Deeply Virtual Compton Scattering at Jefferson Lab

May 30, 2017

Frederic Georges
PhD Supervisor: Carlos Muñoz Camacho

Institut de Physique Nucléaire d’Orsay
CNRS-IN2P3 Université Paris-Sud, 91406 Orsay, France
Outline

• Introduction – physics motivations
• Experimental setup
• High Resolution Spectrometer optics calibration
• Calorimeter π^0 calibration
Internal structure of the proton

Proton

Quark

Gluon

Spatial distribution ?
Momentum distribution ?
Spin structure ?

Electron – proton collisions allow to probe the internal structure of the proton.
Generalized Parton Distributions (GPDs)

- Elastic Scattering ($ep \rightarrow e'p'$) \rightarrow Elastic Form Factors \rightarrow Spatial distribution
- Inelastic Scattering ($ep \rightarrow e'X$) \rightarrow Parton Distribution Functions \rightarrow Momentum distribution
- DVCS ($ep \rightarrow e'p'\gamma$) \rightarrow Generalized Parton Distributions \rightarrow Spatial-Momentum correlations & Spin structure
Deeply Virtual Compton Scattering (DVCS)

DVCS : \(ep \rightarrow e'p'\gamma

Hard part
(QED, can be computed)

Soft part
Parametrized by GPDs

Proton structure described by 4 quark GPDs:
\(H, E, \tilde{H}, \tilde{E} \)

DVCS cross section (~occurrence probability) measurement \(\rightarrow \) access GPDs
\(\rightarrow \) Description of the proton internal structure
DVCS at Jefferson Lab, Hall A (2014-2016)

- Jlab: 12 GeV electron accelerator facility + 4 experimental Halls (A, B, C, D)

- Electron beam: e
- Liquid Hydrogen target: p
- Spectrometer: detect e'
- Calorimeter: detect γ
- p' not detected

DVCS (ep \rightarrow e'$p'\gamma$)
High Resolution Spectrometer (HRS) optics calibration
The HRS focal plan

Detector package ~ camera film

Magnets ~ camera lenses

Focal plan: “picture” of events happening at the target.

Detected electrons at the focal plan, measured:
- Position \((x_{fp}, y_{fp})\)
- Direction \((dx_{fp}/dz_{fp}, dy_{fp}/dz_{fp}) = (\theta_{fp}, \phi_{fp})\)

At the target, to be reconstructed:
- Event vertex (= position) \(y_{tg}\)
- Electron scattering angles \((\theta_{tg}, \phi_{tg})\)
- Electron momentum \(\delta_{tg}\)

4 variables in focal plan coordinate system

↓

4 variables in target coordinate system
The optics matrix

1st order approximation:

\[
\begin{bmatrix}
\delta \\
\theta \\
y \\
\phi
\end{bmatrix}_{tg} =
\begin{bmatrix}
\langle \delta | x \rangle & \langle \delta | \theta \rangle & 0 & 0 \\
\langle \theta | x \rangle & \langle \theta | \theta \rangle & 0 & 0 \\
0 & 0 & \langle y | y \rangle & \langle y | \phi \rangle \\
0 & 0 & \langle \phi | y \rangle & \langle \phi | \phi \rangle
\end{bmatrix}
\begin{bmatrix}
x \\
\theta \\
y \\
\phi
\end{bmatrix}_{fp}
\]

Full polynomial expression, order 5:

\[
y_{tg} = \sum_{i=1}^{m} \sum_{j,k,l} C_{i}^{Y_{jkl}} x_{fp}^{i} \theta_{fp}^{j} y_{fp}^{k} \phi_{fp}^{l}
\]

\[i + j + k + l \leq 5\]

\[C_{i}^{Y_{jkl}} \text{“Optics matrix coefficients”}\]

- Need calibration if magnets tuning is changed.
- Spring 2016 : magnet issue
Step 1: vertex reconstruction calibration

- Data taken on a 5 thin carbon foils target (1mm thick)
- Expected vertex values y^{0}_{lg}, correlated to precise areas of the focal plan
- Computation of the new optics matrix coefficients $C^{Y_{jkl}}_{i}$ by minimizing the aberration function $\Delta(y)$

$$\Delta(y) = \sum_{s} \left[\sum_{j,k,l} Y_{jkl} \frac{\theta^{j}_{fp} y^{k}_{fp} \phi^{l}_{fp}}{\sigma^{s}_{y}} - y^{0}_{lg} \right]^2$$

$$Y_{jkl} = \sum_{i=1}^{m} C^{Y_{jkl}}_{i} x^{i}_{fp}$$
Step 2: angles reconstruction calibration

- Thick metal plate with holes inserted in front of the LHRS entrance (Sieve)
 - Holes = expected values for electron scattering angles θ_{tg} and ϕ_{tg}, correlated to precise areas of the focal plan
 - Computation of new optics matrix coefficients by minimization of aberration functions $\Delta(\theta)$ and $\Delta(\phi)$
Step 3 : momentum reconstruction calibration

• Data taken on an LH$_2$ target, elastic scattering ep \rightarrow ep setting
 • Constrained system: known scattering angle = known scattering momentum
• “Delta Scan”
 • LHRS angle fixed
 • 5 runs varying HRS central momentum setting (central momentum, $\pm 2\%$, $\pm 4\%$)
 • Elastic momentum-scattering angle correlation \rightarrow each momentum value correlated to precise and different focal plan areas

