FROM RESEARCH TO INDUSTRY

Quench Tests Analyses of the First JT-60SA Toroidal Field Coils

PhD Student: Yawei HUANG

 Supervisors:
 Dr. Walid ABDEL MAKSOUD

 Dr. Bertrand BAUDOUY

 Laboratory:
 Service des Accélérateur, de Cryogénie et de Magnétisme

 Institut de Recherche sur les lois Fondamentales de l'Univers

 CEA Saclay

universite

Context (JT-60SA)

Fusion energy:

Fusion reactions:Deuterium + Tritium \rightarrow He4 (3.56MeV) + neutron (14.03MeV)Deuterium + Deuterium \rightarrow He3 (0.82MeV) + neutron (2.45 MeV)(plasma state: high temperature ~ 10⁸ K)

Fusion approaches: Magnetic confinement

- tokamak (donut shaped chamber)
- spherical tokamak
- stellarator, etc

Inertial confinement (lasers' high energy)

- direct drive
- indirect drive, etc

LASE

ASP

universite

Context (JT-60SA)

International fusion project prospects⁽¹⁾ :

scientifically feasible (1970s ~ 2000) *First step:* e.g. TFTR, JET, JT-60U

Second step: technically feasible e.g. **ITER**⁽²⁾, 2005~2025 construction;

commercially feasible *Third step:* e.g. DEMO, design & concept.

TFTR

JET

JT-60U

(1) « Fusion – The energy of the universe », Garry McCracken & Peter Stott (2) International Thermonuclear Experimental Reactor

JET **Tore Supra** 80 m³ 25 m³ ~16 MW, ~ 0 MW.

ITER 800 m³ ~ 500 MW, - Dominant self heating -

~ 2000 - 4000 MW,

Context (JT-60SA)

Fusion experiment: JT-60SA

- *Background*: JT-60U (copper coils)
- Participants:Europe (18 Toroidal Field coils: fabrication and
tests)Japan (existing infrastructure JT-60U + other
components)
- Role:Support to the operation of ITERAddressing key physics issues for ITER & DEMO

My topic: Quench test analyses of the first JT-60SA Toroidal Field (TF) Coils

<u>*Quench:*</u> electrical conductor's sudden transition from superconducting state to normal resistive state

universite

Instrumentation

Configuration of TF coils:

- 4.5 x 7.5 m;
- ~ 16 t;
- 12 pancakes stacked;
- 113 m long / pancake

CQ7

universite

Instrumentation

Cold Test Facility (CEA Saclay): cryostat, valve box, helium refrigerator, power supply, rapid acquisition system, etc

N° TF coil	Manufacturer	Test date	N° DP quench
10	France	19/02/2016	DP6
10 (bis)	France	25/02/2016	DP1
11	France	11/04/2016	DP6
12	France	11/07/2016	DP1
13	France	04/10/2016	DP4
14	France	03/11/2016	DP3
15	France	09/02/2017	DP2

N° TF coil	Manufacturer	Test date	N° DP quench
01	Italy	07/06/2016	DP5
03	Italy	31/08/2016	DP6
04	Italy	28/11/2016	DP6
05	Italy	12/01/2017	DP6
06	Italy	13/03/2017	DP3

Helium refrigerator **Cryogenic line**

Nitrogen warmer **Copper busbars** Dump resistor and main breaker

Safety System cabinets

Process and control cabinets

Warm valves **HTS current lead**

Valve box

Test frame

universite

Instrumentation

Operating conditions *CTF*:

- Tinlet 4.7 K => 7.5 K
- Pressure ~10 bar
- Nominal current 25.7 kA
- Peak field ~ 3 T

UNIVERSITE PARIS-SACLAY

Data

Instrumentation of CTF

Cryogenic system	Measurement
TE2414	WP inlet temperature
TE2432	WP outlet temperature
TE9844	DP6 outlet temperature
TE9845	DP1 outlet temperature
TE9846	Joint DP3-4 outlet temperature
PT2416	WP inlet pressure
PT2424	WP outlet pressure
P_Capa_C	Helium container pressure

Instrumentation of CTF

Electrical system	Measurement
Vb1	DP1 voltage
Vb2	DP2 voltage
Vb3	DP3 voltage
Vb4	DP4 voltage
Vb5	DP5 voltage
Vb6	DP6 voltage
U_Jb1-2	Joint DP1-2 voltage
U_Jb2-3	Joint DP2-3 voltage
U_Jb3-4	Joint DP3-4 voltage
U_Jb4-5	Joint DP4-5 voltage
U_Jb5-6	Joint DP5-6 voltage
U_SL1	Feeders DP1-valve box voltage
U_SL2	Feeders DP6-valve box voltage
Vpick	Pick-up coil voltage

CEA / DRF / Irfu / SACM

Data exploitation

Transit resistance for double-pancakes: method by **pick-up coil compensation** Faraday's law of induction => **eddy currents** induced by changing magnetic field => create another magnetic field to oppose the original one

Data exploitation

Transit resistance for double-pancakes: method by **pick-up coil compensation** Faraday's law of induction => **eddy currents** induced by changing magnetic field => create another magnetic field to oppose the original one

First phase: quench initiation phase

cea

CRS

École Doctorale PHENNICS Doctoral School

First phase: quench initiation phase

CRS

- Quench acceleration phase

universite

École Doctorale PHENIICS Doctoral School

•

École Doctorale PHENIICS Doctoral School

Second phase: quench acceleration phase

C07

École Doctorale PHENIICS Doctoral School

Second phase: quench acceleration phase

CQZ

Second phase: quench acceleration phase

Cez

- Simultaneous transition phase for latter quenched pancakes

universite

École Doctorale PHENIICS Doctoral School

1

Quench dynamics (TFC11) universite

Third phase: simultaneous transition phase for latter quenched pancakes

cea

Quench dynamics (TFC11) universite

THEA 2.1 13/04/2017 16:44:42 -- JT60SA_DP1a_v2 --

CQZ

Reverse flow effect

Last phase: quench saturation phase

CQZ

Last phase: quench saturation phase

Conclusions

- Successful quench tests for 12 JT-60SA TF coils (update today)
- A quasi-complete database and a correct way for data exploitation
- Experimental analyses for all possible quench dynamics
- Already some verifications with modeling results
- *Prospects for next step* (Quasi-3D computation codes for modeling quench behavior):
 - **THEA** (Thermal Hydraulic and Electric Analysis of superconducting cables) for 1D thermo-hydraulic modelling along the CIC (Cable-In-Conduit) conductor
 - Cast3M for 2D transverse thermal diffusion in a limited number of coil cross-sections

universite

Thank you for your attention !

