking: using Argon gas Time Projection Chambers

Heavy neutrino search

- Signal: $N \rightarrow \mu \pi$ or $N \rightarrow e \pi \Rightarrow \#$ of events \propto volume
- Background: $\nu_{\mu} A \rightarrow \mu^{-} A^{\prime}+X \Rightarrow \#$ of events \propto mass
$S / B \propto 1 /$ density \Rightarrow light materials are an excellent lab for the search!

Time Projection Chambers

Particles ionize the gas

Energy loss \rightarrow Identification

How? (Analysis)

13

Analysis strategy

- simulation of heavy neutrino signal for different possible m_{N}
- selection of the signal based on the simulation
- background study
- study of systematic uncertainties for
- signal (detector effects, flux...)
- background (theory, flux...)
- sensitivity analysis

Selection

- Two opposite charge tracks
- Good quality tracks
- Reconstructed vertex in TPC
- No other activity before
- Particle identification
- Correct kinematics

Selection

- Two opposite charge tracks
- Good quality tracks
- Reconstructed vertex in TPC
- No other activity before
- Particle identification
- Correct kinematics

Selection

- Two opposite charge tracks
- Good quality tracks
- Reconstructed vertex in TPC
- No other activity before
- Particle identification
- Correct kinematics

Selection

- Two opposite charge tracks
- Good quality tracks
- Reconstructed vertex in TPC
- No other activity before
- Particle identification
- Correct kinematics

Selection

- Two opposite charge tracks
- Good quality tracks
- Reconstructed vertex in TPC
- No other activity before
- Particle identification
- Correct kinematics

Efficiency

Conclusions

- Selection is more efficient for higher masses
- Lower efficiency when asking for an electron
\Rightarrow to be taken into account in the analysis

Remaining background

Less than 1 event expected for all 6 years of T2K data)

Example: Coherent pion production on Argon

- exactly like signal
- not precisely known

Source of systematics

Signal

- statistical error on efficiency
- detector response: momentum/position resolution, PID discrepancy between data and MC...
- flux: beam intensity, kaon production...

Background

- statistical error on background
- knowledge of background
- flux

Source of systematics

Signal

- statistical error on efficiency $\Rightarrow \delta \varepsilon=\sqrt{\frac{\varepsilon(1-\varepsilon)}{N}}$
- detector response: momentum/position resolution, PID discrepancy between data and MC... \Rightarrow variance of toy experiments
- flux: beam intensity, kaon production... \Rightarrow throwing flux randomly

Background

- statistical error on background $\Rightarrow \delta B=\sqrt{B}$
- knowledge of background \Rightarrow checked using control samples
- flux $\Rightarrow 10 \%$ normalization uncertainty

Sensitivity

Conversion of all information (efficiency, background, uncertainties) to a limit on mixings U_{α}, using a Bayesian posterior probability

$$
p(s \mid n) \propto \int_{0}^{\infty} d b \int_{0}^{\infty} d \eta \frac{\frac{(s \eta+b)^{n}}{n!} e^{-s \eta-b}}{\text { likelihood }} \quad \pi_{S}(\eta) \pi_{B}(b)
$$

We define an upper limit $s_{u p}$ at 90% by:

$$
\int_{0}^{s_{u p}} p(s \mid n) d s=0.90
$$

19

Sensitivity

20

Sensitivity

Summary

- T2K can look for heavy neutrinos with $140<m<500 \mathrm{MeV}$
- Simulation + complete study have been done.
- Background is reduced to less than 1 event in current data.
- Limits on mixing between active and heavy neutrinos U_{α} can be put.

Backups

22

Right-handed partner for the neutrino

Introduction of ν_{R} singlet

Simple case with one ν_{L} and one ν_{R} :

$$
\text { mass term }=\frac{1}{2}\left(\overline{\nu_{L}} \overline{\nu_{R}^{c}}\right) \underbrace{\left(\begin{array}{cc}
0 & \mathrm{~A} \\
\mathrm{~A} & \mathrm{~B}
\end{array}\right)}_{\text {Dirac term }} \underbrace{\binom{\nu_{L}^{c}}{\nu_{R}}}_{\text {Majorana term }}
$$

left-handed neutrino

right-handed neutrino

- Dirac term: as for charged fermions
- Majorana term: additional term allowed as neutrinos are neutral

