First life time measurement in the ^{78}Ni region with AGATA and VAMOS at GANIL

Clément Delafosse
Institut de Physique Nucléaire d’Orsay
Director : David Verney
Outline

Physics : the 78Ni region, monopole drift and life time measurement

Setup : AGATA, VAMOS and OUPS

Analysis : Identification with VAMOS

Analysis : Life time measurement : an example

What is the next step ?
The 78Ni region

$N=50$

$Z=28$

78Ni: Most exotic spin-orbit doubly magic nuclei neutron orbitals evolution above $N=50$ is still scarce
The 78Ni region

$N=50$

$Z=28$

78Ni: Most exotic spin-orbit doubly magic nuclei

Neutron orbitals evolution above $N=50$ is still scarce
Historical first way to express the nucleon-nucleon interaction as a central one.

A non-central term was added by Otsuka: the tensor mechanism.

Calculation made in order to reproduce energies in 87Sr.
In order to try to answer this question, we will study the $\nu g_{7/2}$ evolution when removing protons.

The question is: what is the real importance of the tensor term in the nuclear interaction?
Life time measurement: why?

Life time of states is a signature of its degree of collectivity!

Acquisition system are not fast enough for measuring such a life time (from 0.1 ps to 10 ps)!
Experimental setup

VAMOS field: $B_{\rho_0} = 1.1 \text{ T.m}$

Beam: ^{238}U (25 nA, 6.3 AMeV)

Plunger distances: 100, 250 and 500 μm
Exotic nuclei production

« In flight » production : a heavy projectile on a thin target so the reaction product are emitted in the forward direction
Exotic nuclei production

« In flight » production: a heavy projectile on a thin target so the reaction product are emitted in the forward direction
Exotic nuclei production

« In flight » production: a heavy projectile on a thin target so the reaction product are emitted in the forward direction.

\[
\begin{align*}
\text{^{238}U} & \rightarrow \text{^{9}Be} \\
\text{^{247}Cu^*} & \rightarrow \text{^{247-A-n}Y^*} \\
\end{align*}
\]

This reaction populate Yrast states: for a given spin-parity, it is the lowest energy one.
RDDS : plunger device

RDDS : Recoil Distance Doppler Shift

If a photon is emitted before or after the degrader, the Doppler shift is different because the velocity is different.

The distance D is retro-controlled by computer.
The correspondence between D and ToF (Time of flight) is given by $\text{ToF} = \frac{D}{V}$ (where V is the velocity of the ion before the degrader).
RDDS : plunger device

RDDS : Recoil Distance Doppler Shift

If a photon is emitted before or after the degrader, the Doppler shift is different because the velocity is different.

The distance D is retro-controlled by computer.

The correspondence between D and ToF (Time of flight) is given by $\text{ToF} = \frac{D}{V}$ (where V is the velocity of the ion before the degrader).
A few words about AGATA

AGATA: Advanced GAamma Tracking Array

Highly segmented Ge detector in order to have access to the interaction point with a good precision (<5mm)

Reconstruction of incident γ energy through tracking algorithm
Knowledge of the first interaction point: good Doppler correction
Identification in VAMOS

VAMOS : VAriable MOde Spectrometer

Target
- Target MW

Target Position

X TMW1: 38 ch
Y TMW1: 60 ch

T start

X TMW2: 64 ch
Y TMW2: 92 ch

Dipole

T stop

X,Y DC1
X,Y DC2
X,Y DC3
X,Y DC4

dE E

X,Y DC1
X,Y DC2
X,Y DC3
X,Y DC4

MW_{0-19}

DC_{1,2,3,4}

IC_{0-19}

x=500

x=-500

20 pads

4x160 pads

4x5 pads
<table>
<thead>
<tr>
<th>MWPPAC</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWPC</td>
<td>$X_i, Y_i, \theta_i, \varphi_i$</td>
</tr>
<tr>
<td>DC</td>
<td>$X_f, Y_f, \theta_f, \varphi_f$</td>
</tr>
<tr>
<td>IC</td>
<td>\begin{align*} \Delta E_1 \ \Delta E_2 \ \Delta E_3 \ \Delta E_4 \end{align*}</td>
</tr>
</tbody>
</table>
D and Bρ are reconstructed through the optical matrices of VAMOS knowing the position of the ion in the target plan dans the focal plan.