\rightarrow Expected values for momentum δ_{tg}, correlated to precise areas of the focal plan
\rightarrow Computation of new optics matrix coefficients by minimization of aberration function $\Delta(\delta)$.
HRS optics – Preliminary results

- Remaining issue with vertex reconstruction on target edges
- Corrections: work in progress
Calorimeter π^0 calibration
Calorimeter π^0 calibration

• 208 PbF$_2$ crystals
• Measure photons energy deposit in each crystal

• Radiation damages: PbF$_2$ crystals become darker
 → Loss of gain
 → Need to compute new correction coefficients often to compensate
 → π^0 calibration, uses π^0 mass reconstruction

• $\pi^0 \rightarrow \gamma_1 + \gamma_2$
• $m^2_{\pi} = 2E_{\gamma_1}E_{\gamma_2}(1 - \cos\theta_{\gamma_1\gamma_2})$
Calorimeter π^0 calibration

- Correction coefficients \rightarrow optimize mean value + π^0 reconstructed mass resolution

- Minimize:

$$F = \sum_{i=1}^{N}(m_i^2 - m_{\pi^0}^2)^2 + \lambda \sum_{i=1}^{N}(m_i^2 - m_{\pi^0}^2)$$

$$m_i^2 = 2 \left(\sum_{i=0}^{N_1} c_i E_i \right) \left(\sum_{j=0}^{N_2} c_j E_j \right) (1 - \cos \theta_{12})$$

Correction coefficients

$$\frac{\partial F}{\partial C_k} \bigg|_{\forall k \in [0;208]} = 0$$

Linear system: 208 equations and 208 variables

Before calibration

Resolution: 10.3 MeV \rightarrow 10.0 MeV

After calibration

Photon 1 Photon 2

November 24-25

Reconstructed π^0 mass (GeV)
Calorimeter π^0 calibration – Preliminary results

- ~30% total gain loss at the end of the experiment
- Issues with edges and few peculiar crystals

Crystal 35 is very sensitive to radiation damage
Summary and Outlook

• Data acquisition ended Fall 2016
• Data analysis in progress
 • Many Calibrations/Corrections studies almost complete
 • HRS Optics
 • Calorimeter π^0 calibration
 • Wave form analysis (= how to identify and fit raw signals)
 • …

• Then:
 • data decoding/analysis using completed calibrations/corrections
 • DVCS cross sections extraction
 • GPDs (long term)
Thank You!

Questions?
DVCS in Hall A - Apparatus

\[ep \rightarrow e'p'\gamma \]
DVCS missing mass:

\[ep \rightarrow e'X\gamma \]

Missing mass\(^2 = (e + p - e' - \gamma)^2\)

Exclusivity of the DVCS process is ensured by a cut on the missing mass.
HRS optics calibration – focal plan area issue

- Production run setting - HRS angle : 37.1 deg
- Optics calibration run - HRS angle : 16.6 deg

- Optics calibration run taken at small angle → areas of focal plan were not illuminated
 → Poor calibration of the not illuminated area → Poor vertex reconstruction
 → Poor vertex reconstruction on target edges for production runs → reconstructed target is too short
Calorimeter π^0 calibration

- Initial calibration (elastic calibration):
 - Time consuming (~1 day)
 - Requires experimental setup changes
 - Cannot take DVCS data while calibrating
- π^0 calibration uses π^0 detected while taking DVCS data.
 - Can be done very often and after the actual data taking.
 - No beam time loss.

π^0 invariant mass (with no correction)
DVCS in Hall A - Goal

- Timeline:
 - E00-110/E03-106 (2004) : first round of dedicated experiments (Q² dependence study)
 - E07-007/E08-025 (2010) : second round of dedicated experiments (Q² dependence study + beam energy dependence)
 - E12-06-114 (2014 - 2016) : ~50% PAC days completed

- E12-06-114 goals:
 - Scaling test : Wider Q² scans at fixed x_B (larger Q² lever arm than in 2010 & several values of x_B)
 - Separation of Re and Im parts of DVCS cross-section amplitude

100 PAC days (88 + 12 calibration)
The DVCS + Bethe-Heitler interactions $e p \rightarrow e' p' \gamma$

$Q^2 = - (e' - e)^2$: virtuality of γ^*

$\nu = E - E'$, energies of the electron before and after scattering

$x_B = \frac{Q^2}{2M\nu}$ (NB: $x_B \neq x$)

$\xi = \frac{x_B}{2-x_B}$

-2ξ : longitudinal momentum transfer to the struck quark.

$t = (p - p')^2$: squared momentum transfer to the proton

In the limit $Q^2 \rightarrow \infty$ and $\nu \rightarrow \infty$ but fixed x_B (Bjorken limit), the virtual photon γ^* interacts with a single quark in the proton.
DVCS and Bethe-Heitler

At leading twist:

\[d^5 \sigma^\rightarrow - d^5 \sigma^\leftarrow = \Im \left(T^{BH} \cdot T^{DVCS} \right) \]

\[d^5 \sigma^\rightarrow + d^5 \sigma^\leftarrow = |BH|^2 + \Re \left(T^{BH} \cdot T^{DVCS} \right) + |DVCS|^2 \]

Known to 1%