Deeply Virtual Compton Scattering at Jefferson Lab

May 30, 2017
Frederic Georges

PhD Supervisor: Carlos Muñoz Camacho

Institut de Physique Nucléaire d'Orsay
CNRS-IN2P3 Université Paris-Sud, 91406 Orsay, France

Jefferson Lab

Outline

- Introduction - physics motivations
- Experimental setup
- High Resolution Spectrometer optics calibration
- Calorimeter π^{0} calibration

Internal structure of the proton

electron - proton collisions allow to probe the internal structure of the proton

Generalized Parton Distributions (GPDs)

DIS Parton Distribution Functions Elastic Form Factors

$$
\begin{array}{rll}
\text { - Elastic Scattering }\left(e p \rightarrow e^{\prime} p^{\prime}\right) & \rightarrow \text { Elastic Form Factors } & \rightarrow \text { Spatial distribution } \\
\text { - Inelastic Scattering }\left(\mathrm{ep} \rightarrow \mathrm{e}^{\prime} \mathrm{X}\right) & \rightarrow \text { Parton Distribution Functions } & \rightarrow \text { Momentum distribution } \\
\text { - DVCS (ep } \left.\rightarrow \mathrm{e}^{\prime} \mathrm{p}^{\prime} \gamma\right) & \rightarrow \text { Generalized Parton Distributions } & \rightarrow \text { Spatial-Momentum correlations } \\
& \text { \& Spin structure }
\end{array}
$$

Deeply Virtual Compton Scattering (DVCS)

DVCS cross section (ooccurrence probability) measurement \rightarrow access GPDs \rightarrow Description of the proton internal structure

DVCS at Jefferson Lab, Hall A (2014-2016)

- Jlab : 12 GeV electron accelerator facility +4 experimental Halls (A, B, C, D)

High Resolution Spectrometer (HRS) optics calibration

The HRS focal plan

Detector package ~ camera film

HRS ~ camera

Focal plan : "picture" of events happening at the target.

Detected electrons at the focal plan, measured :

- Position ($\mathrm{x}_{\mathrm{fp}}, \mathrm{y}_{\mathrm{fp}}$)
- $\quad \operatorname{Direction}\left(\mathrm{dx}_{\mathrm{fp}} / \mathrm{dz}_{\mathrm{fp}}, \mathrm{dy}_{\mathrm{fp}} / \mathrm{dz}_{\mathrm{fp}}\right)=\left(\theta_{\mathrm{fp}}, \phi_{\mathrm{fp}}\right)$

At the target, to be reconstructed :

- Event vertex (= position) $y_{t g}$
- Electron scattering angles $\left(\theta_{\mathrm{tg}}, \phi_{\mathrm{tg}}\right)$
- Electron momentum $\delta_{\text {tg }}$

4 variables in focal plan coordinate system

4 variables in target coordinate system

The optics matrix

$1^{\text {st }}$ order approximation :
$\left[\begin{array}{l}\delta \\ \theta \\ y \\ \phi\end{array}\right]$
$=\left[\begin{array}{c}\langle\delta \mid x\rangle \\ \langle\theta \mid x\rangle \\ 0 \\ 0\end{array}\right.$
$\begin{array}{cc}\langle\delta \mid \theta\rangle & 0 \\ \langle\theta \mid \theta\rangle & 0 \\ 0 & \langle y \mid y\rangle \\ 0 & \langle\phi \mid y\rangle\end{array}$
$\left.\begin{array}{c}0 \\ 0 \\ \langle y \mid \phi\rangle \\ \langle\phi \mid \phi\rangle\end{array}\right]\left[\begin{array}{l}x \\ \theta \\ y \\ \phi\end{array}\right]_{f p}$

Full polynomial expression, order 5:
$y_{t g}=\sum_{j, k, l} \sum_{i=1}^{m} C_{i}^{Y_{j k l}} x_{f p}^{i} \theta_{f p}^{j} y_{f p}^{k} \phi_{f p}^{l}$
$\mathrm{i}+\mathrm{j}+\mathrm{k}+\mathrm{l} \leq 5$
$C_{i}^{Y_{j k l}}$ "Optics matrix coefficients"

- Need calibration if magnets tuning is changed.
- Spring 2016 : magnet issue

Step 1 : vertex reconstruction calibration

- Data taken on a 5 thin carbon foils target (1 mm thick)
\rightarrow Expected vertex values $y_{t g}^{0}$, correlated to precise areas of the focal plan
\rightarrow Computation of the new optics matrix coefficients $C_{i}^{Y_{j k l}}$ by minimizing the aberration function $\Delta(y)$

$$
\Delta(y)=\sum_{s}\left[\frac{\sum_{j, k, l} Y_{j k l} \theta_{f p}^{j} y_{f p}^{k} \phi_{f p}^{l}-y_{t g}^{0}}{\sigma_{y}^{s}}\right]^{2} \quad Y_{j k l}=\sum_{i=1}^{m} C_{i}^{Y_{j k l}} x_{f p}^{i}
$$

Step 2 : angles reconstruction calibration

- Thick metal plate with holes inserted in front of the LHRS entrance (Sieve)
\rightarrow Holes $=$ expected values for electron scattering angles θ_{tg} and ϕ_{tg}, correlated to precise areas of the focal plan
\rightarrow Computation of new optics matrix coefficients by minimization of aberration functions $\Delta(\theta)$ and $\Delta(\phi)$

Step 3 : momentum reconstruction calibration

- Data taken on an LH_{2} target, elastic scattering ep \rightarrow ep setting
- Constrained system: known scattering angle = known scattering momentum
- "Delta Scan"
- LHRS angle fixed
- 5 runs varying HRS central momentum setting (central momentum, $\pm 2 \%, \pm 4 \%$)
- Elastic momentum-scattering angle correlation \rightarrow each momentum value correlated to precise and different focal plan areas
\rightarrow Expected values for momentum δ_{tg}, correlated to precise areas of the focal plan
\rightarrow Computation of new optics matrix coefficients by minimization of aberration function $\Delta(\delta)$.