<table>
<thead>
<tr>
<th>MWPPAC</th>
<th>MWPC</th>
<th>X_i, Y_i, θ_i, ϕ_i</th>
<th>D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>X_f, Y_f, θ_f, ϕ_f</td>
<td></td>
<td>Dρ</td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>ΔE_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔE_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔE_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔE_4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[B_\rho = \frac{p}{q} = \frac{\gamma \beta A \mu c}{Q e} \]

\[V = \frac{D}{T} \]

\[\beta = \frac{V}{c} \]

\[\gamma = \frac{1}{\sqrt{1 - \beta^2}} \]
<table>
<thead>
<tr>
<th>MWPPAC</th>
<th>T</th>
<th>V</th>
<th>(\frac{A}{Q})</th>
<th>(\frac{A}{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWPC</td>
<td>(X_i, Y_i, \theta_i, \varphi_i)</td>
<td>(D)</td>
<td>(B \rho)</td>
<td>(V)</td>
</tr>
<tr>
<td>DC</td>
<td>(X_f, Y_f, \theta_f, \varphi_f)</td>
<td>(\Delta E)</td>
<td>(E)</td>
<td>(E_{res})</td>
</tr>
</tbody>
</table>

\[
\Delta E_i = \sum_{j=0}^{5} \beta_{ij} \Delta E_{ij}
\]

\[
E = \alpha_1 \Delta E_1 + \alpha_2 \Delta E_2 + \alpha_3 \Delta E_3 + \alpha_4 \Delta E_4
\]
\[E = (\gamma - 1)Au\epsilon c^2 \]

\[Q = \frac{A}{\frac{A}{Q}} = \frac{E}{(\gamma - 1)u\epsilon c^2} \]
<table>
<thead>
<tr>
<th>MWPPAC</th>
<th>T</th>
<th>V</th>
<th>(\frac{A}{Q})</th>
<th>(\frac{A}{Q})</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(X_i, Y_i, \theta_i, \varphi_i)</td>
<td>(D)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>(X_f, Y_f, \theta_f, \varphi_f)</td>
<td>(B_\rho)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>(\Delta E_1)</td>
<td>(\Delta E)</td>
<td>(E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta E_2)</td>
<td>(E_{res})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta E_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta E_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
A = Q \times \frac{A}{Q}
\]
\[\frac{\Delta E}{E} \propto Z^2 \]

<table>
<thead>
<tr>
<th>MWPPAC</th>
<th>T</th>
<th>V</th>
<th>(\frac{A}{Q})</th>
<th>(\frac{A}{Q})</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWPC</td>
<td></td>
<td></td>
<td>(X_i, Y_i, \theta_i, \varphi_i)</td>
<td>(D)</td>
<td>(V)</td>
</tr>
<tr>
<td>DC</td>
<td>(X_f, Y_f, \theta_f, \varphi_f)</td>
<td>(B_\rho)</td>
<td>(\Delta E_1)</td>
<td>(\Delta E)</td>
<td>(E)</td>
</tr>
<tr>
<td>IC</td>
<td>(\Delta E_2)</td>
<td>(\Delta E_3)</td>
<td>(\Delta E_4)</td>
<td>(E_{res})</td>
<td>(Z)</td>
</tr>
</tbody>
</table>

Diagram:

- The diagram shows a 3D plot of \(\Delta E \) vs. \(E \) with color coding indicating different values of \(E \) and \(Z \).
- The plot includes lines for various elements: Sr (Z=38), Rb (Z=37), Kr (Z=36), Br (Z=35), Se (Z=34), At (Z=33), Ge (Z=32), Ga (Z=31), etc.
- The color scale ranges from 0 to 35 MeV.

Conclusion:

The provided data and diagram suggest a relationship between \(\Delta E \), \(E \), and \(Z \) that can be described by the equation \(\frac{\Delta E}{E} \propto Z^2 \). The 3D plot visualizes this relationship with varying \(Z \) values for different elements.
Number of ions identified with VAMOS as a function of the number of proton and neutron
^{86}Se

Sum of all distances γ-spectrum
Example of life time measurement: ^{86}Se

Preliminary Results

$2^+ \rightarrow 0^+$
$4^+ \rightarrow 2^+$

$R = I_U / (I_U + I_S)$ evolution as a function of ToF is given by Bateman equation.
Perspectives

Tracking parameter optimisation

Life time measurement in 87Kr, 85Se, 83Ge ($N=51$ odd isotones)

Life time measurement in other nuclei of the region ($N=52$ & $N=54$)