An innovative Neganov-Luke-assisted light detector for the sensitivity enhancement of CUORE experiment

Valentina Novati

31/05/2017

PHENIICS Fest

3

PHENIICS Fest

The issue...

CUORE is not a zero-background experiment, the main background is due to **a particles** with degraded energy emitted from the surfaces near the detector.

Background budget of the CUORE experiment

32 α events are expected in the neutrinolessdouble-beta-decayenergy region in 1 year.

31/05/2017

PHENIICS Fest

Our solution: the Cherenkov light tagging

The TeO₂ Cherenkov emission threshold:

- 50 keV for the electrons;
- 400 MeV for αs .

Electrons, produced by neutrinoless-double-beta decay in 130 Te, have an energy higher (2527 keV) than the threshold, while surface α s do not.

If the detector is coupled to a **bolometric light detector**, it is possible to measure the Cherenkov light produced by electrons and distinguish their signal from the α background.

Cherenkov light collected by a light detector corresponds to an energy of around 100 eV, that would be hidden in the baseline noise of a standard light detector (\sim 50-100 eV).

Neganov-Luke effect

The absorption of photons produces *electron-hole pairs*

The electric field drifts the charges and it prevents their recombination

Carriers collide with the lattice during the drift, increasing the temperature

$$E = E_0 \cdot \left(1 + \frac{q \cdot V}{\varepsilon}\right)$$

q electron chargeV voltage appliedε energy used to produce an electron-hole pair

Our hero: Neganov-Luke light detector

Light detector calibration

What do we see with a standard light detector

We acquired data without bias on the grids.

31/05/2017

baseline-noise RMS = 108 eV signal/noise = 0.65

Let's turn on amplification

$\alpha/\beta(\gamma)$ separation

TeO $_{2}$ (784 g) and GeCo1, 232 Th (98.7 h), Run311, LSM

We obtained an acceptance of 96.28% of $\beta(\gamma)$ events with a rejection of 99.9% of α particles.

Not only Cherenkov light...

GeCo1 events @60 V grids bias, RUN 311 LSM

Conclusions

- We have been capable of distinguish the β signal from the α background: 96.28% of β events is accepted, rejecting 99.9% of α s.
- \bullet The light emitted by TeO $_{\rm 2}$ crystal is both Cherenkov and scintillation light.