Right-handed partner for the neutrino

Introduction of ν_{R} singlet
Simple case with one ν_{L} and one ν_{R} :

$$
\text { mass term }=\frac{1}{2}\left(\overline{\nu_{L}} \overline{\nu_{R}^{c}}\right) \overbrace{\text { Dirac term }}^{\left(\begin{array}{ll}
0 & \mathrm{~A} \\
\mathrm{~A} & \mathrm{~B}
\end{array}\right)} \underbrace{\binom{\nu_{L}^{c}}{\nu_{R}}}_{\text {Majorana term }}
$$

If $\theta \equiv A / B \ll 1$ (seesaw condition), the matrix has two mass eigenstates:

- one mainly left (active) with mass $m \simeq \theta^{2} B$
- one mainly right (sterile) + a fraction θ of left (active) with mass $M \simeq B$

$$
\begin{array}{cc}
& \mathrm{keV} ? \\
& \mathrm{GeV} \text { ? } \\
& 10^{16} \mathrm{GeV} ?
\end{array}
$$

Matter-antimatter asymmetry with neutrinos at GeV -scale

Baryogenesis via leptogenesis

- Singlet neutrinos are produced through their Yukawa coupling, equally split in +1 and -1 helicities, then $L_{I}=0$ (conserves $C P$)
- Singlet neutrinos oscillate conserving $L_{\text {tot }}=L_{\text {active }}+\sum_{I=1}^{3} L_{I}=0$, but $\Delta L_{I} \neq 0$ (violates CP)
- Singlet neutrinos communicate their asymmetries to active neutrinos $L_{\text {active }} \neq 0$ through active-sterile mixing
- $L_{\text {active }} \neq 0$ is converted to $B \neq 0$ by sphaleron process (that conserves only $B-L$ and not B, L individually)

Requires two degenerate heavy neutrinos at GeV -scale, or three free heavy neutrinos

Dark matter candidate

25

Exclusions from other experiments

Cut variables

Time of Flight correction

As compared to standard neutrinos, heavy neutrinos need more time to reach ND280:

$$
\Delta t=\frac{d}{c}\left(\frac{\sqrt{p^{2}+m^{2}}}{p}-1\right)
$$

Background for electron channel

$\nu A \rightarrow X+\pi^{0}, \pi^{0} \rightarrow \gamma \gamma, \gamma \rightarrow e^{+} e^{-}$, one misidentification

29

How to use the results?

What we have

- Expected number of events if $U=1\left(N_{\exp }=N_{\text {sim }} \times \epsilon\right)$ with its error
- Expected number of background N_{b} with its error δN_{b}
- Measurement of a number of events $n_{\text {obs }}$

What we want to know

- have we observed new physics?
- signal $\in\left[s_{\text {down }}, s_{\text {up }}\right]$ at a given confidence level (e.g. 90%)
- a confidence interval for $U_{e}^{2}, U_{e} U_{\mu}$ and U_{μ}^{2} :

As $\# \propto U_{\alpha}^{2} U_{\beta}^{2}$, in the channel $\left\{K^{ \pm} \rightarrow I_{\alpha}^{ \pm} N, N \rightarrow I_{\beta}^{ \pm} \pi^{\mp}\right\}$:
$\left(U_{\alpha} U_{\beta}\right) \in\left[\sqrt{\frac{S_{\text {down }}}{N_{\text {up }}(U=1)}} ; \sqrt{\frac{S_{\max }}{N_{\exp }(U=1)}}\right]$

Bayesian computation of an upper limit

- If background b and signal acceptance η are known, s follows:

$$
\mathcal{L}(s, \eta, b \mid n)=\frac{(s \eta+b)^{n}}{n!} e^{-s \eta-b}
$$

(Likelihood)

- b and η have a given distribution with standard deviation $\neq 0$, e.g.

$$
\pi_{B}(b)=\frac{1}{\sqrt{2 \pi} \sigma_{B}} e^{-(b-B)^{2} /\left(2 \sigma_{B}^{2}\right)}
$$

(Prior)

- Then, s follows

$$
p(s \mid n) \propto \int_{0}^{\infty} d b \int_{0}^{\infty} d \eta \mathcal{L}(s, \eta, b \mid n) \pi_{S}(\eta) \pi_{B}(b)
$$

(Posterior)

From the posterior probability, we define an upper limit $s_{u p}$ at 90% by

$$
\int_{0}^{s_{u p}} p(s \mid n) d s=0.90
$$