HRS optics - Preliminary results

Calorimeter π^{0} calibration

Calorimeter π^{0} calibration

- $208 \mathrm{PbF}_{2}$ crystals
- Measure photons energy deposit in each crystal
- Radiation damages : PbF_{2} crystals become darker
\rightarrow Loss of gain
\rightarrow Need to compute new correction coefficients often to compensate
$\rightarrow \pi^{0}$ calibration, uses π^{0} mass reconstruction
- $\pi^{0} \rightarrow \gamma_{1}+\gamma_{2}$
- $\mathrm{m}_{\pi}^{2}=2 \mathrm{E}_{\gamma 1} \mathrm{E}_{\gamma 2}\left(1-\cos \theta_{\gamma 1 \gamma 2}\right)$

Calorimeter π^{0} calibration

- Correction coefficients \rightarrow optimize mean value $+\pi^{0}$ reconstructed mass resolution
- Minimize :

$$
F=\sum_{i=1}^{N}\left(m_{i}^{2}-m_{\pi^{0}}^{2}\right)^{2}+\lambda \sum_{i=1}^{N}\left(m_{i}^{2}-m_{\pi^{0}}^{2}\right)
$$

Photon 1 Photon 2

Calorimeter π^{0} calibration - Preliminary results

Summary and Outlook

- Data acquisition ended Fall 2016
- Data analysis in progress
- Many Calibrations/Corrections studies almost complete
- HRS Optics
- Calorimeter π^{0} calibration
- Wave form analysis (= how to identify and fit raw signals)
- ...
- Then :
- data decoding/analysis using completed calibrations/corrections
- DVCS cross sections extraction
- GPDs (long term)

Thank You!

Questions?

DVCS in Hall A - Apparatus

$$
\mathrm{ep} \rightarrow \text { e'p' } \gamma
$$

DVCS missing mass and exclusivity

DVCS missing mass :
ep $\rightarrow e^{\prime} X \gamma$
Missing mass ${ }^{2}=\left(e+p-e^{\prime}-\gamma\right)^{2}$
Exclusivity of the DVCS process is ensured by a cut on the missing mass.

HRS optics calibration - focal plan area issue

Production run setting - HRS angle : 37,1 deg

Optics calibration run - HRS angle : 16,6 deg

- Optics calibration run taken at small angle \rightarrow areas of focal plan were not illuminated
\rightarrow Poor calibration of the not illuminated area \rightarrow Poor vertex reconstruction
\rightarrow Poor vertex reconstruction on target edges for production runs \rightarrow reconstructed target is too short

Calorimeter π^{0} calibration

- Initial calibration (elastic calibration) :
- Time consuming (~ 1 day)
- Requires experimental setup changes
- Cannot take DVCS data while calibrating
- π^{0} calibration uses π^{0} detected while taking DVCS data.
- Can be done very often and after the actual data taking.
- No beam time loss.
π^{0} invariant mass (with no correction)

DVCS in Hall A - Goal

- Timeline:
- E00-110/E03-106 (2004) : first round of dedicated experiments (Q^{2} dependence study)
- E07-007/E08-025 (2010) : second round of dedicated experiments (Q^{2} dependence study + beam energy dependence)
- E12-06-114 (2014-2016) : ~50\% PAC days completed

DVCS measurements in Hall A/JLab

- E12-06-114 goals :
- Scaling test : Wider Q^{2} scans at fixed x_{B} (larger Q^{2} lever arm than in 2010 \& several values of x_{B})
- Separation of Re and Im parts of DVCS cross-section amplitude

100 PAC days $(88+12$ calibration $)$

The DVCS + Bethe-Heitler interactions ep \rightarrow e'p' γ

$$
\begin{aligned}
& \mathrm{Q}^{2}=-\left(\mathrm{e}^{\prime}-\mathrm{e}\right)^{2}: \text { virtuality of } \gamma^{*} \\
& v=\mathrm{E}-\mathrm{E}^{\prime}, \text { energies of the electron before and after scattering } \\
& \mathrm{x}_{\mathrm{B}}=\frac{Q^{2}}{2 M v} \quad\left(\mathrm{NB}: \mathrm{x}_{\mathrm{B}} \neq \mathrm{x}\right) \\
& \xi=\frac{x_{\mathrm{B}}}{2-x B} \\
& -2 \xi: \text { longitudinal momentum transfer to the struck quark. } \\
& \mathrm{t}=\left(\mathrm{p}-\mathrm{p}^{\prime}\right)^{2}: \text { squared momentum transfer to the proton }
\end{aligned}
$$

> In the limit $\mathrm{Q}^{2} \rightarrow \infty$ and $v \rightarrow \infty$ but fixed x_{B} (Bjorken limit), the virtual photon γ^{*} interacts with a single quark in the proton.

DVCS and Bethe-Heitler

At leading twist:

$$
\begin{aligned}
& d^{5} \vec{\sigma}-d^{5} \stackrel{\leftarrow}{\sigma}=\quad \quad \Im m\left(T^{B H} \cdot T^{D V C S}\right) \\
& d^{5} \vec{\sigma}+d^{5} \stackrel{\leftarrow}{\sigma}=|B H|^{2}+\Re e\left(T^{B H} \cdot T^{D V C S}\right)+|D V C S|^{2}
\end{aligned}
$$

